
The Ultimate Strategy to Sear
h on m Rays?�Alejandro L�opez-Ortizy Sven S
huiererzAbstra
tWe 
onsider the problem of sear
hing on m 
urrent rays for a target ofunknown lo
ation. If no upper bound on the distan
e to the target is knownin advan
e, then the optimal 
ompetitive ratio is 1 + 2mm=(m � 1)m�1. Weshow that if an upper bound of D on the distan
e to the target is knownin advan
e, then the 
ompetitive ratio of any sear
h strategy is at least 1 +2mm=(m � 1)m�1 � O(1= log2D) whi
h is again optimal|but in a stri
tersense.To show the optimality of our lower bound we 
onstru
t a sear
h strategythat a
hieves this ratio. Surprisingly, our strategy does not need to know anupper bound on the distan
e to the target in advan
e; it a
hieves a 
ompetitiveratio of 1+2mm=(m� 1)m�1�O(1= log2D) if the target is found at distan
eD. Finally, we also present an algorithm to 
ompute the strategy that allowsthe robot to sear
h the farthest for a given 
ompetitive ratio C.1 Introdu
tionSear
hing for a target is an important and well studied problem in roboti
s. Inmany realisti
 situations the robot does not possess 
omplete knowledge about itsenvironment, for instan
e, the robot may not have a map of its surroundings, or thelo
ation of the target may be unknown [DI94, IK95, Kle92, LOS95, PY89℄.Sin
e the robot has to make de
isions about the sear
h based only on the part ofits environment that it has explored before, the sear
h of the robot 
an be viewed asan on-line problem. One way to judge the performan
e of an on-line sear
h strategyis to 
ompare the distan
e traveled by the robot to the length of the shortest pathfrom its starting point s to the target t. The ratio of the distan
e traveled by therobot to the optimal distan
e from s to t over all possible lo
ations of the target is
alled the 
ompetitive ratio of the sear
h strategy [ST85℄.�This resear
h is supported by the DFG-Proje
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We are interested in obtaining upper and lower bounds on the 
ompetitive ratioof sear
hing on m 
on
urrent rays. Here, a point robot is imagined to stand at theorigin ofm rays and one of the rays 
ontains the target t whose distan
e to the originis unknown. The robot 
an only dete
t t if it stands on top of it. It 
an be shownthat an optimal strategy visits the rays in 
y
li
 order and in
reases the step lengthea
h time by a fa
tor ofm=(m�1) starting with a step length of 1 [BYCR93, Gal80℄.The 
ompetitive ratio Cm a
hieved by this strategy is given by 1+2mm=(m�1)m�1.If randomization is used, the optimal 
ompetitive ratio is given by the minimum ofthe fun
tion 1 + 2am=((a� 1) lna), for a > 1 [Gal80, KRT97, KMSY94℄.Sear
hing onm rays has proven to be a very useful tool for sear
hing in a numberof 
lasses of simple polygons, su
h as star-shaped polygons [LOS97℄, generalizedstreets [DI94, LOS96℄, HV-streets [DHS95℄, and �-streets [DHS95, Hip94℄.However, the proof of optimality for the above m-way ray sear
hing strategyrelies on the unboundedness of the rays, that is, on the fa
t that the target 
an bepla
ed arbitrarily far away from the starting point of the rays [BYCR93, Gal80℄.But, if we 
onsider polygons and the robot is equipped with a range �nder, then itis possible to obtain an upper bound D on the distan
e to the target. In this 
aseit is impli
itly assumed that the strategy for sear
hing on m-rays remains optimalthough no proof of this assumption has been presented yet [DHS95, DI94, LOS96℄.In this paper we provide the �rst lower bound proof for sear
hing on m boundedrays; more pre
isely, we investigate the question if the knowledge of an upper boundon the distan
e to the target provides an advantage to the robot.Let CDm be the optimal 
ompetitive ratio to sear
h on m rays where the distan
eto the target is at most D. As mentioned above it is assumed in the literature thatCDm approa
hes Cm as D goes to in�nity; yet, there is only a proof for the 
ase m = 2by L�opez-Ortiz who shows that 9�O(1= logD) is a lower bound for the 
ompetitiveratio of sear
hing on two rays [LO96℄. Hipke et al. investigate the inverse problem,again for the 
ase m = 2 [IKL97℄. They 
onsider the maximal rea
h of a strategyto sear
h on the line if the 
ompetitive ratio of the strategy is given. The rea
h of astrategy X is the maximum distan
e D su
h that a target pla
ed at a distan
e D tothe origin is still dete
ted by a robot using X if the 
ompetitive ratio of X equals C.Sin
e C is given, a re
urren
e equation for the optimal rea
h 
an be derived. Usingthis re
urren
e equation Hipke et al. show that the maximal rea
h is 
ontinuous andstri
tly monotone in C [IKL97℄. This in turn implies that CD2 is stri
tly monotonein D and assumes all values in the interval [3; 9℄.In this paper we prove that1 + 2mm=(m� 1)m�1 �O �1= log2D� (1)is a lower bound on CDm , for general m; this also improves L�opez-Ortiz' bound form = 2. Moreover, we present a strategy that a
hieves a 
ompetitive ratio of the sameform as Equation 1, albeit with a di�erent 
onstant fa
tor in the \big-Oh" term.Here, D is the distan
e at whi
h the target is dis
overed. Astonishingly, our strategya
hieves this 
ompetitive ratio without knowing an upper bound on D in advan
e.These two results imply that the lower bound we present is asymptoti
ally optimal.2



Note that all previously proposed strategies have a 
ompetitive ratio of 1+2mm=(m�1)m�1 � O(1=D) if the target is dete
ted at distan
e D [BYCR93, Gal80℄. Finally,we also present an algorithm to 
ompute the maximal rea
h for a given 
ompetitiveratio C and arbitrary m|thus, generalizing the results by Hipke et al. [IKL97℄.The paper is organized as follows. In the next se
tion we give the basi
 de�nitions
on
erning sear
hing on m rays. In Se
tion 2 we show that an optimal strategy tosear
h on m bounded rays visits the rays in a �xed 
y
li
 order. We also derivea re
urren
e equation that is satis�ed by an optimal strategy. In Se
tion 3 we�rst 
onsider sear
hing on two rays to introdu
e our approa
h to analysing the
ompetitive ratio of an optimal strategy. In Se
tion 4 we generalize our ideas tothe 
ase of sear
hing on m rays. Se
tion 5 des
ribes and analyses a strategy whose
ompetitive ratio 
onverges asymptoti
ally as fast to 1+2mm=(m�1)m�1 as the lowerbound whi
h we have shown before. Finally, in Se
tion 6 we present an algorithmto 
ompute the strategy with maximal rea
h for a given 
ompetitive ratio C.2 Sear
hing on m Bounded RaysWe are interested in the 
ase that an upper bound D on the maximum distan
e ofthe target to the origin is known. Let X be a strategy to sear
h on m bounded rays.Strategy X pro
eeds in steps. In ea
h step the robot travels on one ray to a 
ertaindistan
e and, if it does not �nd the target, then it returns to the origin. Let xi bethe maximal distan
e to the origin and ri the ray visited in Step i.We de�ne Ji as the index of the step in whi
h ray ri is visited the next time afterStep i, that is, Ji = minfj > i j rj = rig. If there is no j > i with rj = ri, then wede�ne Ji = i. We represent X by the sequen
e of pairs (xi; Ji).Assume that the target is dis
overed in Step Jk in ray r. By the de�nition ofJk ray r was visited the last time before Step Jk in Step k and the distan
e d tothe target is greater than xk. The distan
e traveled by the robot to dis
over t isd+2PJk�1i=0 xi. Sin
e the target 
an be pla
ed arbitrarily 
lose to xk by an adversary,the 
ompetitive ratio of Step k is given bysupd>xk(d+ 2 Jk�1Xi=0 xi)=d = supd>xk 1 + 2 Jk�1Xi=0 xi=d = 1 + 2 Jk�1Xi=0 xi=xk:The 
ompetitive ratio CX of X is now given as the supremum of the 
ompetitiveratios over all steps.The �rst step is a spe
ial 
ase that we have not 
onsidered yet. If no informationabout the target is available, then one false move in the beginning may lead to anarbitrarily large 
ompetitive ratio. In order to avoid this problem we assume that alower bound of one for the distan
e to the target t is known in advan
e that is, thetarget may be pla
ed on any of the m rays somewhere in the interval [1; D℄.We denote the optimal 
ompetitive ratio of sear
hing on m rays for a target thatis pla
ed at a distan
e of at most D from the origin by CDm . In the following we3



