
The Ultimate Strategy to Searh on m Rays?�Alejandro L�opez-Ortizy Sven ShuiererzAbstratWe onsider the problem of searhing on m urrent rays for a target ofunknown loation. If no upper bound on the distane to the target is knownin advane, then the optimal ompetitive ratio is 1 + 2mm=(m � 1)m�1. Weshow that if an upper bound of D on the distane to the target is knownin advane, then the ompetitive ratio of any searh strategy is at least 1 +2mm=(m � 1)m�1 � O(1= log2D) whih is again optimal|but in a stritersense.To show the optimality of our lower bound we onstrut a searh strategythat ahieves this ratio. Surprisingly, our strategy does not need to know anupper bound on the distane to the target in advane; it ahieves a ompetitiveratio of 1+2mm=(m� 1)m�1�O(1= log2D) if the target is found at distaneD. Finally, we also present an algorithm to ompute the strategy that allowsthe robot to searh the farthest for a given ompetitive ratio C.1 IntrodutionSearhing for a target is an important and well studied problem in robotis. Inmany realisti situations the robot does not possess omplete knowledge about itsenvironment, for instane, the robot may not have a map of its surroundings, or theloation of the target may be unknown [DI94, IK95, Kle92, LOS95, PY89℄.Sine the robot has to make deisions about the searh based only on the part ofits environment that it has explored before, the searh of the robot an be viewed asan on-line problem. One way to judge the performane of an on-line searh strategyis to ompare the distane traveled by the robot to the length of the shortest pathfrom its starting point s to the target t. The ratio of the distane traveled by therobot to the optimal distane from s to t over all possible loations of the target isalled the ompetitive ratio of the searh strategy [ST85℄.�This researh is supported by the DFG-Projet \Diskrete Probleme", No. Ot 64/8-2.yFaulty of Computer Siene, University of New Brunswik, Frederiton, New BrunswikCanada, E3B 4A1, email: alopez-o�unb.azInstitut f�ur Informatik, Am Flughafen 17, Geb. 051, D-79110 Freiburg, Germanyemail: shuiere�informatik.uni-freiburg.de1



We are interested in obtaining upper and lower bounds on the ompetitive ratioof searhing on m onurrent rays. Here, a point robot is imagined to stand at theorigin ofm rays and one of the rays ontains the target t whose distane to the originis unknown. The robot an only detet t if it stands on top of it. It an be shownthat an optimal strategy visits the rays in yli order and inreases the step lengtheah time by a fator ofm=(m�1) starting with a step length of 1 [BYCR93, Gal80℄.The ompetitive ratio Cm ahieved by this strategy is given by 1+2mm=(m�1)m�1.If randomization is used, the optimal ompetitive ratio is given by the minimum ofthe funtion 1 + 2am=((a� 1) lna), for a > 1 [Gal80, KRT97, KMSY94℄.Searhing onm rays has proven to be a very useful tool for searhing in a numberof lasses of simple polygons, suh as star-shaped polygons [LOS97℄, generalizedstreets [DI94, LOS96℄, HV-streets [DHS95℄, and �-streets [DHS95, Hip94℄.However, the proof of optimality for the above m-way ray searhing strategyrelies on the unboundedness of the rays, that is, on the fat that the target an beplaed arbitrarily far away from the starting point of the rays [BYCR93, Gal80℄.But, if we onsider polygons and the robot is equipped with a range �nder, then itis possible to obtain an upper bound D on the distane to the target. In this aseit is impliitly assumed that the strategy for searhing on m-rays remains optimalthough no proof of this assumption has been presented yet [DHS95, DI94, LOS96℄.In this paper we provide the �rst lower bound proof for searhing on m boundedrays; more preisely, we investigate the question if the knowledge of an upper boundon the distane to the target provides an advantage to the robot.Let CDm be the optimal ompetitive ratio to searh on m rays where the distaneto the target is at most D. As mentioned above it is assumed in the literature thatCDm approahes Cm as D goes to in�nity; yet, there is only a proof for the ase m = 2by L�opez-Ortiz who shows that 9�O(1= logD) is a lower bound for the ompetitiveratio of searhing on two rays [LO96℄. Hipke et al. investigate the inverse problem,again for the ase m = 2 [IKL97℄. They onsider the maximal reah of a strategyto searh on the line if the ompetitive ratio of the strategy is given. The reah of astrategy X is the maximum distane D suh that a target plaed at a distane D tothe origin is still deteted by a robot using X if the ompetitive ratio of X equals C.Sine C is given, a reurrene equation for the optimal reah an be derived. Usingthis reurrene equation Hipke et al. show that the maximal reah is ontinuous andstritly monotone in C [IKL97℄. This in turn implies that CD2 is stritly monotonein D and assumes all values in the interval [3; 9℄.In this paper we prove that1 + 2mm=(m� 1)m�1 �O �1= log2D� (1)is a lower bound on CDm , for general m; this also improves L�opez-Ortiz' bound form = 2. Moreover, we present a strategy that ahieves a ompetitive ratio of the sameform as Equation 1, albeit with a di�erent onstant fator in the \big-Oh" term.Here, D is the distane at whih the target is disovered. Astonishingly, our strategyahieves this ompetitive ratio without knowing an upper bound on D in advane.These two results imply that the lower bound we present is asymptotially optimal.2



Note that all previously proposed strategies have a ompetitive ratio of 1+2mm=(m�1)m�1 � O(1=D) if the target is deteted at distane D [BYCR93, Gal80℄. Finally,we also present an algorithm to ompute the maximal reah for a given ompetitiveratio C and arbitrary m|thus, generalizing the results by Hipke et al. [IKL97℄.The paper is organized as follows. In the next setion we give the basi de�nitionsonerning searhing on m rays. In Setion 2 we show that an optimal strategy tosearh on m bounded rays visits the rays in a �xed yli order. We also derivea reurrene equation that is satis�ed by an optimal strategy. In Setion 3 we�rst onsider searhing on two rays to introdue our approah to analysing theompetitive ratio of an optimal strategy. In Setion 4 we generalize our ideas tothe ase of searhing on m rays. Setion 5 desribes and analyses a strategy whoseompetitive ratio onverges asymptotially as fast to 1+2mm=(m�1)m�1 as the lowerbound whih we have shown before. Finally, in Setion 6 we present an algorithmto ompute the strategy with maximal reah for a given ompetitive ratio C.2 Searhing on m Bounded RaysWe are interested in the ase that an upper bound D on the maximum distane ofthe target to the origin is known. Let X be a strategy to searh on m bounded rays.Strategy X proeeds in steps. In eah step the robot travels on one ray to a ertaindistane and, if it does not �nd the target, then it returns to the origin. Let xi bethe maximal distane to the origin and ri the ray visited in Step i.We de�ne Ji as the index of the step in whih ray ri is visited the next time afterStep i, that is, Ji = minfj > i j rj = rig. If there is no j > i with rj = ri, then wede�ne Ji = i. We represent X by the sequene of pairs (xi; Ji).Assume that the target is disovered in Step Jk in ray r. By the de�nition ofJk ray r was visited the last time before Step Jk in Step k and the distane d tothe target is greater than xk. The distane traveled by the robot to disover t isd+2PJk�1i=0 xi. Sine the target an be plaed arbitrarily lose to xk by an adversary,the ompetitive ratio of Step k is given bysupd>xk(d+ 2 Jk�1Xi=0 xi)=d = supd>xk 1 + 2 Jk�1Xi=0 xi=d = 1 + 2 Jk�1Xi=0 xi=xk:The ompetitive ratio CX of X is now given as the supremum of the ompetitiveratios over all steps.The �rst step is a speial ase that we have not onsidered yet. If no informationabout the target is available, then one false move in the beginning may lead to anarbitrarily large ompetitive ratio. In order to avoid this problem we assume that alower bound of one for the distane to the target t is known in advane that is, thetarget may be plaed on any of the m rays somewhere in the interval [1; D℄.We denote the optimal ompetitive ratio of searhing on m rays for a target thatis plaed at a distane of at most D from the origin by CDm . In the following we3



