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Abstract
This paper gives tight bounds on the cost of cache-oblivious searching. The paper shows that no cache-oblivious

search structure can guarantee a search performance of fewer than lg e logB N memory transfers between any two
levels of the memory hierarchy. This lower bound holds even if all of the block sizes are limited to be powers of 2.
The paper gives modified versions of the van Emde Boas layout, where the expected number of memory transfers
between any two levels of the memory hierarchy is arbitrarily close to [lg e+O(lg lgB/ lgB)] logB N+O(1). This
factor approaches lg e ≈ 1.443 as B increases. The expectation is taken over the random placement in memory of
the first element of the structure.

Because searching in the disk-access machine (DAM) model can be performed in logB N+O(1) block transfers,
this result establishes a separation between the (2-level) DAM model and cache-oblivious model. The DAM model
naturally extends to k levels. The paper also shows that as k grows, the search costs of the optimal k-level DAM
search structure and the optimal cache-oblivious search structure rapidly converge. This result demonstrates that for
a multilevel memory hierarchy, a simple cache-oblivious structure almost replicates the performance of an optimal
parameterized k-level DAM structure.
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1 Introduction

Hierarchical Memory Models. Traditionally, algorithms are designed to run efficiently in a random access model
(RAM) of computation, which assumes a flat memory with uniform access times. However, as hierarchical memory
systems become steeper and more complicated, algorithms are increasingly designed assuming more accurate memory
models; see e.g., [2–5, 7–9, 28, 36–38, 42–44]. Two of the most successful memory models are the disk-access model
(DAM) and the cache-oblivious model.
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Aarhus University, Ny Munkegade, 8000 Århus C, Denmark. Email: gerth@cs.au.dk. Partially supported by the Future and Emerging
Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT) and the Carlsberg Foundation (contract number ANS-
0257/20).
§Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

Email: rolf@imada.sdu.dk.
¶Department of Management Science and Engineering, Antai School of Economics and Management, Shanghai JiaoTong University, Shanghai,

China, 200052. Email: ddge@sjtu.edu.cn
‖Department of System Engineering and Engineering Management, Chinese University of Hongkong, Hongkong, China. Email:

smhe@se.cuhk.edu.hk.
∗∗Networking and Device Connectivity at Windows Division, Microsoft, Redmond, WA, 98052. Email: haodhu@microsoft.com
††Department of Computer and Information Science, Polytechnic University, Brooklyn NY 11201, USA. Email: jiacono@poly.edu. Re-

search supported in part by NSF grants CCF-0430849 and OISE-0334653 and by an Alfred P. Sloan Fellowship.
‡‡School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Email: alopez-o@uwaterloo.ca.

1



The DAM model, developed by Aggarwal and Vitter [4], is a two-level memory model, in which the memory
hierarchy consists of an internal memory of size M and an arbitrarily large external memory partitioned into blocks of
size B. Algorithms are designed in the DAM model with full knowledge of the values of B and M . Because memory
transfers are relatively slow, the performance metric is the number of block transfers.

The cache-oblivious model, developed by Frigo, Leiserson, Prokop, and Ramachandran [27, 34], allows program-
mers to reason about a two-level memory hierarchy but to prove results about an unknown multilevel memory hier-
archy. As in the DAM model, the objective is to minimize the number of block transfers between two levels. The
main idea of the cache-oblivious model is that by avoiding any memory-specific parametrization (such as the block
sizes) the cache-oblivious algorithm has an asymptotically optimal number of memory transfers between all levels of
an unknown, multilevel memory hierarchy.

Optimal cache-oblivious algorithms have memory performance (i.e., number of memory transfers) that is within a
constant factor (independent of B and M ) of the memory performance of the optimal DAM algorithm, which knows
B and M . There exist surprisingly many (asymptotically) optimal cache-oblivious algorithms (see, e.g., [24, 30]).

I/O-Efficient Searching. This paper focuses on the fundamental problem of searching: Given a set S of N
comparison-based totally-ordered elements, produce a data structure that can execute searches (or predecessor queries)
on items in S.