show that CDm � 1 + 2 mm(m� 1)m�1 � O� 1log2D� :2.1 Periodi
ityIn order to prove a lower bound on the 
ompetitive ratio, we �rst show that anoptimal strategy|that is, a strategy with minimal 
ompetitive ratio|is periodi
and monotone. In the following let X = (x0; : : : ; xn) be a strategy to sear
h onm bounded rays. Let rk be the ray that the robot visits in Step k. Strategy X isperiodi
 if rk+m = rk, for all 0 � k � n�m. Strategy X is monotone if xk � xk+1,for all 0 � k � n� 1.Lemma 2.1 If X is a strategy to sear
h on m rays for a target that is pla
ed at adistan
e of at most D from the origin, then there is a monotone strategy X� withCX� � CX.Proof: The proof is similar to the proof to the proof by Gal for the unbounded
ase [Gal80℄. Let X = (xi) be a strategy to sear
h m bounded rays and ri the raythat is explored by X in the ith step. We de�ne Ji as above.Let Fi(X) = PJi�1j=0 xj=xi, for 0 � i � n. If Ji does not equal i, then the
ompetitive ratio in Step i of strategy X is given by 1+ 2Fi(X). If Ji equals i, thatis, xi = D and Step i is the last step on ray ri, then the 
ompetitive ratio in Step iof strategy X is bounded by2Pi�1j=0 xj + dd � 1 + 2Pi�1j=0 xjxJ�1i = 1 + 2FJ�1i (X)where J�1i is the index of the last visit of ray ri before i and d > xJ�1i is thedistan
e from the origin to the target. Let I be the set of indi
es i with Ji 6= i. The
ompetitive ratio CX of X is now given byCX = maxi2I 1 + 2Fi(X):If X is monotone, then there is nothing to show. So assume that there is aStep k, 0 � k � n � 1 su
h that xk+1 < xk. Let X� be the sear
h strategy whi
his equal to X ex
ept that for all steps i � k the role of rk and rk+1 is ex
hangedas are xk and xk+1. This 
an be a
hieved by setting (x�k; J�k ) = (xk+1; Jk+1) and(x�k+1; J�k+1) = (xk; Jk). For all other Steps i, (x�i ; J�i ) = (xi; Ji) unless x�k+1 = D, inwhi
h 
ase we set J�k+1 = k + 1 (and not equal to k as implied by the rule above).Note that x�k = xk+1 = D is not possible sin
e xk+1 < xk � D. Let I� be theset of indi
es i with J�i 6= i. We want to show that CX� = maxi2I� 1 + 2Fi(X�) �maxi2I 1 + 2Fi(X) = CX . Obviously, Fi(X) and Fi(X�) di�er only for the indi
esJ�1k , J�1k+1, k, k + 1 whi
h we are going to 
onsider more 
losely in the following.4



First we assume that Step k is not the last step on ray rk. (As mentioned before,Step k + 1 is never the last step on ray rk+1 as xk+1 < xk � D.)Fk(X) = PJk�1i=0 xixk = PJ�k+1�1i=0 x�ix�k+1 = Fk+1(X�) andFk+1(X) = PJk+1�1i=0 xixk+1 = PJ�k�1i=0 x�ix�k = Fk(X�):Here the equalities follow from the fa
t that J�k+1 = Jk � k + 2 and J�k = Jk+1 �k + 2, that is, the ex
hange of xk and xk+1 does not play a role in the summation.Next we 
onsider Steps J�1k+1 and J�1k . Note that J�1k � = J�1k and J�1k+1� = J�1k+1.Moreover,JJ�1k �1 = J�J�1k ��1 = k�1; therefore, FJ�1k (X) = FJ�1k �(X�). This leavesus with Step J�1k+1. We haveFJ�1k+1(X) = Pki=0 xixJ�1k+1 � Pki=0 xi � xk + xk+1xJ�1k+1 = Pk�1i=0 x�i + x�kx�J�1k+1� = FJ�1k+1�(X�):Now assume that Step k is the last step on ray rk and D = xk > xk+1. Then,Fk+1(X�) � FJ�1k+1�(X�). As above we obtain Fk(X�) = Fk+1(X), FJ�1k (X�) =FJ�1k (X) and FJ�1k+1�(X�) � FJ�1k+1(X). Hen
e, the 
ompetitive ratio of Strategy X�is no more than the 
ompetitive ratio of strategy X.By performing bubble-sort on strategyX we see that there is a monotone strategythat has a 
ompetitive ratio no more than X whi
h proves the 
laim. 2By Lemma 2.1 it suÆ
es to 
onsider monotone strategies in the following. Notethat if X is monotone, then the last m steps of X all have length D, that is, thereis an optimal strategy with xn�m+1 = � � �xn = D and the set of indi
es i with Ji 6= iequals f0; : : : ; n�mg.Lemma 2.2 If X is a strategy to sear
h on m rays for a target that is pla
ed ata distan
e of at most D from the origin, then there is a periodi
 strategy X� withCX� � CX.Proof: Let X be strategy to sear
h on m bounded rays. By Lemma 2.1 we
an assume that X is monotone. We follow the proof idea of Yin [Yin94℄. Let X�
onsist of the same sequen
e of numbers ex
ept that X� is now 
onsidered a periodi
strategy. We 
onsider the 
ompetitive ratios Ck of X and C�k of X� in Step k. ItsuÆ
es to show that, for every 0 � k � n�m, there is a 0 � j � n�m with C�k � Cj.As mentioned above we do not need to 
onsider the indi
es n�m+ 1 � k � n. So
onsider C�k = 1 + 2Pk+m�1i=0 xixk ;for some 0 � k � n � m. For ea
h ray rj, 1 � j � m, let kj be the �rst time Xexplores ray rj after Step k. Sin
e xj < D, for all 0 � j � n �m, kj exists, for all5



1 � j � n�m. Note that there is one ray rl su
h that kl � k +m. If rl is exploredbefore Step k, then let jl � k be the index of the last exploration; otherwise letjl = �1 and xjl = 1. In both 
ases xjl � xk sin
e X is monotone andC�k = 1 + 2Pk+m�1i=0 xixk � 1 + 2Pkl�1i=0 xixjl = Cjl;whi
h implies that the 
ompetitive ratio of X is at least as large as the 
ompetitiveratio of X�. 22.2 A Re
urren
e EquationIn the following we assume that X is an optimal periodi
, monotone strategy. Asmentioned before Fk simpli�es in this 
ase to Fk(X) = Pk+m�1i=0 xi=xk; for k =0; : : : ; n �m and CX = max0�i�n�m 1 + 2Fi(X). We now show that the values xisatisfy a re
urren
e equation. The following lemma was proven by Katsoupias andPapadimitriou for the spe
ial 
ase m = 2 with unbounded rays [KPY96℄.Lemma 2.3 If X� is an optimal strategy, then 1 + 2Fk(X�) = CDm, for all 0 � k �n�m.Proof: The proof is by 
ontradi
tion. It is based on the observation that Fk is theonly fun
tion whi
h is de
reasing in xk and all other fun
tions Fi with i � k�m+1are in
reasing in xk [KPY96℄. So if there is an index k with 1+ 2Fk(X) < CDm , thenthere is an " > 0 and a Æ > 0 su
h that if xk is de
reased by ", then 1 + 2Fk(X 0) �CDm � Æ if X 0 is the sequen
e where xk is repla
ed by xk � " and, in addition,1 + 2Fi(X 0) � CDm � Æ, for all k �m + 1 � i 6= k � n�m.Let X be a sequen
e with 
ompetitive ratio CDm and lX the minimal index for Xwith 1 + 2Fk(X) < CDm . Let X� be a sequen
e with 
ompetitive ratio CDm su
h thatl� = lX� is minimal among all su
h sequen
es. If l� � m� 1, then we 
an apply theabove argument and obtain a sequen
e X 0 from X� with 1+ 2Fk(X 0) < CDm � Æ, forall l��m+1 � k � n�m|in 
ontradi
tion to the minimality of l�. If l� < m� 1,then we 
an apply the above argument and obtain a sequen
e X 0 from X� with1+ 2Fk(X 0) < CDm � Æ, for all 0 � k � n�m|in 
ontradi
tion to the minimality ofCDm . Hen
e, there is no sequen
e X with 
ompetitive ratio CDm and an index k with1 + 2Fk(X) < CDm . 2In the following let 
Dm = (CDm � 1)=2. Lemma 2.3 implies that the step lengths xiof an optimal strategy X satisfy the following re
urren
e equation.Pk+m�1i=0 xixk = 
Dm or k+m�1Xi=0 xi = 
Dmxk; (2)for 0 � k � n�m. An additional 
onstraint is given by the �rst time the m-th rayis visited; here, the 
ompetitive ratio is given by1 + 2m�2Xi=0 xi � 1 + 2
Dm (3)6