show that CDm � 1 + 2 mm(m� 1)m�1 � O� 1log2D� :2.1 PeriodiityIn order to prove a lower bound on the ompetitive ratio, we �rst show that anoptimal strategy|that is, a strategy with minimal ompetitive ratio|is periodiand monotone. In the following let X = (x0; : : : ; xn) be a strategy to searh onm bounded rays. Let rk be the ray that the robot visits in Step k. Strategy X isperiodi if rk+m = rk, for all 0 � k � n�m. Strategy X is monotone if xk � xk+1,for all 0 � k � n� 1.Lemma 2.1 If X is a strategy to searh on m rays for a target that is plaed at adistane of at most D from the origin, then there is a monotone strategy X� withCX� � CX.Proof: The proof is similar to the proof to the proof by Gal for the unboundedase [Gal80℄. Let X = (xi) be a strategy to searh m bounded rays and ri the raythat is explored by X in the ith step. We de�ne Ji as above.Let Fi(X) = PJi�1j=0 xj=xi, for 0 � i � n. If Ji does not equal i, then theompetitive ratio in Step i of strategy X is given by 1+ 2Fi(X). If Ji equals i, thatis, xi = D and Step i is the last step on ray ri, then the ompetitive ratio in Step iof strategy X is bounded by2Pi�1j=0 xj + dd � 1 + 2Pi�1j=0 xjxJ�1i = 1 + 2FJ�1i (X)where J�1i is the index of the last visit of ray ri before i and d > xJ�1i is thedistane from the origin to the target. Let I be the set of indies i with Ji 6= i. Theompetitive ratio CX of X is now given byCX = maxi2I 1 + 2Fi(X):If X is monotone, then there is nothing to show. So assume that there is aStep k, 0 � k � n � 1 suh that xk+1 < xk. Let X� be the searh strategy whihis equal to X exept that for all steps i � k the role of rk and rk+1 is exhangedas are xk and xk+1. This an be ahieved by setting (x�k; J�k ) = (xk+1; Jk+1) and(x�k+1; J�k+1) = (xk; Jk). For all other Steps i, (x�i ; J�i ) = (xi; Ji) unless x�k+1 = D, inwhih ase we set J�k+1 = k + 1 (and not equal to k as implied by the rule above).Note that x�k = xk+1 = D is not possible sine xk+1 < xk � D. Let I� be theset of indies i with J�i 6= i. We want to show that CX� = maxi2I� 1 + 2Fi(X�) �maxi2I 1 + 2Fi(X) = CX . Obviously, Fi(X) and Fi(X�) di�er only for the indiesJ�1k , J�1k+1, k, k + 1 whih we are going to onsider more losely in the following.4



First we assume that Step k is not the last step on ray rk. (As mentioned before,Step k + 1 is never the last step on ray rk+1 as xk+1 < xk � D.)Fk(X) = PJk�1i=0 xixk = PJ�k+1�1i=0 x�ix�k+1 = Fk+1(X�) andFk+1(X) = PJk+1�1i=0 xixk+1 = PJ�k�1i=0 x�ix�k = Fk(X�):Here the equalities follow from the fat that J�k+1 = Jk � k + 2 and J�k = Jk+1 �k + 2, that is, the exhange of xk and xk+1 does not play a role in the summation.Next we onsider Steps J�1k+1 and J�1k . Note that J�1k � = J�1k and J�1k+1� = J�1k+1.Moreover,JJ�1k �1 = J�J�1k ��1 = k�1; therefore, FJ�1k (X) = FJ�1k �(X�). This leavesus with Step J�1k+1. We haveFJ�1k+1(X) = Pki=0 xixJ�1k+1 � Pki=0 xi � xk + xk+1xJ�1k+1 = Pk�1i=0 x�i + x�kx�J�1k+1� = FJ�1k+1�(X�):Now assume that Step k is the last step on ray rk and D = xk > xk+1. Then,Fk+1(X�) � FJ�1k+1�(X�). As above we obtain Fk(X�) = Fk+1(X), FJ�1k (X�) =FJ�1k (X) and FJ�1k+1�(X�) � FJ�1k+1(X). Hene, the ompetitive ratio of Strategy X�is no more than the ompetitive ratio of strategy X.By performing bubble-sort on strategyX we see that there is a monotone strategythat has a ompetitive ratio no more than X whih proves the laim. 2By Lemma 2.1 it suÆes to onsider monotone strategies in the following. Notethat if X is monotone, then the last m steps of X all have length D, that is, thereis an optimal strategy with xn�m+1 = � � �xn = D and the set of indies i with Ji 6= iequals f0; : : : ; n�mg.Lemma 2.2 If X is a strategy to searh on m rays for a target that is plaed ata distane of at most D from the origin, then there is a periodi strategy X� withCX� � CX.Proof: Let X be strategy to searh on m bounded rays. By Lemma 2.1 wean assume that X is monotone. We follow the proof idea of Yin [Yin94℄. Let X�onsist of the same sequene of numbers exept that X� is now onsidered a periodistrategy. We onsider the ompetitive ratios Ck of X and C�k of X� in Step k. ItsuÆes to show that, for every 0 � k � n�m, there is a 0 � j � n�m with C�k � Cj.As mentioned above we do not need to onsider the indies n�m+ 1 � k � n. Soonsider C�k = 1 + 2Pk+m�1i=0 xixk ;for some 0 � k � n � m. For eah ray rj, 1 � j � m, let kj be the �rst time Xexplores ray rj after Step k. Sine xj < D, for all 0 � j � n �m, kj exists, for all5



1 � j � n�m. Note that there is one ray rl suh that kl � k +m. If rl is exploredbefore Step k, then let jl � k be the index of the last exploration; otherwise letjl = �1 and xjl = 1. In both ases xjl � xk sine X is monotone andC�k = 1 + 2Pk+m�1i=0 xixk � 1 + 2Pkl�1i=0 xixjl = Cjl;whih implies that the ompetitive ratio of X is at least as large as the ompetitiveratio of X�. 22.2 A Reurrene EquationIn the following we assume that X is an optimal periodi, monotone strategy. Asmentioned before Fk simpli�es in this ase to Fk(X) = Pk+m�1i=0 xi=xk; for k =0; : : : ; n �m and CX = max0�i�n�m 1 + 2Fi(X). We now show that the values xisatisfy a reurrene equation. The following lemma was proven by Katsoupias andPapadimitriou for the speial ase m = 2 with unbounded rays [KPY96℄.Lemma 2.3 If X� is an optimal strategy, then 1 + 2Fk(X�) = CDm, for all 0 � k �n�m.Proof: The proof is by ontradition. It is based on the observation that Fk is theonly funtion whih is dereasing in xk and all other funtions Fi with i � k�m+1are inreasing in xk [KPY96℄. So if there is an index k with 1+ 2Fk(X) < CDm , thenthere is an " > 0 and a Æ > 0 suh that if xk is dereased by ", then 1 + 2Fk(X 0) �CDm � Æ if X 0 is the sequene where xk is replaed by xk � " and, in addition,1 + 2Fi(X 0) � CDm � Æ, for all k �m + 1 � i 6= k � n�m.Let X be a sequene with ompetitive ratio CDm and lX the minimal index for Xwith 1 + 2Fk(X) < CDm . Let X� be a sequene with ompetitive ratio CDm suh thatl� = lX� is minimal among all suh sequenes. If l� � m� 1, then we an apply theabove argument and obtain a sequene X 0 from X� with 1+ 2Fk(X 0) < CDm � Æ, forall l��m+1 � k � n�m|in ontradition to the minimality of l�. If l� < m� 1,then we an apply the above argument and obtain a sequene X 0 from X� with1+ 2Fk(X 0) < CDm � Æ, for all 0 � k � n�m|in ontradition to the minimality ofCDm . Hene, there is no sequene X with ompetitive ratio CDm and an index k with1 + 2Fk(X) < CDm . 2In the following let Dm = (CDm � 1)=2. Lemma 2.3 implies that the step lengths xiof an optimal strategy X satisfy the following reurrene equation.Pk+m�1i=0 xixk = Dm or k+m�1Xi=0 xi = Dmxk; (2)for 0 � k � n�m. An additional onstraint is given by the �rst time the m-th rayis visited; here, the ompetitive ratio is given by1 + 2m�2Xi=0 xi � 1 + 2Dm (3)6