We prove tight bounds on the cost of cache-oblivious searching. We show that no cache-oblivious search structure
can guarantee that a search performs fewer than lg e logB N block transfers between any two levels of the memory
hierarchy, even if all of the block sizes are limited to powers of 2.1 We also give search structures in which the
expected number of block transfers between any two levels of the memory hierarchy is arbitrarily close to [lg e +

O(lg lgB/ lgB)] logB N + O(1), which approaches lg e logB N + O(1) for large B. This expectation is taken over
the random placement in memory of the first element of the structure.

In contrast, the performance of the B-tree [10,23], the classic optimal search tree in the DAM model, is as follows:
A B-tree with N elements has nodes with fan-out B, which are designed to fit into one memory block. The B-tree has
height logB N + 1, and a search requires logB N + 1 memory transfers.

A static cache-oblivious search tree, proposed by Prokop [34], also performs searches in Θ(logB N) memory
transfers. The static cache-oblivious search tree is built as follows: Embed a complete binary tree with N nodes in
memory, conceptually splitting the tree at half its height, thus obtaining Θ(

√
N) subtrees each with Θ(

√
N) nodes.

Lay out each of these trees contiguously, storing each recursively in memory. This type of recursive layout is com-
monly referred to in the literature as a van Emde Boas layout because it is reminiscent of the recursive structure of the
van Emde Boas tree [40, 41]. The static cache-oblivious search tree is a basic building block of most cache-oblivious
search structures, including the (dynamic) cache-oblivious B-tree [14, 15, 15, 22, 35] and other cache-oblivious search
structures [1, 6, 11, 12, 16–21, 25, 26]. Any improvements to the static cache-oblivious search structure immediately
translate to improvements in these dynamic structures.

Results. We present the following results:

• We give an analysis of Prokop’s static cache-oblivious search tree [34], proving that searches perform at most
2
(

1 + 3√
B

)
logB N +O(1) expected memory transfers; the expectation is taken only over the random placement

of the data structure in memory. This analysis is tight to within a 1 + o(1) factor.

• We then present a class of generalized van Emde Boas layouts that optimizes performance through the use of
uneven splits on the height of the tree. For any constant ε > 0, we optimize the layout achieving a performance of
[lg e+ ε+O(lg lgB/ lgB)] logB N +O(1) expected memory transfers. As before, the expectation is taken over

1Throughout the paper lgN means log2 N .
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the random placement of the data structure in memory2. While the derivations in the proof of the upper bound
might not provide great insight into the reasons why it holds, its mere existence is valuable information. It shows
that the tightness of the lower bound and points to the surprising fact that uneven splits, contrary to established
practice, are of key importance in the building of this data structure.

• Intuitively, the improvement of uneven splitting, as compared to the even splitting in the standard van Emde Boas
layout, is likely to be due to the generation of a variety of subtree sizes at each recursive level of the layout. Such
a variety will on any search path reduce the number of subtrees that can have particularly bad sizes compared to
the block size B. We strengthen this intuition by presenting another generalization of the van Emde Boas layout,
which generates an explicit distribution of subtree sizes at each recursive level. The definition of this layout is
more involved than for the first layout presented, but the corresponding proof of complexity is shorter and more
direct. The achieved complexity is the same as for the first layout.

• Finally, we demonstrate that it is harder to search in the cache-oblivious model than in the DAM model. Previously
the only lower bound for searching in the cache oblivious model was the logB N lower bound from the DAM
model. We prove a lower bound of lg e logB N memory transfers for searching in the average case in the cache-
oblivious model. Thus, for large B, our upper bound is within a factor of 1 + o(1) of the optimal cache-oblivious
layout.