as in steps 0; : : : ; m � 2 the �rst m � 1 rays are explored. If we multiply 
Dm by afa
tor of x�1 where 0 < x�1 � 1, then we a
hieve equality in (3) and we 
an view(3) as a spe
ial 
ase of (2) for k = �1. Hen
e, we assume in the following thatEquation 2 holds for all �1 � k � n�m.The linear equation system (2) 
onsists of n � m + 2 linearly independentequations for the n + 1 step lengths (x�1; x0; x1; : : : ; xn�1) of X (xn is irrele-vant sin
e xn does not appear in Equation 2). Sin
e we are given the values ofxn�m+1 = � � � = xn�1 = D, the n + 1 solutions (x�1; x0; x1; : : : ; xn�1) are uniquelyde�ned on
e we are given 
Dm, D, and n. We are interested in the question howlarge 
Dm has to be for a given D su
h that there is an n and a positive solution(x�1; x0; x1; : : : ; xn�1) with x�1 � 1. As this question seems to be rather diÆ
ult toanswer, we transform Equation 2 into a simpler form.Lemma 2.4 The values xi satisfy the following re
urren
e equationxk+m�1 � 
Dmxk + 
Dmxk�1 = 0; (4)for 0 � k � n�m.Proof: By Equation 2 we havek+m�1Xi=0 xi = 
Dmxk;for 0 � k � n�m. The same equation also holds for k � 1. Hen
e,k+m�1Xi=0 xi = 
Dmxk and k+m�2Xi=0 xi = 
Dmxk�1:By subtra
ting the se
ond equation from the �rst we obtain Equation 4, for 0 �k � n�m as 
laimed. 2Unfortunately, we obtain only n�m + 1 equations in this way|one too few|and the sequen
e X is not 
ompletely determined anymore by Equation 4 and them � 1 initial values xn�m+1 = � � � = xn�1 = D. One option to get around thisproblem is to add the �rst or last equation of (2) as an additional 
onstraint tore
urren
e equation (4). However, as this destroys the uniformity of the re
urren
eequation (4), we take a di�erent approa
h and introdu
e one more initial value.We redu
e the m values xn�m; xn�m+1; : : : ; xn�1 to the value D� = 
Dm=(
Dm �1)xn�m�1. The new sequen
e X 0 we obtain in this way|that is, x0i = xi, for 0 �i � n�m� 1, and xn�m = � � � = xn�1 = D�|does not ful�ll Equation 4 anymorebut onlyx0k+m�1 � 
Dmx0k + 
Dmx0k�1 � 0; that is, x0k+m�1x0k � x0k�1 � 
Dm7



for all 0 � k � n�m, and, in addition, by our 
hoi
e of D�x0n�1 � 
Dmx0n�m + 
Dmx0n�m�1 = 0: (5)It is easy to see that xn�m�1 � (1��m)xn�m where �m = (
Dm�1)=(
Dm(m�1)) andxn�m � D=(2
Dm=m) � D=(2e); here, we make use of the fa
t that 
Dm � mm=(m �1)m�1 � me. Hen
e, D� � (m�2)=(2e(m�1))D. Of 
ourse,Pm�2i=0 x0i � 
Dmx0�1 � 
Dmstill holds for X 0.Similar to the proof of Lemma 2.3 we 
an now show that there is a minimalvalue 
� � 
Dm and a sequen
e X� that satis�es x�n�m = � � � = x�n�1 = D� as initial
onditions, Pm�2i=0 x�i � 
�x��1 � 
� and, for all 0 � k � n�m,x�n�1 � 
Dmx�n�m + 
Dmx�n�m�1 = 0: (6)If we were given the m values x��1; x�0; : : : ; x�m�2 (whi
h we do not know), thenthe sequen
e (x��1; x�0; x�1; : : : ; x�n�1) would be 
ompletely determined by Equation 6,D�, and 
�; however, we do know the m values of x�n�m; : : : ; x�n�1. In order to makeuse of this information we 
onsider the sequen
e Y of the values of X� in reverseorder, that is, yi = x�n�i�1, for i = 0; : : : ; n. The sequen
e Y satis�es the re
urren
eequation yk+m � yk+m�1 + 1
�yk = 0; (7)for all 0 � k � n�m.In the following let Y
;D be the in�nite sequen
e that is given by Equation 7(with 
� = 
) and the initial values y0 = y1 = � � � = ym�1 = D. Y
;D is 
ompletelydetermined by Equation 7 and y0; : : : ; ym�1. The sequen
e Y is a positive pre�xof Y
�;D�. Note that Y
;D may 
ontain negative elements for some k > n if 
 <mm=(m� 1)m�1. We will show the following lemma.Lemma 2.5 If 
 < mm=(m � 1)m�1 � O(1= log2D), then there is an index k � mfor the sequen
e Y
;D = (y0; y1; : : : ) with yk�m > 
2 and yk < 0.Note that 
onstant in the \big-Oh" term above depends on m. In the proof ofLemma 2.5 we will present an upper bound on the 
onstant.Assuming we have shown Lemma 2.5, we 
an easily prove that the 
ompetitiveratio of any strategy to sear
h on m rays in the interval [1; D℄ is bounded from belowby 1 + 2mm=(m� 1)m�1 � O(1= log2D).Theorem 2.6 If 
 < mm=(m � 1)m�1 � O(1= log2D), then there is no strategy Xwith a 
ompetitive ratio of 1+ 2
 that sear
hes on m rays for a target of distan
e atmost D to the origin.Proof: The proof is by 
ontradi
tion. Assume there is a strategy X with a 
om-petitive ratio of 1 + 2
 that sear
hes on m rays for a target of distan
e at most Dto the origin. This implies that 
 � 
Dm. 8



Let X be an optimal strategy to sear
h on m rays. By Lemma 2.2 and the above
onsiderations we 
an assume that X is periodi
 and satis�es Equation 2.As above we 
onstru
t a sequen
e X� that satis�es Equation 6, for some 
� � 
Dm,x�n�m = � � � = x�n�1 = D�, with D � D� � (m � 2)D=((m� 1)2e) and Pm�2i=0 x�i �
�x��1 � 
�. As 
an be easily seen, the values x�i also satisfy Pm�1i=0 x�i � 
�x�0.We de�ne the sequen
e Y = (y0; : : : ; yn) by yi = x�n�i�1, for 0 � i � n, wheren is the length of X�. The sequen
e (y0; : : : ; yn) is a positive pre�x of the in�nitesequen
e Y
�;D�. Sin
e 
� � 
 < mm=(m�1)m�1�O(1= log2D) = mm=(m�1)m�1�O(1= log2D�), Lemma 2.5 implies that there is an index k for Y
�;D� with yk�m � 
�2and yk < 0. Sin
e yk < 0, n is at most k. Sin
e yn�1 � Pn�1i=n�m+1 yi � 
� andyn�m � yk�m � 
�2, we have Pn�1i=n�m yi > yn�m � 
�2 � 
�yn�1|a 
ontradi
tion.22.3 The Chara
teristi
 EquationIn the following we are only 
on
erned with proving Lemma 2.5. The re
urren
eequation for Y
;D has the 
hara
teristi
 equation�m � �m�1 + 1
 = 0 or 
 = 1�m�1(1� �) : (8)We �rst note that sin
e �m�1(1 � �) < 0, for � > 1, there is no positive real rootlarger than one. On the other hand, if there is a positive real root � of Equation 8with � < 1, then 
 � inf1>�>0 1=(�m�1(1 � �)) = mm=(m � 1)m�1 and we aredone. Hen
e, we 
an assume in the following that there is no positive real rootof Equation 8 and we only need to investigate the 
omplex and negative roots ofEquation 8 in more detail.3 Solving the Re
urren
e Equation for m = 2In order to illustrate our approa
h we present the 
ase m = 2 in greater detail. We
an assume that 
 is less than mm=(m� 1)m�1 = 4 in the following.3.1 An Expli
it SolutionFor m = 2 Equation 8 redu
es to�2 � �+ 1=
 = 0 (9)with the solutions� = 12  1 + ir4� 