as in steps 0; : : : ; m � 2 the �rst m � 1 rays are explored. If we multiply Dm by afator of x�1 where 0 < x�1 � 1, then we ahieve equality in (3) and we an view(3) as a speial ase of (2) for k = �1. Hene, we assume in the following thatEquation 2 holds for all �1 � k � n�m.The linear equation system (2) onsists of n � m + 2 linearly independentequations for the n + 1 step lengths (x�1; x0; x1; : : : ; xn�1) of X (xn is irrele-vant sine xn does not appear in Equation 2). Sine we are given the values ofxn�m+1 = � � � = xn�1 = D, the n + 1 solutions (x�1; x0; x1; : : : ; xn�1) are uniquelyde�ned one we are given Dm, D, and n. We are interested in the question howlarge Dm has to be for a given D suh that there is an n and a positive solution(x�1; x0; x1; : : : ; xn�1) with x�1 � 1. As this question seems to be rather diÆult toanswer, we transform Equation 2 into a simpler form.Lemma 2.4 The values xi satisfy the following reurrene equationxk+m�1 � Dmxk + Dmxk�1 = 0; (4)for 0 � k � n�m.Proof: By Equation 2 we havek+m�1Xi=0 xi = Dmxk;for 0 � k � n�m. The same equation also holds for k � 1. Hene,k+m�1Xi=0 xi = Dmxk and k+m�2Xi=0 xi = Dmxk�1:By subtrating the seond equation from the �rst we obtain Equation 4, for 0 �k � n�m as laimed. 2Unfortunately, we obtain only n�m + 1 equations in this way|one too few|and the sequene X is not ompletely determined anymore by Equation 4 and them � 1 initial values xn�m+1 = � � � = xn�1 = D. One option to get around thisproblem is to add the �rst or last equation of (2) as an additional onstraint toreurrene equation (4). However, as this destroys the uniformity of the reurreneequation (4), we take a di�erent approah and introdue one more initial value.We redue the m values xn�m; xn�m+1; : : : ; xn�1 to the value D� = Dm=(Dm �1)xn�m�1. The new sequene X 0 we obtain in this way|that is, x0i = xi, for 0 �i � n�m� 1, and xn�m = � � � = xn�1 = D�|does not ful�ll Equation 4 anymorebut onlyx0k+m�1 � Dmx0k + Dmx0k�1 � 0; that is, x0k+m�1x0k � x0k�1 � Dm7



for all 0 � k � n�m, and, in addition, by our hoie of D�x0n�1 � Dmx0n�m + Dmx0n�m�1 = 0: (5)It is easy to see that xn�m�1 � (1��m)xn�m where �m = (Dm�1)=(Dm(m�1)) andxn�m � D=(2Dm=m) � D=(2e); here, we make use of the fat that Dm � mm=(m �1)m�1 � me. Hene, D� � (m�2)=(2e(m�1))D. Of ourse,Pm�2i=0 x0i � Dmx0�1 � Dmstill holds for X 0.Similar to the proof of Lemma 2.3 we an now show that there is a minimalvalue � � Dm and a sequene X� that satis�es x�n�m = � � � = x�n�1 = D� as initialonditions, Pm�2i=0 x�i � �x��1 � � and, for all 0 � k � n�m,x�n�1 � Dmx�n�m + Dmx�n�m�1 = 0: (6)If we were given the m values x��1; x�0; : : : ; x�m�2 (whih we do not know), thenthe sequene (x��1; x�0; x�1; : : : ; x�n�1) would be ompletely determined by Equation 6,D�, and �; however, we do know the m values of x�n�m; : : : ; x�n�1. In order to makeuse of this information we onsider the sequene Y of the values of X� in reverseorder, that is, yi = x�n�i�1, for i = 0; : : : ; n. The sequene Y satis�es the reurreneequation yk+m � yk+m�1 + 1�yk = 0; (7)for all 0 � k � n�m.In the following let Y;D be the in�nite sequene that is given by Equation 7(with � = ) and the initial values y0 = y1 = � � � = ym�1 = D. Y;D is ompletelydetermined by Equation 7 and y0; : : : ; ym�1. The sequene Y is a positive pre�xof Y�;D�. Note that Y;D may ontain negative elements for some k > n if  <mm=(m� 1)m�1. We will show the following lemma.Lemma 2.5 If  < mm=(m � 1)m�1 � O(1= log2D), then there is an index k � mfor the sequene Y;D = (y0; y1; : : : ) with yk�m > 2 and yk < 0.Note that onstant in the \big-Oh" term above depends on m. In the proof ofLemma 2.5 we will present an upper bound on the onstant.Assuming we have shown Lemma 2.5, we an easily prove that the ompetitiveratio of any strategy to searh on m rays in the interval [1; D℄ is bounded from belowby 1 + 2mm=(m� 1)m�1 � O(1= log2D).Theorem 2.6 If  < mm=(m � 1)m�1 � O(1= log2D), then there is no strategy Xwith a ompetitive ratio of 1+ 2 that searhes on m rays for a target of distane atmost D to the origin.Proof: The proof is by ontradition. Assume there is a strategy X with a om-petitive ratio of 1 + 2 that searhes on m rays for a target of distane at most Dto the origin. This implies that  � Dm. 8