Interpretation. We present cache-oblivious search structures that take 44% more block transfers than the optimal
DAM structure, and we prove that one cannot do better. However, this result does not mean that our cache-oblivious
structures are 44% slower than an optimal algorithm for a multilevel memory hierarchy. To the contrary, this worst-
case behavior only occurs on a two-level memory hierarchy. To design a structure for a k-level memory hierarchy,
one can extend the DAM model to k levels. A data structure for a k-DAM is designed with full knowledge of the
size and block size of each level of the memory hierarchy. Thus, the 2-DAM is the standard DAM where searches
cost logB N + 1 block transfers (using a B-tree). Surprisingly, in the 3-DAM this performance cannot be replicated
in general. We show in Corollary 2.3 that a 3-DAM algorithm cannot achieve less than 1.207 logB N block transfers
on all levels simultaneously. Thus, the performance gap between a 3-DAM and the optimal cache-oblivious structure
is about half that of the 2-DAM and the optimal cache-oblivious structure; naturally, a modern memory hierarchy has
more than three levels. Furthermore, we show that as the number k of levels in the memory hierarchy grows, the
performance loss of our cache-oblivious structures relative to an optimal k-DAM structure tends to zero. Thus, for a
modern memory hierarchy, our cache-oblivious structures combines simplicity and near-optimal performance.

Our cache-oblivious search trees also provide new insight into the optimal design strategy for divide-and-conquer
algorithms. More generally, it has been known for several decades that divide-and-conquer algorithms frequently have
good data locality [39]. The cache-oblivious model helps explain why divide-and-conquer can be advantageous.

When there is a choice, the splitting in a divide-and-conquer algorithm is traditionally done evenly. The unques-
tioned assumption is that splitting evenly is best. Our new search structures reveal a setting in which it is crucial that
the resulting subtrees across the recursive decomposition not be of equal size.

Indeed, even splits lead to a performance slowdown factor of two in the worst case as each access might straddle
two blocks. In contrast uneven splits lead to an expected slowdown of at most lg e ∼ 1.443. This shows that so
long as the placement in memory is random, the tree accesses are reasonably well aligned with the cache blocks on
the average. In this case, the intuitive reasons behind the superiority of uneven split is that the regularity of even
splits allows for the construction of adversarial worst case configurations. This can be observed from the proof of
Theorem 3.3.

2Note that explicit programmer intervention might be needed to ensure random placement of the data structure. This could be accomplished by
means such as requesting a block of a fixed larger size and then placing the data structure at a small random offset from the head of the allocated
block.
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2 Lower Bound for Cache-Oblivious Searching

In this section we prove lower bounds on the I/O cost of comparison-based search algorithms optimizing for several
block sizes at the same time. The specific problem we consider is the average cost of successful searches among N
distinct elements, for a uniform distribution of the search key y on theN input elements. As average case lower bounds
are also worst case lower bounds, our results also apply to the worst case cost. We emphasize that our bounds hold
even if the block sizes are known to the algorithm, and that no randomization of the placement of the data structure of
the search algorithm is assumed.

Formally, our model is as follows. Given a set S of N elements x1 < · · · < xN from a totally ordered universe,
a search structure for S is an array M containing elements from S, possibly with several copies of each. A search
algorithm for M is a binary decision tree where each internal node is labeled with either y < M [i] or y ≤ M [i] for
some array index i, and each leaf is labeled with a number 1 ≤ j ≤ N . A search on a key y proceeds in a top-down
fashion in the tree, and at each internal node advances to the left child if the comparison given by the label is true,
otherwise it advances to the right. The binary decision tree is a correct search algorithm if for any xi ∈ S, the path
taken by a search on key y = xi ends in a leaf labeled i. Any such tree must have at least N leaves, and by pruning
paths not taken by any search for x1, . . . , xN , we may assume that it has exactly N leaves.

To add I/Os to the model, we divide the array M into contiguous blocks of size B. An internal node of a search
algorithm is said to access the block containing the array index i in the label of the node. We define the I/O cost of a
search to be the number of distinct blocks of M accessed on the path taken by the search.

We assume in our model that block sizes are powers of two and that blocks start at memory addresses divisible by
the block size. This reflects the situation on actual machines, and entails no loss of generality, as any cache-oblivious
algorithm at least should work for this case. The assumption implies that when considering two block sizes B1 < B2,
a block of size B1 is contained in exactly one block of size B2.