 ! and � = 12  1� ir4� 

 ! :Here, � denotes the 
onjugate of �. Hen
e, the solution of Equation 7 in the 
asem = 2 is given by yk = a�k + a�k = 2Re(a�k) (10)9
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Figure 1: The sequen
e 2a�k turns by an angle of ' towards the se
ond quadrantwith ea
h iteration. (For simpli
ity, we assume j�j = 1.)where Re denotes the real part of a 
omplex number. The 
oeÆ
ients a and a arethe solutions of the equation systema + a = y0 = Da� + a� = y1 = Dwhi
h solves toa = D2 �1� ir 
4� 
� and a = D2 �1 + ir 
4� 
� :3.2 Polar CoordinatesIf we 
onsider the polar-
oordinates of � and �, that is, we set � = �ei' and � =�ei(�'), then � = p1=
 and ' = ar
tan(p(4� 
)=
). Similarly, if a = �ei� anda = �ei(��), then � = D=p4� 
 and � = � ar
tan(p
=(4� 
)). The step length ykis now given by yk = a�k + a�k = 2Dp
k(4� 
) 
os (k' + �) : (11)If we visualize the above equation in the 
omplex plane, then yk is the proje
tionof the ve
tor of 2a�k onto the x-axis by Equation 10. Sin
e by multiplying two
omplex numbers their polar angles are added, the sequen
e 2a�k turns by an angleof ' towards the se
ond quadrant with ea
h iteration. On
e 2a�k is in the se
ondquadrant, 2Re(a�k) is negative. This is illustrated in Figure 1 (see also [Hip94,IKL97, Kle97℄).We show that D 
an be 
hosen large enough su
h that there is an index n0 withyn0 < 0 and yn0�2 > 
2 whi
h proves Lemma 2.5. Of 
ourse, we are interested inthe smallest D for whi
h the above inequalities holds. Let n0 be the �rst index su
h10



that yn0 < 0, that is,
os (n0'+ �) < 0 or n0 = ��=2� �' � = 26666�=2 + ar
tan�p 
4�
�ar
tan�q4�

 � 37777 :Sin
e n0 is the smallest k su
h that yk < 0,(n0 � 2)'+ � � �2 � ': (12)W.l.o.g. we assume that yn0 belongs to ray r1. Sin
e the sear
h alternates betweenthe two rays, the last point visited on ray r1 has a distan
e ofyn0�2 (11;12)� 2Dp
n0�2(4� 
) 
os ��2 � '� = Dp
n0�2 (13)to the origin.We �rst 
onsider the 
ase that 
 2 [1; 3). In this 
ase n0 � �= ar
tan(1=3) = 6and yn0�2 � 2Dp
n0�2(4� 
)p4� 
2 � Dp
4 � D9 :If D > 81, then yn0�2 > 9 > 
2 and yn0 < 0 whi
h proves Lemma 2.5 for m = 2 and
 < 3.Now assume that 
 2 [3; 4℄. Then, we haven0 = 26666ar
tan�p 
4�
� + �2ar
tan�q4�

 � 37777 � �=2 + �=23=4p(4� 
)=
 � 4�3 r 
4� 
 � 9p4� 
: (14)The �rst inequality stems from the fa
t that1. 
 � 3, that is, p(4� 
)=
 � 1=p3 and2. ar
tan(x)0 = 1=(1 + x2), that is, ar
tan(x) � x=(1 + x2) sin
e ar
us tangens is
on
ave on the positive axis. Hen
e, ar
tan(p(4� 
)=
) � p(4� 
)=
=(1 +p1=32).We obtain yn0�2 � D=p
n0�2 (14)� D=p
9=p4�
.Lemma 3.1 If 3 � 
 < 4� 81= log2(D=16), then D=p
9=p4�
 > 
2.Proof: We have
 < 4� 81log2(D=16) (log 
<2)) logD > � 4:5p4� 
 + 2� log 
 )D2 > 
9=p4�
+4 ) Dp
9=p4�
 > 
2: 2Let 3 � 
 < 4 � 81= log2(D=16). Lemma 3.1 implies that yn0�2 > 
2 and yn0 < 0whi
h proves Lemma 2.5 for m = 2 and 
 � 3.11



4 Solving the Re
urren
e Equation for theGeneral CaseWe now return to the general 
ase. As for the 
ase m = 2 we want to show that ifthere are only 
omplex or negative solutions to Equation 8, then the 
ontributionof a solution be
omes negative after a suÆ
iently large number of steps. However,the details are mu
h more 
ompli
ated than in the 
ase m = 2 sin
e we have manyroots of Equation 8 and the solutions 
annot be 
omputed expli
itly. In order to getaround this problem we use estimates on the angles and radii of the polar 
oordinatesof the roots.In the following we show that there is one root � whi
h has the largest radiusamong all roots of Equation 8. After a suÆ
iently large number of steps the 
ontri-bution of � dominates the 
ontribution of all other roots. On
e the 
ontribution of� be
omes negative in Step k so does the step length yk. This limits the number ofsteps Y . Sin
e D 
an grow at most exponentially in the number of steps of Y , wealso obtain a bound on D in this way.Let �0; : : : ; �m�1 be the roots of Equation 8. The solution of the re
urren
e isgiven by yk = a0�k0 + a1�k1 + � � �+ am�1�km�1:We �rst investigate the stru
ture of the roots �i, 0 � i � m�1. Let � be a 
omplexroot of Equation 8. We 
onsider the polar 
oordinates of �, that is, we set � = �ei'.We start o� with a simple observation about the relationship between the radiusand the polar angle of a root.Lemma 4.1 If � = �ei' is a 
omplex root of Equation 8, then � = sin(m �1)'= sinm' and 1=
 = �m�1(sin'= sinm').Proof: Let � = �ei' be a 
omplex root of Equation 8. We have �m�1 =�m�1ei(m�1)' and�m�1(�� 1) = �m�1 (
os(m� 1)'+ i sin(m� 1)') (� 
os'� 1 + i� sin')= �m�1 (� 
osm'� 
os(m� 1)'+ i(� sinm'� sin(m� 1)')) :Sin
e �m�1(�� 1) = �1=
 2 IR, we obtain� sinm'� sin(m� 1)' = 0 or � = sin(m� 1)'sinm' : (15)The se
ond 
laim follows from the equalities1=
 = ��m�1(�� 1) = �m�1(
os(m� 1)'� � 
osm')= �m�1 �
os(m� 1)'� sin(m� 1)'sinm' 
osm'� = �m�1 sin'sinm': 2Lemma 4.1 has the following 
onsequen
e.Corollary 4.2 If � = �ei' is a 
omplex root of Equation 8, then � is solely deter-mined by '. 12