Let X be an optimal strategy to searh on m rays. By Lemma 2.2 and the aboveonsiderations we an assume that X is periodi and satis�es Equation 2.As above we onstrut a sequene X� that satis�es Equation 6, for some � � Dm,x�n�m = � � � = x�n�1 = D�, with D � D� � (m � 2)D=((m� 1)2e) and Pm�2i=0 x�i ��x��1 � �. As an be easily seen, the values x�i also satisfy Pm�1i=0 x�i � �x�0.We de�ne the sequene Y = (y0; : : : ; yn) by yi = x�n�i�1, for 0 � i � n, wheren is the length of X�. The sequene (y0; : : : ; yn) is a positive pre�x of the in�nitesequene Y�;D�. Sine � �  < mm=(m�1)m�1�O(1= log2D) = mm=(m�1)m�1�O(1= log2D�), Lemma 2.5 implies that there is an index k for Y�;D� with yk�m � �2and yk < 0. Sine yk < 0, n is at most k. Sine yn�1 � Pn�1i=n�m+1 yi � � andyn�m � yk�m � �2, we have Pn�1i=n�m yi > yn�m � �2 � �yn�1|a ontradition.22.3 The Charateristi EquationIn the following we are only onerned with proving Lemma 2.5. The reurreneequation for Y;D has the harateristi equation�m � �m�1 + 1 = 0 or  = 1�m�1(1� �) : (8)We �rst note that sine �m�1(1 � �) < 0, for � > 1, there is no positive real rootlarger than one. On the other hand, if there is a positive real root � of Equation 8with � < 1, then  � inf1>�>0 1=(�m�1(1 � �)) = mm=(m � 1)m�1 and we aredone. Hene, we an assume in the following that there is no positive real rootof Equation 8 and we only need to investigate the omplex and negative roots ofEquation 8 in more detail.3 Solving the Reurrene Equation for m = 2In order to illustrate our approah we present the ase m = 2 in greater detail. Wean assume that  is less than mm=(m� 1)m�1 = 4 in the following.3.1 An Expliit SolutionFor m = 2 Equation 8 redues to�2 � �+ 1= = 0 (9)with the solutions� = 12  1 + ir4�  ! and � = 12  1� ir4�  ! :Here, � denotes the onjugate of �. Hene, the solution of Equation 7 in the asem = 2 is given by yk = a�k + a�k = 2Re(a�k) (10)9
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Figure 1: The sequene 2a�k turns by an angle of ' towards the seond quadrantwith eah iteration. (For simpliity, we assume j�j = 1.)where Re denotes the real part of a omplex number. The oeÆients a and a arethe solutions of the equation systema + a = y0 = Da� + a� = y1 = Dwhih solves toa = D2 �1� ir 4� � and a = D2 �1 + ir 4� � :3.2 Polar CoordinatesIf we onsider the polar-oordinates of � and �, that is, we set � = �ei' and � =�ei(�'), then � = p1= and ' = artan(p(4� )=). Similarly, if a = �ei� anda = �ei(��), then � = D=p4�  and � = � artan(p=(4� )). The step length ykis now given by yk = a�k + a�k = 2Dpk(4� ) os (k' + �) : (11)If we visualize the above equation in the omplex plane, then yk is the projetionof the vetor of 2a�k onto the x-axis by Equation 10. Sine by multiplying twoomplex numbers their polar angles are added, the sequene 2a�k turns by an angleof ' towards the seond quadrant with eah iteration. One 2a�k is in the seondquadrant, 2Re(a�k) is negative. This is illustrated in Figure 1 (see also [Hip94,IKL97, Kle97℄).We show that D an be hosen large enough suh that there is an index n0 withyn0 < 0 and yn0�2 > 2 whih proves Lemma 2.5. Of ourse, we are interested inthe smallest D for whih the above inequalities holds. Let n0 be the �rst index suh10



that yn0 < 0, that is,os (n0'+ �) < 0 or n0 = ��=2� �' � = 26666�=2 + artan�p 4��artan�q4� � 37777 :Sine n0 is the smallest k suh that yk < 0,(n0 � 2)'+ � � �2 � ': (12)W.l.o.g. we assume that yn0 belongs to ray r1. Sine the searh alternates betweenthe two rays, the last point visited on ray r1 has a distane ofyn0�2 (11;12)� 2Dpn0�2(4� ) os ��2 � '� = Dpn0�2 (13)to the origin.We �rst onsider the ase that  2 [1; 3). In this ase n0 � �= artan(1=3) = 6and yn0�2 � 2Dpn0�2(4� )p4� 2 � Dp4 � D9 :If D > 81, then yn0�2 > 9 > 2 and yn0 < 0 whih proves Lemma 2.5 for m = 2 and < 3.Now assume that  2 [3; 4℄. Then, we haven0 = 26666artan�p 4�� + �2artan�q4� � 37777 � �=2 + �=23=4p(4� )= � 4�3 r 4�  � 9p4� : (14)The �rst inequality stems from the fat that1.  � 3, that is, p(4� )= � 1=p3 and2. artan(x)0 = 1=(1 + x2), that is, artan(x) � x=(1 + x2) sine arus tangens isonave on the positive axis. Hene, artan(p(4� )=) � p(4� )==(1 +p1=32).We obtain yn0�2 � D=pn0�2 (14)� D=p9=p4�.Lemma 3.1 If 3 �  < 4� 81= log2(D=16), then D=p9=p4� > 2.Proof: We have < 4� 81log2(D=16) (log <2)) logD > � 4:5p4�  + 2� log  )D2 > 9=p4�+4 ) Dp9=p4� > 2: 2Let 3 �  < 4 � 81= log2(D=16). Lemma 3.1 implies that yn0�2 > 2 and yn0 < 0whih proves Lemma 2.5 for m = 2 and  � 3.11



4 Solving the Reurrene Equation for theGeneral CaseWe now return to the general ase. As for the ase m = 2 we want to show that ifthere are only omplex or negative solutions to Equation 8, then the ontributionof a solution beomes negative after a suÆiently large number of steps. However,the details are muh more ompliated than in the ase m = 2 sine we have manyroots of Equation 8 and the solutions annot be omputed expliitly. In order to getaround this problem we use estimates on the angles and radii of the polar oordinatesof the roots.In the following we show that there is one root � whih has the largest radiusamong all roots of Equation 8. After a suÆiently large number of steps the ontri-bution of � dominates the ontribution of all other roots. One the ontribution of� beomes negative in Step k so does the step length yk. This limits the number ofsteps Y . Sine D an grow at most exponentially in the number of steps of Y , wealso obtain a bound on D in this way.Let �0; : : : ; �m�1 be the roots of Equation 8. The solution of the reurrene isgiven by yk = a0�k0 + a1�k1 + � � �+ am�1�km�1:We �rst investigate the struture of the roots �i, 0 � i � m�1. Let � be a omplexroot of Equation 8. We onsider the polar oordinates of �, that is, we set � = �ei'.We start o� with a simple observation about the relationship between the radiusand the polar angle of a root.Lemma 4.1 If � = �ei' is a omplex root of Equation 8, then � = sin(m �1)'= sinm' and 1= = �m�1(sin'= sinm').Proof: Let � = �ei' be a omplex root of Equation 8. We have �m�1 =�m�1ei(m�1)' and�m�1(�� 1) = �m�1 (os(m� 1)'+ i sin(m� 1)') (� os'� 1 + i� sin')= �m�1 (� osm'� os(m� 1)'+ i(� sinm'� sin(m� 1)')) :Sine �m�1(�� 1) = �1= 2 IR, we obtain� sinm'� sin(m� 1)' = 0 or � = sin(m� 1)'sinm' : (15)The seond laim follows from the equalities1= = ��m�1(�� 1) = �m�1(os(m� 1)'� � osm')= �m�1 �os(m� 1)'� sin(m� 1)'sinm' osm'� = �m�1 sin'sinm': 2Lemma 4.1 has the following onsequene.Corollary 4.2 If � = �ei' is a omplex root of Equation 8, then � is solely deter-mined by '. 12