4.1 The Polar Angle of a RootWe �rst 
on
entrate on the polar angle of a root � of Equation 8.Lemma 4.3 If � = �ei' is a 
omplex root of Equation 8 and 0 � ' � �, then' 2 [2k�=(m� 1); (2k + 1)�=m℄, for some 0 � k � bm=2
 � 1.Proof: Let � = �ei' be a 
omplex root of Equation 8. Equation 15 implies thatsin
e � > 0 both sinm' and sin(m � 1)' have the same sign, that is, m' and(m � 1)' either both belong to [2k�; (2k + 1)�℄ or to [(2k + 1)�; (2k + 2)�℄. Sin
e1=
 = �m�1 sin'= sinm' > 0 and � > 0 as well as sin' � 0 (sin
e 0 � ' � �), ase
ond 
ondition is sinm' > 0 whi
h implies ' 2 [2k�=(m � 1); (2k + 1)�=m℄, forsome 0 � k � bm=2
 � 1 as 
laimed. 2In fa
t, ea
h interval [2k�=(m� 1); (2k + 1)�=m℄ 
ontains one root of Equation 8.Lemma 4.4 For 0 � k � bm=2
 � 1, there is exa
tly one root �k = �kei'k ofEquation 8 with 'k 2 [2k�=(m� 1); (2k + 1)�=m℄.Proof: Sin
e � is a 
ontinuous fun
tion of ' by Lemma 4.1, it suÆ
es to showthat 1=(�m�1(1 � �)) is monotone in ' and that 1=(�m�1(1 � �)) assumes a valueless than and greater than 
, for ea
h interval [2k�=(m � 1); (2k + 1)�=m℄ with0 � k � bm=2
 � 1.Monotoni
ity follows immediately from 
onsidering the derivative of 1=(�m�1(1��)) with respe
t to '.Hen
e, there is at most one root of Equation 8 for every interval [2k�=(m �1); (2k + 1)�=m℄, for 0 � k � bm=2
 � 1. Sin
e sin'= sinm' is 
ontinuous over[2k�=(m� 1); (2k + 1)�=m℄ and its values range from 1 to 0, there is also at leastone root of of Equation 8 with a polar angle in [2k�=(m � 1); (2k + 1)�=m℄, for0 � k � bm=2
 � 1. 2The above roots a

ount for bm=2
 roots of Equation 8. If m is odd, then thereis one root �bm=2
 with 'bm=2
 = 2 bm=2
 �=(m� 1) = (2 bm=2
 + 1)�=m = �, thatis, �bm=2
 is a negative real root. It is easy to see that the remaining bm=2
 rootsare given by the 
onjugates �k = �ke�i'k of �k as in the 
ase m = 2.Let 'k be the angle of the root in [2k�=(m� 1); (2k + 1)�=m℄. In the followingwe 
al
ulate a lower bound on the size of '0 if 
 < mm=(m� 1)m�1.Lemma 4.5 '0 � min� 1m3=2r mm(m� 1)m�1 � 
; 1p3m� :
13



Proof: We assume that '0 2 [0; �=p3m℄ sin
e if '0 � �=p3m, then the 
laimtrivially holds.
 = sinm'0�m�10 sin'0 = � sinm'0sin(m� 1)'0�m�1 sinm'0sin'0� �1 + (m�m3'20=6)'0(m� 1)'0 �m�1 m'0 � (m'0)3=6'0('0 � �=p3m) � �1 + m�m3�2=(18m2)(m� 1) �m�1 m'0 � (m'0)3=6'0� � mm� 1�m�1�m� m3'206 � � �1� m2'206 � mm(m� 1)m�1 :Here we use that by the Taylor-expansion of sin x � x3=6 � sin(x) � x if x � 0.Sin
e mm=(m� 1)m�1 < em, we have'0 �r6(mm=(m� 1)m�1 � 
)em3 � 1m3=2r mm(m� 1)m�1 � 
as 
laimed. 24.2 The Radius of a RootWe now 
onsider the radius of a root of Equation 8. Let �k be the radius of �k. Inthe following we show that �0 � �1 � � � � � �dm=2e�1.Lemma 4.6 For all 0 � k � dm=2e � 2, �k � �k+1.Proof: For 0 � k � dm=2e � 1, let f' be the fun
tionf'(�) = j�m�1(1� �)j = �m�1p�2 � 2� 
os'+ 1:We show that f'k(�) is monotonely in
reasing in �, for 1 � k � dm=2e � 1. If we
onsider the derivative of f'k with respe
t to �, then it is easy to see that f'k 
anonly have an extremum ifsin'k � 12m� 1 ) 'k � ar
sin� 12m� 1� � 22m� 1 < 1m� 1 ;sin
e m � 3 and ar
sin(x) � 2x, for 0 � x � �=3. Sin
e 'k > 1=(m� 1), for k � 1,f'k is monotonely in
reasing in �, for all 1 � k � dm=2e � 1, but not ne
essarilyfor k = 0. We now show that this implies that �0 � �1 � � � � � �dm=2e�1. Let0 � k � dm=2e � 2. Sin
e � > 'k+1 > 'k > 0, we have, for 0 � k � dm=2e � 2,� 
os'k+1 > � 
os'k and, hen
e1=
 = f'k+1(�k+1) = f'k(�k) < f'k+1(�k)and as f'k+1 is monotonely in
reasing in �, we obtain �k+1 < �k. 2In the following we investigate the ratio �0=�k.14



Lemma 4.7 �0=�k � 1 + 1=(4m3), for all 1 � k � dm=2e � 1.Proof: Sin
e by Lemma 4.6 �1 � �k, for all for all 2 � k � dm=2e, it suÆ
es toshow that �0=�1 � 1 + 1=(4m3). Let f be the fun
tionf('; �) = ���m�1(1� �)��2 = �2(m�1)(�2 � 2� 
os'+ 1):Note that f('0; �0) = f('1; �1) = 1=
2 and, therefore, f('1; �0) � f('0; �0) =f('1; �0)� f('1; �1): Now f('1; �0)� f('0; �0) = 2�2m�10 (
os'0 � 
os'1) andf('1; �0)� f('1; �1) = Z �0�1 ���f('1; �)d� � (�0 � �1) max�2[�1;�0℄ ���f('1; �):If we 
onsider the derivative of f with respe
t to �, then���f('1; �) = 2m�2m�3 ��2 � 22m� 12m � 
os'1 + 2(m� 1)2m � :Hen
e, f('1; �0)� f('0; �0) = 2�2m�10 (
os'0 � 
os'1) = f('1; �0)� f('1; �1)� (�0 � �1) max�2[�1;�0℄ 2m�2m�3 ��2 � 2m� 1m � 
os'1 + 2(m� 1)2m �� (�0 � �1)2m�2m�30 (�0 + 1)2and, thus, �0�1 �0(
os'0 � 
os'1)m(�0 + 1)2 � �0�1 � 1or �0�1 � 11� �0(
os'0 � 
os'1)=(m(�0 + 1)2) � 1 + �0(
os'0 � 
os'1)m(�0 + 1)2 :In order to bound �0(
os'0 � 
os'1)=(m(�0 + 1)2) from below, we need upperand lower bounds for �0. We �rst give an upper bound. Observe that1
 = �m�1(1� �) = �sin(m� 1)'0sinm'0 �m�1 sin'0sinm'0 = �sin(m� 1)'0sinm'0 �m sin'0sin(m� 1)'0) �m0 = �sin(m� 1)'0sinm'0 �m = sin(m� 1)'0sin'0
 � m� 1
 :Hen
e, �0 � mp(m� 1)=
 � 1 sin
e 
 � 3.Now we bound �0 from below. Note that j1� �0j is the distan
e between thepoint (1; 0) and the point �0 in the 
omplex plane. Sin
e �0 belongs to the wedge S0of numbers whose polar angle is in [0; �=3℄ and whose radius is less than one, it is easyto see that the origin is the furthest point in S0 from (1; 0) and j1� �0j � 1. Hen
e,15



�0 � m�1p1=(j1� �0j
) � m�1p1=
. Sin
e we assume that 
 < mm=(m�1)m�1 < em,we obtain, �0 � m�1p1=(em) � 1=3.Next we give a lower bound for 
os'0 � 
os'1. Sin
e '0 2 [0; �=m℄ and '1 2[2�=(m � 1); 3�=m℄ both of whi
h are 
ontained in [0; �℄, for m � 3, 
os'0 �
os'1 � 
os �=m � 
os 2�=(m � 1). Moreover, sin
e 
osine is 
on
ave over [0; �=2℄and 2�=(m� 1) � �=2, for m � 5,
os'0 � 
os'1 � 
os �m � 
os 2�m� 1 � sin �m � 2�m� 1 � �m� � �2m �m � �22m2 ;for m � 5. On the other hand, if m = 3, then 
os(�=3) � 
os(2�=2) > 1 > �2=18and if m = 4, then 
os(�=4) � 
os(2�=3) > 1=p2 > �2=32, so that the inequality
os'0 � 
os'1 � �2=(2m2) holds for all m � 3.Hen
e, for 1 � k � dm=2e,�0�k � �0�1 � 1 + �26m3(1 + 1)2 � 1 + 14m3 : 24.3 The CoeÆ
ientsWe �nally give an upper bound on the radius of the 
oeÆ
ients. Re
all that thesolution of Re
urren
e Equation 8 is given byyk = a0�k0 + a1�k1 + � � �+ am�1�km�1:Let A = (�ij)0�i;j�m�1, a = (a0; : : : ; am�1), and D = (D; : : : ; D). The 
oeÆ
ientsai are the solution of the linear equation system Aa = D. Let Ai(x) the matrix Awhere the ith 
olumn is repla
ed by the ve
tor (x; : : : ; x)T . By Cramer's rule ai isgiven as ai = det(Ai(D))det(A) = Ddet(Ai(1))det(A) = D Qm�1j=0;j 6=i(1� �j)Qm�1j=0;j 6=i(�i � �j) (16)sin
e both A and Ai(1) are Vandermonde matri
es.In order to bound the size of the ratio of jai=a0j we have the following lemma.Lemma 4.8 jai=a0j � 42mmm:Proof: We have���� aia0 ���� = ���� 1� �i1� �0 ���� �����Qm�1j=0;j 6=0(�0 � �j)Qm�1j=0;j 6=i(�i � �j) ����� � 1 + j�ijj1� �0jQm�1j=0;j 6=0(j�0j+ j�jj)Qm�1j=0;j 6=i j�i � �jj� 2j1� �0j 2m�1Qm�1j=0;j 6=i j�i � �jj :16



Sk Sjl1l2�k �jFigure 2: The se
tors that �k and �j belong to.In order to obtain an upper bound for 1=j1� �0j we observe that1=j1� �0j = 
 j�m�10 j � 
 � em (17)Finally, we give a lower bound for j�k��jj. We �rst observe that sin
e j�ijm�1 �1=(
j1� �ij) � 1=(2
) � 1=(2em), j�ij � m�1p1=(2em) � 1=5.If we view �k and �j as two points in the 
omplex plane, then �k is 
ontainedin the angular se
tor of Sk = [2k�=(m� 1); (2k+ 1)�=m℄ and �j is 
ontained in theangular se
tor of Sj = [2j�=(m� 1); (2j + 1)�=m℄ (see Figure 2). Sin
e j�kj � 1=5and j�jj � 1=5, the distan
e between �k and �j is at least the distan
e between thepoints of Sk and Sj outside the 
ir
le through the origin with radius 1=5. W.l.o.g.assume that k > j. Let l1 be the line with angle 2k�=(m � 1) through the originand l2 be the line with angle (2j + 1)�=m through the origin. If p is the point on l1with distan
e 1=5 to the origin, then the distan
e of Sk to Sj outside the 
ir
le withradius 1=5 is at most the distan
e of p to l2. By elementary geometry we obtainthat j�k � �jj � d(p; l2) = sin (2k�=(m� 1)� (2j + 1)�=m)5 � �10m � 14m: (18)Combining the estimates for j1� �0j and j�k � �jj we obtain����aia0 ���� � 2mj1� �0jQm�1j=0;j 6=i j�i � �jj � 2mem(4m)m�1 � 42mmmas 
laimed. 2The following lemma gives a lower bound of the absolute value of a0.Lemma 4.9 ja0j > D=(2em)m�1:Proof: The proof follows easily from Equations 16 and 17.ja0j = D Qm�1j=1 j1� �jjQm�1j=1 j�0 � �jj � D (1=em)m�12m�1 :Note that the lower bound for j1 � �0j of Equation 17 is also a lower bound forj1� �ij and that j�0 � �jj � �0 + �j < 2. 217



4.4 Putting it all TogetherWe now put the estimates we obtained for the radii and the angles of the roots ofEquation 8 as well as the 
oeÆ
ients into use. W.l.o.g. we assume that m is even.If m is odd, then an analogous proof works. We start o� by proving a lower and anupper bound on the size of yk.Lemma 4.10
os(�0 + k'0)� 42mmm+1(1 + 1=(4m3))k � yk2ja0j�k0 � 
os(�0 + k'0) + 42mmm+1(1 + 1=(4m3))k :Proof: Re
all thatyk = bm=2
Xj=0 aj�kj + aj�kj � a0�k0 + a0�k0 + bm=2
Xj=0 2Re(aj�kj ):If �0 = �0ei'0 and a0 = �0ei�0 , thena0�k0 + a0�k0 = �0�k0ei(�0+k'0) + �0�k0e�i(�0+k'0) = 2�0�k0 
os(�0 + k'0):and yk2ja0j�k0 � 
os(�0 + k'0) + bm=2
Xj=0 ����aja0 ���� �kj�k0 � 
os(�0 + k'0) + 42mmm+1(1 + 1=(4m3))kby Lemmas 4.7 and 4.8. Similarly,yk2ja0j�k0 � 
os(�0 + k'0)� bm=2
Xj=0 ����aja0 ���� �kj�k0 � 
os(�0 + k'0)� 42mmm+1(1 + 1=(4m3))k :2In the following we show that if
 < mm(m� 1)m�1 � 222m8 log2mlog2D ;then there is a step k0 su
h that yk0�1 > 
2 and yk0+2 < 0, whi
h proves Lemma 2.5,for m � 3.In the following let " =pmm=(m� 1)m�1 � 
. We assume that " < 1. The 
ase" � 1 
an be treated as the 
ase 
 � 3 in the 
ase m = 2. Let n0 be the �rst indexgreater than 4m3(3m logm� log ") + 1 su
h that
os(�0 + n0'0) > 0 and 
os(�0 + (n0 + 1)'0) � 0:18



Sin
e the distan
e between two 
onse
utive transitions from positive to negativevalues of 
osine is at most 2� and n0 � 4m3(3m logm � log ") + 1, we have thatn0 � 4m3(3m logm� log ")� 1 � 2�='0 andn0 � 4m3(3m logm� log ") + 1 + 2�'0 � 4m3(3m logm� log ") + 1 + 2�m3=2" : (19)Note that sin
e " � 1, "=m3=2 < 1=p3m and '0 � "=m3=2 by Lemma 4.5. On
e wehave 
hosen n0, the values of yn0�1 and yn0+2 are bounded as follows.Lemma 4.11yn0�1 � 2ja0j�n0�10 '04 and yn0+2 � �2ja0j�n0+20 '04 :Proof: We �rst observe that if n0 > 4m3(3m logm� log ") + 1, thenn0 � 1 � 3m logm� log "log(1 + 1=(4m3)) � (m+ 1) logm+ log(4m + 2) + log(m3=2=")log(1 + 1=(4m3)) (20)where we use log(1 + x) � x. Inequality 20 now implies that�1 + 14m3�n0�1 � 42m+1mm+1'0 and 42mmm+1(1 + 1=4m3)n0�1 � '04 :By Lemma 4.10yn0�12ja0j�n0�10 � 
os(�0 + (n0 � 1)'0)� 42mmm+1(1 + 1=(4m3))n0�1� 
os(�=2� '0)� '04 � '04 :Similarly, yn0+22ja0j�n0+20 � 
os(�0 + (n0 + 2)'0) + 42mmm+1(1 + 1=(4m3))n0� 
os(�=2 + '0) + '04 � �'04as 
laimed. 2With the above preparations we now 
an prove the main lemma.Lemma 4.12 If 
 < mm(m� 1)m�1 � 222m8 log2mlog2D ;then yn0�1 > 
2 and yn0+2 < 0.Proof: Inequality yn0+2 < 0 follows dire
tly from Lemma 4.11. Hen
e, we onlyhave to show that yn0�1 > 
2. 19