4.1 The Polar Angle of a RootWe �rst onentrate on the polar angle of a root � of Equation 8.Lemma 4.3 If � = �ei' is a omplex root of Equation 8 and 0 � ' � �, then' 2 [2k�=(m� 1); (2k + 1)�=m℄, for some 0 � k � bm=2 � 1.Proof: Let � = �ei' be a omplex root of Equation 8. Equation 15 implies thatsine � > 0 both sinm' and sin(m � 1)' have the same sign, that is, m' and(m � 1)' either both belong to [2k�; (2k + 1)�℄ or to [(2k + 1)�; (2k + 2)�℄. Sine1= = �m�1 sin'= sinm' > 0 and � > 0 as well as sin' � 0 (sine 0 � ' � �), aseond ondition is sinm' > 0 whih implies ' 2 [2k�=(m � 1); (2k + 1)�=m℄, forsome 0 � k � bm=2 � 1 as laimed. 2In fat, eah interval [2k�=(m� 1); (2k + 1)�=m℄ ontains one root of Equation 8.Lemma 4.4 For 0 � k � bm=2 � 1, there is exatly one root �k = �kei'k ofEquation 8 with 'k 2 [2k�=(m� 1); (2k + 1)�=m℄.Proof: Sine � is a ontinuous funtion of ' by Lemma 4.1, it suÆes to showthat 1=(�m�1(1 � �)) is monotone in ' and that 1=(�m�1(1 � �)) assumes a valueless than and greater than , for eah interval [2k�=(m � 1); (2k + 1)�=m℄ with0 � k � bm=2 � 1.Monotoniity follows immediately from onsidering the derivative of 1=(�m�1(1��)) with respet to '.Hene, there is at most one root of Equation 8 for every interval [2k�=(m �1); (2k + 1)�=m℄, for 0 � k � bm=2 � 1. Sine sin'= sinm' is ontinuous over[2k�=(m� 1); (2k + 1)�=m℄ and its values range from 1 to 0, there is also at leastone root of of Equation 8 with a polar angle in [2k�=(m � 1); (2k + 1)�=m℄, for0 � k � bm=2 � 1. 2The above roots aount for bm=2 roots of Equation 8. If m is odd, then thereis one root �bm=2 with 'bm=2 = 2 bm=2 �=(m� 1) = (2 bm=2 + 1)�=m = �, thatis, �bm=2 is a negative real root. It is easy to see that the remaining bm=2 rootsare given by the onjugates �k = �ke�i'k of �k as in the ase m = 2.Let 'k be the angle of the root in [2k�=(m� 1); (2k + 1)�=m℄. In the followingwe alulate a lower bound on the size of '0 if  < mm=(m� 1)m�1.Lemma 4.5 '0 � min� 1m3=2r mm(m� 1)m�1 � ; 1p3m� :
13



Proof: We assume that '0 2 [0; �=p3m℄ sine if '0 � �=p3m, then the laimtrivially holds. = sinm'0�m�10 sin'0 = � sinm'0sin(m� 1)'0�m�1 sinm'0sin'0� �1 + (m�m3'20=6)'0(m� 1)'0 �m�1 m'0 � (m'0)3=6'0('0 � �=p3m) � �1 + m�m3�2=(18m2)(m� 1) �m�1 m'0 � (m'0)3=6'0� � mm� 1�m�1�m� m3'206 � � �1� m2'206 � mm(m� 1)m�1 :Here we use that by the Taylor-expansion of sin x � x3=6 � sin(x) � x if x � 0.Sine mm=(m� 1)m�1 < em, we have'0 �r6(mm=(m� 1)m�1 � )em3 � 1m3=2r mm(m� 1)m�1 � as laimed. 24.2 The Radius of a RootWe now onsider the radius of a root of Equation 8. Let �k be the radius of �k. Inthe following we show that �0 � �1 � � � � � �dm=2e�1.Lemma 4.6 For all 0 � k � dm=2e � 2, �k � �k+1.Proof: For 0 � k � dm=2e � 1, let f' be the funtionf'(�) = j�m�1(1� �)j = �m�1p�2 � 2� os'+ 1:We show that f'k(�) is monotonely inreasing in �, for 1 � k � dm=2e � 1. If weonsider the derivative of f'k with respet to �, then it is easy to see that f'k anonly have an extremum ifsin'k � 12m� 1 ) 'k � arsin� 12m� 1� � 22m� 1 < 1m� 1 ;sine m � 3 and arsin(x) � 2x, for 0 � x � �=3. Sine 'k > 1=(m� 1), for k � 1,f'k is monotonely inreasing in �, for all 1 � k � dm=2e � 1, but not neessarilyfor k = 0. We now show that this implies that �0 � �1 � � � � � �dm=2e�1. Let0 � k � dm=2e � 2. Sine � > 'k+1 > 'k > 0, we have, for 0 � k � dm=2e � 2,� os'k+1 > � os'k and, hene1= = f'k+1(�k+1) = f'k(�k) < f'k+1(�k)and as f'k+1 is monotonely inreasing in �, we obtain �k+1 < �k. 2In the following we investigate the ratio �0=�k.14



Lemma 4.7 �0=�k � 1 + 1=(4m3), for all 1 � k � dm=2e � 1.Proof: Sine by Lemma 4.6 �1 � �k, for all for all 2 � k � dm=2e, it suÆes toshow that �0=�1 � 1 + 1=(4m3). Let f be the funtionf('; �) = ���m�1(1� �)��2 = �2(m�1)(�2 � 2� os'+ 1):Note that f('0; �0) = f('1; �1) = 1=2 and, therefore, f('1; �0) � f('0; �0) =f('1; �0)� f('1; �1): Now f('1; �0)� f('0; �0) = 2�2m�10 (os'0 � os'1) andf('1; �0)� f('1; �1) = Z �0�1 ���f('1; �)d� � (�0 � �1) max�2[�1;�0℄ ���f('1; �):If we onsider the derivative of f with respet to �, then���f('1; �) = 2m�2m�3 ��2 � 22m� 12m � os'1 + 2(m� 1)2m � :Hene, f('1; �0)� f('0; �0) = 2�2m�10 (os'0 � os'1) = f('1; �0)� f('1; �1)� (�0 � �1) max�2[�1;�0℄ 2m�2m�3 ��2 � 2m� 1m � os'1 + 2(m� 1)2m �� (�0 � �1)2m�2m�30 (�0 + 1)2and, thus, �0�1 �0(os'0 � os'1)m(�0 + 1)2 � �0�1 � 1or �0�1 � 11� �0(os'0 � os'1)=(m(�0 + 1)2) � 1 + �0(os'0 � os'1)m(�0 + 1)2 :In order to bound �0(os'0 � os'1)=(m(�0 + 1)2) from below, we need upperand lower bounds for �0. We �rst give an upper bound. Observe that1 = �m�1(1� �) = �sin(m� 1)'0sinm'0 �m�1 sin'0sinm'0 = �sin(m� 1)'0sinm'0 �m sin'0sin(m� 1)'0) �m0 = �sin(m� 1)'0sinm'0 �m = sin(m� 1)'0sin'0 � m� 1 :Hene, �0 � mp(m� 1)= � 1 sine  � 3.Now we bound �0 from below. Note that j1� �0j is the distane between thepoint (1; 0) and the point �0 in the omplex plane. Sine �0 belongs to the wedge S0of numbers whose polar angle is in [0; �=3℄ and whose radius is less than one, it is easyto see that the origin is the furthest point in S0 from (1; 0) and j1� �0j � 1. Hene,15