Step 1 We �rst show that a lower bound on D. If
 < mm(m� 1)m�1 � 222m8 log2mlog2D ;thenlogD > 22m4 logmpmm=(m� 1)m�1 � 
 = 22m4 logm"� (12m4 logm� 4m3 log ") log 3 + m4 logm"� �4m3(3m logm� log ") + 2�m3=2" � log 3 + log(2em)m�1 + log((em)2m3=2)and, therefore,D > 3n0�1(em)2(2em)m�1m3=2" > 3n0�1
2(2em)m�1m3=2" (21)sin
e by Equation 19n0 � 1 � 4m3(3m logm� log ") + 2�m3=2" :Step 2 We now show that yn0�1 > 
2. We have byyn0�1 (Lemma 4:11)� 2ja0j�n0�10 '04 (Lemma 4:9)� 2 D(2em)m�1 �n0�10 '04(�0�1=3)� 2D(2em)m�1 (1=3)n0�1'04 (Lemma 4:5)� D"3n0�1(2em)m�1m3=2 (Equation 21)> 
2as 
laimed. 2Now that we have shown Lemma 2.5 we 
an reformulate Theorem 2.6 in thefollowing way.Theorem 4.13 There is no sear
h strategy for a target onm rays whi
h is 
ontainedin the interval [1; D(m� 1)2e=(m� 2)℄ with a 
ompetitive ratio of less than1 + 2� mm(m� 1)m�1 � 222m8 log2mlog2D � :5 An Asymptoti
ally Optimal StrategyAfter having proven a lower bound for sear
hing on m rays with an upper bound onthe target distan
e, the questions remains whether this is the best bound possible.In this se
tion we present a strategy to sear
h on m rays that a
hieves a 
ompetitive20



ratio of 1 + 2mm=(m � 1)m�1 � O(1= log2D) even if the maximum distan
e D ofthe target to the starting point is unknown. Hen
e, the lower bound proven inthe previous se
tion 
annot be improved if we 
onsider the 
onvergen
e rate as Din
reases to in�nity.The strategyX = (x1; x2; : : : )1 that a
hieves a 
ompetitive ratio of 1+2mm=(m�1)m�1 �O(1= log2D) is given byxi =r1 + im � mm� 1�i :The 
ompetitive ratio of Strategy X in Step k +m is bounded by 1 + 2
 where
 � Pk+m�1j=1 q1 + jm � mm�1�jq1 + km � mm�1�k= k�1Xj=1r j +mk +m �m� 1m �k�j + m�1Xj=0 r1 + jk +m � mm� 1�j ;for k � 1. We present an upper bound for the sums on the right hand side. We �rst
onsider the sum m�1Xj=0 r1 + jk +m � mm� 1�j :The Taylor-expansion of p1 + x yields p1 + x � 1+ x=2, for x � 1, and, therefore,m�1Xj=0 r1 + jk +m � mm� 1�j � m�1Xj=0 �1 + 12 jk +m�� mm� 1�j= mm(m� 1)m�1 � (m� 1) + (m� 1)mk +m : (22)Now we 
onsider the sumk�1Xj=1r j +mk +m �m� 1m �k�j = k�1Xj=1r1� jk +m �m� 1m �j : (23)Similar to above we observe thatp1� x � 1� 12x� 18x2;1For 
onvenien
e we start with x1 instead of x0.
21



for x � 1, and, therefore,k�1Xj=1r1� jk +m �m� 1m �j� k�1Xj=1  1� 12 jk +m � 18 � jk +m�2!�m� 1m �j= m� 1�m�m� 1m �k + m(m� 1)� (k �m� 1)m �m�1m �kk +m +m(m� 1)(2m� 1)(k +m)2 � (k2 + 2k(m� 2) + 2m2 � 3m+ 1)m �m�1m �k(k +m)2 :Hen
e,m�1Xj=0 r1 + jk +m � mm� 1�j + k�1Xj=1r j +mk +m �m� 1m �k�j� mm(m� 1)m�1 � 18m(m� 1)(2m� 1)(k +m)2+�12 k �m� 1k +m + 18 k2 + 2k(m� 2) + 2m2 � 3m+ 1(k +m)2 � 1�m�m� 1m �k� mm(m� 1)m�1 � 18m(m� 1)(2m� 1)(k +m)2sin
e 12 k �m� 1k +m + 18 k2 + 2k(m� 2) + 2m2 � 3m+ 1(k +m)2 � 1:There are two spe
ial 
ases k = 1 and k � 0 that have to be 
onsidered separately.If k = 1, then Sum (23) is 0 and Sum (22) adds up tomm(m� 1)m�1 � (m� 1) + (m� 1)m2(1 +m) � mm(m� 1)m�1 � m� 12 :If �m + 1 � k � 0, then the target is dis
overed during the �rst m iterations. Theworst 
ase o

urs if the �rst m� 1 rays are explored and then the target is dete
tedon the mth ray at a distan
e of 1 + ", for some " > 0. The 
ompetitive ratio isbounded by 1 + 2m�1Xj=1 r1 + jm � mm� 1�j � mm(m� 1)m�1 � m + 12 :Finally, we relate the number of steps k + m to the distan
e D to the target.If the target is dete
ted in Step k +m, then the distan
e D to s is in the interval22



[q1 + km(m=(m � 1))k;q1 + k+mm (m=(m � 1))k+m℄ and D is bounded from belowby r1 + km � mm� 1�k � Dor 12 log(1 + k=m) + k log�1 + 1m� 1� � logDwhi
h implies k � logDlog �1 + 1m�1� � (m� 1) logD:Hen
e,1 + 2Pk+m�1j=1 q1 + jm � mm�1�jq1 + km � mm�1�k � 1 + 2� mm(m� 1)m�1 � 2m� 18(logD +m=(m� 1))2�� 1 + 2 mm(m� 1)m�1 � 2m� 14 log2(3D) :We have shown the following theorem.Theorem 5.1 There is a strategy that a
hieves a 
ompetitive ratio of at most1 + 2 mm(m� 1)m�1 � 2m� 14 log2(3D)if the target is pla
ed at distan
e D > 1 to s.By Theorem 4.13 the strategy we have presented above is optimal (up to a
onstant) if D goes to in�nity.6 Computing the Optimal StrategyIn this se
tion we present an algorithm to 
ompute the optimal strategy to sear
hon m bounded rays. As opposed to the previous se
tions we now assume that weare given the 
ompetitive ratio 1 + 2
 and we want to 
ompute the maximal rea
hfor 1 + 2
 [IKL97℄. Re
all that the rea
h of a strategy X is the maximum distan
eD su
h that a target pla
ed at a distan
e D to the origin is still dete
ted by a robotusing X if the 
ompetitive ratio of X equals 1 + 2
. Note that on
e we are ableto 
ompute the maximum rea
h, we 
an easily 
ompute the minimal 
ompetitiveratio for a given D by applying binary sear
h. This only in
reases the running timeproportional to the number of bits ne
essary to represent D.23



In the 
ase m = 2 it is not too hard to derive a re
urren
e equation for theoptimal rea
h (see [IKL97℄). As in the proof of Lemmas 2.2 and 2.3 we 
an showthat there exists a strategy with maximal rea
h that is periodi
 and satis�es theequations2 k+m�1Xi=0 xi = 
 xk; (2) and m�2Xi=0 xi � 
 (3):In fa
t, if Pm�2i=0 xi < 
, then there is a � > 1 su
h that the strategy �X satis�esEquation 2 andPm�2i=0 �xi = 
. If D is the rea
h of X, then �D > D is the rea
h of�X. Hen
e, we 
an assume that we have equality in Equation 3 for a strategy withmaximal rea
h. For m = 2, this implies that x0 = 
 and xk is given byxk = 
 xk�1 � k�1Xi=0 xi;for k � 1, whi
h determines the strategy 
ompletely. For m > 2, we still haveequality in Equation 3 but now we only obtain the sum of the �rst m � 1 stepslengths x0; : : : ; xm�2 instead of their values.Hen
e, we take a di�erent approa
h. Let Y again be the sequen
e de�ned byyi = xn�i�1, for 0 � i � n�m. It satis�es re
urren
e equation (7), namelyyk+m � yk+m�1 + 1
 yk = 0;for all 0 � k � n � m. However, we only have the initial values for y0; : : : ; ym�2whi
h are equal to D. Sin
e we need one more initial value we set � = ym�1=D,where 0 < � < 1. Let Y (
;D; �D) = (y0; y1; : : : ) be the in�nite sequen
e that isgiven by Equation 7 and the above initial values. If 
 < 
m, then there is an indexn0 su
h that yn0 is negative. By Equation 19n0 � 4m3(3m logm� log ") + 1 + 2�m3=2" ;where " = pmm=(m� 1)m�1 � 
. We 
hoose n to be the index su
h that yn isminimal among y0; : : : ; yn0�1. The value yn is now the lower bound on the distan
eto the target. If we set x0k = yn�k�1=yn, for 0 � k � n, then we obtain a strategywith a lower bound of yn=yn = 1 to the target and rea
h D=yn, whi
h is obviouslythe largest possible rea
h for a strategy that satis�es Equations 2 and 3 with theabove initial values. Unfortunately, we know neither D nor �. However, we 
an setD = 1 sin
e we are going to s
ale by 1=yn later anyway.Sin
e we do not know �, we 
onsider the values yk as numbers over the extended�eld IR[�℄ = fx+ y� j x; y 2 IRg, that is, � is treated as formal parameter. Hen
e,2To see this we just note that if Pk+m�1i=0 x�i < 
x�k, for some k, then we 
an de
rease x�k bysome amount " > 0 and in
rease x�n�m+1; : : : ; x�n by "=m, thus a
hieving a greater rea
h.24