�0 � m�1p1=(j1� �0j) � m�1p1=. Sine we assume that  < mm=(m�1)m�1 < em,we obtain, �0 � m�1p1=(em) � 1=3.Next we give a lower bound for os'0 � os'1. Sine '0 2 [0; �=m℄ and '1 2[2�=(m � 1); 3�=m℄ both of whih are ontained in [0; �℄, for m � 3, os'0 �os'1 � os �=m � os 2�=(m � 1). Moreover, sine osine is onave over [0; �=2℄and 2�=(m� 1) � �=2, for m � 5,os'0 � os'1 � os �m � os 2�m� 1 � sin �m � 2�m� 1 � �m� � �2m �m � �22m2 ;for m � 5. On the other hand, if m = 3, then os(�=3) � os(2�=2) > 1 > �2=18and if m = 4, then os(�=4) � os(2�=3) > 1=p2 > �2=32, so that the inequalityos'0 � os'1 � �2=(2m2) holds for all m � 3.Hene, for 1 � k � dm=2e,�0�k � �0�1 � 1 + �26m3(1 + 1)2 � 1 + 14m3 : 24.3 The CoeÆientsWe �nally give an upper bound on the radius of the oeÆients. Reall that thesolution of Reurrene Equation 8 is given byyk = a0�k0 + a1�k1 + � � �+ am�1�km�1:Let A = (�ij)0�i;j�m�1, a = (a0; : : : ; am�1), and D = (D; : : : ; D). The oeÆientsai are the solution of the linear equation system Aa = D. Let Ai(x) the matrix Awhere the ith olumn is replaed by the vetor (x; : : : ; x)T . By Cramer's rule ai isgiven as ai = det(Ai(D))det(A) = Ddet(Ai(1))det(A) = D Qm�1j=0;j 6=i(1� �j)Qm�1j=0;j 6=i(�i � �j) (16)sine both A and Ai(1) are Vandermonde matries.In order to bound the size of the ratio of jai=a0j we have the following lemma.Lemma 4.8 jai=a0j � 42mmm:Proof: We have���� aia0 ���� = ���� 1� �i1� �0 ���� �����Qm�1j=0;j 6=0(�0 � �j)Qm�1j=0;j 6=i(�i � �j) ����� � 1 + j�ijj1� �0jQm�1j=0;j 6=0(j�0j+ j�jj)Qm�1j=0;j 6=i j�i � �jj� 2j1� �0j 2m�1Qm�1j=0;j 6=i j�i � �jj :16



Sk Sjl1l2�k �jFigure 2: The setors that �k and �j belong to.In order to obtain an upper bound for 1=j1� �0j we observe that1=j1� �0j =  j�m�10 j �  � em (17)Finally, we give a lower bound for j�k��jj. We �rst observe that sine j�ijm�1 �1=(j1� �ij) � 1=(2) � 1=(2em), j�ij � m�1p1=(2em) � 1=5.If we view �k and �j as two points in the omplex plane, then �k is ontainedin the angular setor of Sk = [2k�=(m� 1); (2k+ 1)�=m℄ and �j is ontained in theangular setor of Sj = [2j�=(m� 1); (2j + 1)�=m℄ (see Figure 2). Sine j�kj � 1=5and j�jj � 1=5, the distane between �k and �j is at least the distane between thepoints of Sk and Sj outside the irle through the origin with radius 1=5. W.l.o.g.assume that k > j. Let l1 be the line with angle 2k�=(m � 1) through the originand l2 be the line with angle (2j + 1)�=m through the origin. If p is the point on l1with distane 1=5 to the origin, then the distane of Sk to Sj outside the irle withradius 1=5 is at most the distane of p to l2. By elementary geometry we obtainthat j�k � �jj � d(p; l2) = sin (2k�=(m� 1)� (2j + 1)�=m)5 � �10m � 14m: (18)Combining the estimates for j1� �0j and j�k � �jj we obtain����aia0 ���� � 2mj1� �0jQm�1j=0;j 6=i j�i � �jj � 2mem(4m)m�1 � 42mmmas laimed. 2The following lemma gives a lower bound of the absolute value of a0.Lemma 4.9 ja0j > D=(2em)m�1:Proof: The proof follows easily from Equations 16 and 17.ja0j = D Qm�1j=1 j1� �jjQm�1j=1 j�0 � �jj � D (1=em)m�12m�1 :Note that the lower bound for j1 � �0j of Equation 17 is also a lower bound forj1� �ij and that j�0 � �jj � �0 + �j < 2. 217



4.4 Putting it all TogetherWe now put the estimates we obtained for the radii and the angles of the roots ofEquation 8 as well as the oeÆients into use. W.l.o.g. we assume that m is even.If m is odd, then an analogous proof works. We start o� by proving a lower and anupper bound on the size of yk.Lemma 4.10os(�0 + k'0)� 42mmm+1(1 + 1=(4m3))k � yk2ja0j�k0 � os(�0 + k'0) + 42mmm+1(1 + 1=(4m3))k :Proof: Reall thatyk = bm=2Xj=0 aj�kj + aj�kj � a0�k0 + a0�k0 + bm=2Xj=0 2Re(aj�kj ):If �0 = �0ei'0 and a0 = �0ei�0 , thena0�k0 + a0�k0 = �0�k0ei(�0+k'0) + �0�k0e�i(�0+k'0) = 2�0�k0 os(�0 + k'0):and yk2ja0j�k0 � os(�0 + k'0) + bm=2Xj=0 ����aja0 ���� �kj�k0 � os(�0 + k'0) + 42mmm+1(1 + 1=(4m3))kby Lemmas 4.7 and 4.8. Similarly,yk2ja0j�k0 � os(�0 + k'0)� bm=2Xj=0 ����aja0 ���� �kj�k0 � os(�0 + k'0)� 42mmm+1(1 + 1=(4m3))k :2In the following we show that if < mm(m� 1)m�1 � 222m8 log2mlog2D ;then there is a step k0 suh that yk0�1 > 2 and yk0+2 < 0, whih proves Lemma 2.5,for m � 3.In the following let " =pmm=(m� 1)m�1 � . We assume that " < 1. The ase" � 1 an be treated as the ase  � 3 in the ase m = 2. Let n0 be the �rst indexgreater than 4m3(3m logm� log ") + 1 suh thatos(�0 + n0'0) > 0 and os(�0 + (n0 + 1)'0) � 0:18



Sine the distane between two onseutive transitions from positive to negativevalues of osine is at most 2� and n0 � 4m3(3m logm � log ") + 1, we have thatn0 � 4m3(3m logm� log ")� 1 � 2�='0 andn0 � 4m3(3m logm� log ") + 1 + 2�'0 � 4m3(3m logm� log ") + 1 + 2�m3=2" : (19)Note that sine " � 1, "=m3=2 < 1=p3m and '0 � "=m3=2 by Lemma 4.5. One wehave hosen n0, the values of yn0�1 and yn0+2 are bounded as follows.Lemma 4.11yn0�1 � 2ja0j�n0�10 '04 and yn0+2 � �2ja0j�n0+20 '04 :Proof: We �rst observe that if n0 > 4m3(3m logm� log ") + 1, thenn0 � 1 � 3m logm� log "log(1 + 1=(4m3)) � (m+ 1) logm+ log(4m + 2) + log(m3=2=")log(1 + 1=(4m3)) (20)where we use log(1 + x) � x. Inequality 20 now implies that�1 + 14m3�n0�1 � 42m+1mm+1'0 and 42mmm+1(1 + 1=4m3)n0�1 � '04 :By Lemma 4.10yn0�12ja0j�n0�10 � os(�0 + (n0 � 1)'0)� 42mmm+1(1 + 1=(4m3))n0�1� os(�=2� '0)� '04 � '04 :Similarly, yn0+22ja0j�n0+20 � os(�0 + (n0 + 2)'0) + 42mmm+1(1 + 1=(4m3))n0� os(�=2 + '0) + '04 � �'04as laimed. 2With the above preparations we now an prove the main lemma.Lemma 4.12 If  < mm(m� 1)m�1 � 222m8 log2mlog2D ;then yn0�1 > 2 and yn0+2 < 0.Proof: Inequality yn0+2 < 0 follows diretly from Lemma 4.11. Hene, we onlyhave to show that yn0�1 > 2. 19