yk = uk+� vk, for some values uk and vk. On the other hand, yk = yk�1�(1=
) yk�m,for m � k � n. This yields two re
urren
es for uk and vk.uk = uk�1 � (1=
) uk�m; and vk = vk�1 � (1=
) vk�m:The initial values for the sequen
e U = (u0; u1; : : : ) are now given by u0 = � � � =um�2 = 1 and um�1 = 0. The initial values for the sequen
e V = (v0; v1; : : : ) aregiven by v0 = � � � = vm�2 = 0 and vm�1 = 1. If we stop after n steps, then Equation 3should be satis�ed, that is, we requiren�1Xi=n�m+1 ui + �nvi = 
(un + �nvn) or �n = � n�1Pi=n�m+1 ui � 
 unn�1Pi=n�m+1 vi � 
 vn : (24)We obtain the following algorithm.Algorithm Maximal Rea
hInput: The 
ompetitive ratio 1 + 2
 and the number of rays m.Output: An integer n and a strategy X = (x0; : : : ; xn) su
h that the rea
h ofX is maximal.1 if 
 � mm=(m� 1)m�1 then return 1, xk = (1 + 1=(m� 1))k2 for i 0 to m� 2 do let ui  1, vi  03 let um�1  0, vm�1  14 let ymin  1, nmin  m, " (mm=(m� 1)m�1 � 
)1=25 let n"  4m3(3m logm� log ") + 1 + 2�m3=2="6 for n m to n" do7 let un  un�1 � (1=
) un�m, vn  vn�1 � (1=
) vn�m8 let �n  �(Pn�1i=n�m+1 ui � 
 un)=(Pn�1i=n�m+1 ui � 
 vn)9 if (un + �nvn < ymin)then let positive true10 for j  m to n do=� Test if all elements are positive �=11 if uj + �nvj � 0 then let positive false12 if positive then ymin  yn, nmin  nend if13 let n nmin14 for i 0 to n� 1 do let xi  (un�i�1 + �nvn�i�1)=ymin15 return n, (x0; : : : ; xn�1; 1=ymin)We show the 
orre
tness of Algorithm Maximal Rea
h in the following two lem-mas.Lemma 6.1 The 
ompetitive ratio of X is 1 + 2
.25



Proof: First note that be
ause of the test in Step 11 all the elements of X arepositive. By the 
hoi
e of �, U , and V , X obviously satis�esm�2Xi=0 xi = 
 and xk+m�1 = 
(xk � xk�1)for 0 � k � n�m if we set x�1 = 1.3 Using indu
tion we see thatk+m�1Xi=0 xi = xk+m�1 + 
xk�1 = 
(xk � xk�1) + 
xk�1 = 
xkfor 0 � k � n�m as 
laimed. 2Lemma 6.2 The rea
h of Strategy X is at least as large as the rea
h of any otherstrategy with 
ompetitive ratio 1 + 2
.Proof: Let X� = (x�0; x�1; x�2; : : : ; xl) be a strategy with maximal rea
h for 
ompet-itive ratio 1 + 2
. By Equation 19 l � n". As we observed previously, X� satis�esthe 
onditionsPk+m�1i=0 x�i = 
x�k, for 0 � k � l�m, and Pm�2i=0 x�i = 
. We de�ne asequen
e Y � = (y�0; : : : ; y�l ) by y�i = x�l�i�1=x�l , for 0 � i � l, where we set x��1 = 1.The rea
h of X� is x�l�1 = x�l�1=x��1 = (x�l�1=x�l )=(x��1=x�l ) = 1=y�l .The sequen
e Y � satis�es re
urren
e equation 7. By a simple indu
tion it 
anbe easily seen that y�k = uk + y�m�1vk. Be
ause of Equations 3 and 24 we obtainthat y�m�1 = �l. Hen
e, Y � is 
omputed in Step 10 if k = l. Let Y be the sequen
e
omputed by Algorithm Maximal Rea
h. Sin
e yn is 
hosen to be minimal, yn � y�l .Hen
e, the rea
h 1=yn of X is at least as large as the rea
h of X�. 2If 
 
onsists of b bits, then the time 
omplexity of Algorithm Maximal Rea
h isquadrati
 in n" = p2b, that is, �(2b). On the other hand, sin
e logD = 
(n"),4 thetime 
omplexity is quadrati
 in the size of the output.We have implemented Algorithm Maximal Rea
h in Maple. In Figure 3a themaximal rea
h of the optimal strategies for di�erent values of m is shown. The�gure illustrates ni
ely that the logarithm of the maximal rea
h depends linearlyon 1=". In Figure 3b we 
ompare the maximal rea
h of the optimal strategy tothe maximal rea
h of the strategy presented in Se
tion 5 and the strategy given byxk = (3=2)k form = 3. It 
an be seen that the maximal rea
h of the optimal strategyin
reases mu
h faster than that of the other two strategies. The �gure also showsthat the maximal rea
h of the strategy presented in Se
tion 5 is a linear fun
tionof 1=" whereas the maximal rea
h of the other strategy is a logarithmi
 fun
tion of1="2. It should be noted that the lower bound we have presented|whi
h is nowan upper bound on the maximal rea
h|does not �t into the �gure as it starts at avalue of > 2000 and has a mu
h steeper slope.3Note that yn is 
hosen to satisfy yn = yn�1 � 1=
yn�m. Sin
e we divide by yn, this impliesthat yn�m=yn = 
(yn�1=yn � 1) or xm�1 = 
(x0 � x�1).4This follows from the fa
t that there is a strategy with su
h that logD is in 
(1=")|as, forinstan
e, the strategy presented in Se
tion 5. 26
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tion 5
(b) 1="Figure 3: (a) The rea
h of the optimal strategy for di�erent values of m. (b) Therea
h of the optimal strategy for m = 3 
ompared to the rea
h of the strategyproposed in Se
tion 5 and the strategy given by xk = (3=2)k.7 Con
lusionsWe present a lower bound for the problem of sear
hing on m 
on
urrent rays if anupper bound D on the maximal distan
e to the target is given. We show that inthis 
ase the 
ompetitive ratio of a sear
h strategy is at least 1+2mm=(m�1)m�1�O(1= log2D). Our approa
h is based on deriving a re
ursive equation for the steplength in ea
h iteration of an optimal strategy. The re
ursive equation gives rise toa 
hara
teristi
 equation whose roots determine the properties of the strategy. By
omputing upper and lower bounds on the radii and polar angles of the roots inpolar 
oordinates we 
an show that the 
ompetitive ratio has to be suÆ
iently largeif the target is far away.We also present a strategy whi
h a
hieves a 
ompetitive ratio of 1 + 2mm=(m�1)m�1 � O(1= log2D) if the target is dete
ted at distan
e D. The strategy doesnot need to know an upper bound on D in advan
e and still a
hieves the same
onvergen
e rate as the lower bound that we have shown. This implies that the
onvergen
e rate of our lower bound is tight (up to a 
onstant that depends on m).Finally, we present an algorithm to 
ompute the strategy with maximal rea
hfor a given 
ompetitive ratio and general m. Our algorithm needs time proportionalto the size of the output and exponential in the size of the input.An interesting open problem is to prove similar results for randomized strategies.One of the problems with randomized strategies is that there is no published proofthat there is an optimal periodi
 strategy. This seems to be a ne
essary step beforethe bounded distan
e problem 
an be atta
ked.27
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