Step 1 We �rst show that a lower bound on D. If < mm(m� 1)m�1 � 222m8 log2mlog2D ;thenlogD > 22m4 logmpmm=(m� 1)m�1 �  = 22m4 logm"� (12m4 logm� 4m3 log ") log 3 + m4 logm"� �4m3(3m logm� log ") + 2�m3=2" � log 3 + log(2em)m�1 + log((em)2m3=2)and, therefore,D > 3n0�1(em)2(2em)m�1m3=2" > 3n0�12(2em)m�1m3=2" (21)sine by Equation 19n0 � 1 � 4m3(3m logm� log ") + 2�m3=2" :Step 2 We now show that yn0�1 > 2. We have byyn0�1 (Lemma 4:11)� 2ja0j�n0�10 '04 (Lemma 4:9)� 2 D(2em)m�1 �n0�10 '04(�0�1=3)� 2D(2em)m�1 (1=3)n0�1'04 (Lemma 4:5)� D"3n0�1(2em)m�1m3=2 (Equation 21)> 2as laimed. 2Now that we have shown Lemma 2.5 we an reformulate Theorem 2.6 in thefollowing way.Theorem 4.13 There is no searh strategy for a target onm rays whih is ontainedin the interval [1; D(m� 1)2e=(m� 2)℄ with a ompetitive ratio of less than1 + 2� mm(m� 1)m�1 � 222m8 log2mlog2D � :5 An Asymptotially Optimal StrategyAfter having proven a lower bound for searhing on m rays with an upper bound onthe target distane, the questions remains whether this is the best bound possible.In this setion we present a strategy to searh on m rays that ahieves a ompetitive20



ratio of 1 + 2mm=(m � 1)m�1 � O(1= log2D) even if the maximum distane D ofthe target to the starting point is unknown. Hene, the lower bound proven inthe previous setion annot be improved if we onsider the onvergene rate as Dinreases to in�nity.The strategyX = (x1; x2; : : : )1 that ahieves a ompetitive ratio of 1+2mm=(m�1)m�1 �O(1= log2D) is given byxi =r1 + im � mm� 1�i :The ompetitive ratio of Strategy X in Step k +m is bounded by 1 + 2 where � Pk+m�1j=1 q1 + jm � mm�1�jq1 + km � mm�1�k= k�1Xj=1r j +mk +m �m� 1m �k�j + m�1Xj=0 r1 + jk +m � mm� 1�j ;for k � 1. We present an upper bound for the sums on the right hand side. We �rstonsider the sum m�1Xj=0 r1 + jk +m � mm� 1�j :The Taylor-expansion of p1 + x yields p1 + x � 1+ x=2, for x � 1, and, therefore,m�1Xj=0 r1 + jk +m � mm� 1�j � m�1Xj=0 �1 + 12 jk +m�� mm� 1�j= mm(m� 1)m�1 � (m� 1) + (m� 1)mk +m : (22)Now we onsider the sumk�1Xj=1r j +mk +m �m� 1m �k�j = k�1Xj=1r1� jk +m �m� 1m �j : (23)Similar to above we observe thatp1� x � 1� 12x� 18x2;1For onveniene we start with x1 instead of x0.
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for x � 1, and, therefore,k�1Xj=1r1� jk +m �m� 1m �j� k�1Xj=1  1� 12 jk +m � 18 � jk +m�2!�m� 1m �j= m� 1�m�m� 1m �k + m(m� 1)� (k �m� 1)m �m�1m �kk +m +m(m� 1)(2m� 1)(k +m)2 � (k2 + 2k(m� 2) + 2m2 � 3m+ 1)m �m�1m �k(k +m)2 :Hene,m�1Xj=0 r1 + jk +m � mm� 1�j + k�1Xj=1r j +mk +m �m� 1m �k�j� mm(m� 1)m�1 � 18m(m� 1)(2m� 1)(k +m)2+�12 k �m� 1k +m + 18 k2 + 2k(m� 2) + 2m2 � 3m+ 1(k +m)2 � 1�m�m� 1m �k� mm(m� 1)m�1 � 18m(m� 1)(2m� 1)(k +m)2sine 12 k �m� 1k +m + 18 k2 + 2k(m� 2) + 2m2 � 3m+ 1(k +m)2 � 1:There are two speial ases k = 1 and k � 0 that have to be onsidered separately.If k = 1, then Sum (23) is 0 and Sum (22) adds up tomm(m� 1)m�1 � (m� 1) + (m� 1)m2(1 +m) � mm(m� 1)m�1 � m� 12 :If �m + 1 � k � 0, then the target is disovered during the �rst m iterations. Theworst ase ours if the �rst m� 1 rays are explored and then the target is detetedon the mth ray at a distane of 1 + ", for some " > 0. The ompetitive ratio isbounded by 1 + 2m�1Xj=1 r1 + jm � mm� 1�j � mm(m� 1)m�1 � m + 12 :Finally, we relate the number of steps k + m to the distane D to the target.If the target is deteted in Step k +m, then the distane D to s is in the interval22



[q1 + km(m=(m � 1))k;q1 + k+mm (m=(m � 1))k+m℄ and D is bounded from belowby r1 + km � mm� 1�k � Dor 12 log(1 + k=m) + k log�1 + 1m� 1� � logDwhih implies k � logDlog �1 + 1m�1� � (m� 1) logD:Hene,1 + 2Pk+m�1j=1 q1 + jm � mm�1�jq1 + km � mm�1�k � 1 + 2� mm(m� 1)m�1 � 2m� 18(logD +m=(m� 1))2�� 1 + 2 mm(m� 1)m�1 � 2m� 14 log2(3D) :We have shown the following theorem.Theorem 5.1 There is a strategy that ahieves a ompetitive ratio of at most1 + 2 mm(m� 1)m�1 � 2m� 14 log2(3D)if the target is plaed at distane D > 1 to s.By Theorem 4.13 the strategy we have presented above is optimal (up to aonstant) if D goes to in�nity.6 Computing the Optimal StrategyIn this setion we present an algorithm to ompute the optimal strategy to searhon m bounded rays. As opposed to the previous setions we now assume that weare given the ompetitive ratio 1 + 2 and we want to ompute the maximal reahfor 1 + 2 [IKL97℄. Reall that the reah of a strategy X is the maximum distaneD suh that a target plaed at a distane D to the origin is still deteted by a robotusing X if the ompetitive ratio of X equals 1 + 2. Note that one we are ableto ompute the maximum reah, we an easily ompute the minimal ompetitiveratio for a given D by applying binary searh. This only inreases the running timeproportional to the number of bits neessary to represent D.23



In the ase m = 2 it is not too hard to derive a reurrene equation for theoptimal reah (see [IKL97℄). As in the proof of Lemmas 2.2 and 2.3 we an showthat there exists a strategy with maximal reah that is periodi and satis�es theequations2 k+m�1Xi=0 xi =  xk; (2) and m�2Xi=0 xi �  (3):In fat, if Pm�2i=0 xi < , then there is a � > 1 suh that the strategy �X satis�esEquation 2 andPm�2i=0 �xi = . If D is the reah of X, then �D > D is the reah of�X. Hene, we an assume that we have equality in Equation 3 for a strategy withmaximal reah. For m = 2, this implies that x0 =  and xk is given byxk =  xk�1 � k�1Xi=0 xi;for k � 1, whih determines the strategy ompletely. For m > 2, we still haveequality in Equation 3 but now we only obtain the sum of the �rst m � 1 stepslengths x0; : : : ; xm�2 instead of their values.Hene, we take a di�erent approah. Let Y again be the sequene de�ned byyi = xn�i�1, for 0 � i � n�m. It satis�es reurrene equation (7), namelyyk+m � yk+m�1 + 1 yk = 0;for all 0 � k � n � m. However, we only have the initial values for y0; : : : ; ym�2whih are equal to D. Sine we need one more initial value we set � = ym�1=D,where 0 < � < 1. Let Y (;D; �D) = (y0; y1; : : : ) be the in�nite sequene that isgiven by Equation 7 and the above initial values. If  < m, then there is an indexn0 suh that yn0 is negative. By Equation 19n0 � 4m3(3m logm� log ") + 1 + 2�m3=2" ;where " = pmm=(m� 1)m�1 � . We hoose n to be the index suh that yn isminimal among y0; : : : ; yn0�1. The value yn is now the lower bound on the distaneto the target. If we set x0k = yn�k�1=yn, for 0 � k � n, then we obtain a strategywith a lower bound of yn=yn = 1 to the target and reah D=yn, whih is obviouslythe largest possible reah for a strategy that satis�es Equations 2 and 3 with theabove initial values. Unfortunately, we know neither D nor �. However, we an setD = 1 sine we are going to sale by 1=yn later anyway.Sine we do not know �, we onsider the values yk as numbers over the extended�eld IR[�℄ = fx+ y� j x; y 2 IRg, that is, � is treated as formal parameter. Hene,2To see this we just note that if Pk+m�1i=0 x�i < x�k, for some k, then we an derease x�k bysome amount " > 0 and inrease x�n�m+1; : : : ; x�n by "=m, thus ahieving a greater reah.24



yk = uk+� vk, for some values uk and vk. On the other hand, yk = yk�1�(1=) yk�m,for m � k � n. This yields two reurrenes for uk and vk.uk = uk�1 � (1=) uk�m; and vk = vk�1 � (1=) vk�m:The initial values for the sequene U = (u0; u1; : : : ) are now given by u0 = � � � =um�2 = 1 and um�1 = 0. The initial values for the sequene V = (v0; v1; : : : ) aregiven by v0 = � � � = vm�2 = 0 and vm�1 = 1. If we stop after n steps, then Equation 3should be satis�ed, that is, we requiren�1Xi=n�m+1 ui + �nvi = (un + �nvn) or �n = � n�1Pi=n�m+1 ui �  unn�1Pi=n�m+1 vi �  vn : (24)We obtain the following algorithm.Algorithm Maximal ReahInput: The ompetitive ratio 1 + 2 and the number of rays m.Output: An integer n and a strategy X = (x0; : : : ; xn) suh that the reah ofX is maximal.1 if  � mm=(m� 1)m�1 then return 1, xk = (1 + 1=(m� 1))k2 for i 0 to m� 2 do let ui  1, vi  03 let um�1  0, vm�1  14 let ymin  1, nmin  m, " (mm=(m� 1)m�1 � )1=25 let n"  4m3(3m logm� log ") + 1 + 2�m3=2="6 for n m to n" do7 let un  un�1 � (1=) un�m, vn  vn�1 � (1=) vn�m8 let �n  �(Pn�1i=n�m+1 ui �  un)=(Pn�1i=n�m+1 ui �  vn)9 if (un + �nvn < ymin)then let positive true10 for j  m to n do=� Test if all elements are positive �=11 if uj + �nvj � 0 then let positive false12 if positive then ymin  yn, nmin  nend if13 let n nmin14 for i 0 to n� 1 do let xi  (un�i�1 + �nvn�i�1)=ymin15 return n, (x0; : : : ; xn�1; 1=ymin)We show the orretness of Algorithm Maximal Reah in the following two lem-mas.Lemma 6.1 The ompetitive ratio of X is 1 + 2.25



Proof: First note that beause of the test in Step 11 all the elements of X arepositive. By the hoie of �, U , and V , X obviously satis�esm�2Xi=0 xi =  and xk+m�1 = (xk � xk�1)for 0 � k � n�m if we set x�1 = 1.3 Using indution we see thatk+m�1Xi=0 xi = xk+m�1 + xk�1 = (xk � xk�1) + xk�1 = xkfor 0 � k � n�m as laimed. 2Lemma 6.2 The reah of Strategy X is at least as large as the reah of any otherstrategy with ompetitive ratio 1 + 2.Proof: Let X� = (x�0; x�1; x�2; : : : ; xl) be a strategy with maximal reah for ompet-itive ratio 1 + 2. By Equation 19 l � n". As we observed previously, X� satis�esthe onditionsPk+m�1i=0 x�i = x�k, for 0 � k � l�m, and Pm�2i=0 x�i = . We de�ne asequene Y � = (y�0; : : : ; y�l ) by y�i = x�l�i�1=x�l , for 0 � i � l, where we set x��1 = 1.The reah of X� is x�l�1 = x�l�1=x��1 = (x�l�1=x�l )=(x��1=x�l ) = 1=y�l .The sequene Y � satis�es reurrene equation 7. By a simple indution it anbe easily seen that y�k = uk + y�m�1vk. Beause of Equations 3 and 24 we obtainthat y�m�1 = �l. Hene, Y � is omputed in Step 10 if k = l. Let Y be the sequeneomputed by Algorithm Maximal Reah. Sine yn is hosen to be minimal, yn � y�l .Hene, the reah 1=yn of X is at least as large as the reah of X�. 2If  onsists of b bits, then the time omplexity of Algorithm Maximal Reah isquadrati in n" = p2b, that is, �(2b). On the other hand, sine logD = 
(n"),4 thetime omplexity is quadrati in the size of the output.We have implemented Algorithm Maximal Reah in Maple. In Figure 3a themaximal reah of the optimal strategies for di�erent values of m is shown. The�gure illustrates niely that the logarithm of the maximal reah depends linearlyon 1=". In Figure 3b we ompare the maximal reah of the optimal strategy tothe maximal reah of the strategy presented in Setion 5 and the strategy given byxk = (3=2)k form = 3. It an be seen that the maximal reah of the optimal strategyinreases muh faster than that of the other two strategies. The �gure also showsthat the maximal reah of the strategy presented in Setion 5 is a linear funtionof 1=" whereas the maximal reah of the other strategy is a logarithmi funtion of1="2. It should be noted that the lower bound we have presented|whih is nowan upper bound on the maximal reah|does not �t into the �gure as it starts at avalue of > 2000 and has a muh steeper slope.3Note that yn is hosen to satisfy yn = yn�1 � 1=yn�m. Sine we divide by yn, this impliesthat yn�m=yn = (yn�1=yn � 1) or xm�1 = (x0 � x�1).4This follows from the fat that there is a strategy with suh that logD is in 
(1=")|as, forinstane, the strategy presented in Setion 5. 26
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(b) 1="Figure 3: (a) The reah of the optimal strategy for di�erent values of m. (b) Thereah of the optimal strategy for m = 3 ompared to the reah of the strategyproposed in Setion 5 and the strategy given by xk = (3=2)k.7 ConlusionsWe present a lower bound for the problem of searhing on m onurrent rays if anupper bound D on the maximal distane to the target is given. We show that inthis ase the ompetitive ratio of a searh strategy is at least 1+2mm=(m�1)m�1�O(1= log2D). Our approah is based on deriving a reursive equation for the steplength in eah iteration of an optimal strategy. The reursive equation gives rise toa harateristi equation whose roots determine the properties of the strategy. Byomputing upper and lower bounds on the radii and polar angles of the roots inpolar oordinates we an show that the ompetitive ratio has to be suÆiently largeif the target is far away.We also present a strategy whih ahieves a ompetitive ratio of 1 + 2mm=(m�1)m�1 � O(1= log2D) if the target is deteted at distane D. The strategy doesnot need to know an upper bound on D in advane and still ahieves the sameonvergene rate as the lower bound that we have shown. This implies that theonvergene rate of our lower bound is tight (up to a onstant that depends on m).Finally, we present an algorithm to ompute the strategy with maximal reahfor a given ompetitive ratio and general m. Our algorithm needs time proportionalto the size of the output and exponential in the size of the input.An interesting open problem is to prove similar results for randomized strategies.One of the problems with randomized strategies is that there is no published proofthat there is an optimal periodi strategy. This seems to be a neessary step beforethe bounded distane problem an be attaked.27
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