The depth of a leaf in a tree is the number edges on its path to the root, and the height of a tree is the maximal
depth among its leaves. We recall the following standard result on the average depth of leaves in binary trees.

Lemma 2.1 ( [29, Section 2.3.4.5]) For a binary tree with N leaves, the average depth of a leaf is at least lgN .

In our lower bound proof, we analyze the I/O cost of a given search algorithm with respect to several block
sizes simultaneously. We first describe our method for the case of two block sizes. This leads to a lower bound of
1.207 logB N block transfers. We then generalize this proof to a larger number k of block sizes, and prove that in the
limit as k grows, this gives a lower bound of lg e logB N ≈ 1.443 logB N block transfers.

Lemma 2.2 If a search algorithm on a search structure for block sizes B1 and B2, where B2 = B1
c and 1 < c ≤ 2,

guarantees that the average number of distinct blocks read during searches is at most δ logB1
N and δ logB2

N ,
respectively, then

δ ≥ 1

2/c+ c− 2 + 3/(c lgB1)
.

Proof: Let T denote the binary decision tree constituting the search algorithm. The main idea of the proof is to
transform T into a new binary decision tree T ′ by a transformation on nodes along each search path. Nodes that access
a new block on the search path will be substituted by inserting small binary decision trees in their place. These decision
trees are carefully chosen to have low height and to allow path nodes not accessing new blocks to be discarded. The
end result is that the transformed path consists of one root-to-leaf path from each of the trees inserted along the original
path, and there is one such tree for each distinct block access along the original path. By the bounded height of the
inserted trees, a lower bound on the lengths of the transformed paths gives a lower bound on the distinct block accesses
along the original paths. Lemma 2.1 supplies such a lower bound.
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The transformation will be done simultaneously for all search paths in T by a top-down process, maintaining a
decision tree at all times. During the process, it will be an invariant that a search for any key ends in a leaf having the
same label as the leaf where the same search ends in T . In particular, the final tree T ′ is a correct search algorithm if
T is.

To count the number of I/Os of each type (size B1 blocks and size B2 blocks) for each path in T , we mark some
of the internal nodes by tokens τ1 and τ2. A node v is marked iff none of its ancestors accesses the size B1 block
accessed by v, i.e. if v is the first access to the block. The node v may also be the first access to the size B2 block
accessed by v. In this case, v is marked by τ2, else it is marked by τ1. Note that the word “first” above corresponds to
viewing each path in the tree as a timeline—this view will be implicit in the rest of the proof.

For any root-to-leaf path, let bi denote the number of distinct size Bi blocks accessed and let ai denote the number
of τi tokens on the path, for i = 1, 2. By the assumption stated above Lemma 2.1, a first access to a size B2 block
implies a first access to a size B1 block, so we have b2 = a2 and b1 = a1 + a2.

As said, we transform T into a new binary decision tree T ′ in a top-down fashion. The basic step in the transforma-
tion is to substitute a marked node v with a specific binary decision tree Tv resolving the order-wise relation between
the search key y and a carefully chosen subset Sv of the elements stored in M . More precisely, in each step of the
transformation, the subtree rooted at v is first removed, then the tree Tv is inserted at v’s former position, and finally a
copy of one of the two subtrees rooted at the children of v is inserted at each leaf of Tv . The set Sv is always chosen
such that it includes the element accessed by the comparison in v. Hence, at each leaf of Tv , the order-wise relation to
that element is known, and the appropriate one of the two subtrees can be inserted. The top-down transformation then
continues downwards from the leaves of Tv . When the transformation reaches a leaf of T , it is left unchanged. Note
that the invariant mentioned above is maintained at each step.

We now describe the tree Tv inserted, given that the set Sv of elements has been selected. The tree Tv is a
binary decision tree of minimal height resolving the relation of the search key y to all keys in Sv . If we have Sv =

{z1, z2, . . . , zt}, with elements listed in sorted order, this amounts to resolving to which of the 2t+ 1 intervals

(−∞; z1) , [z1; z1] , (z1; z2) , . . . , [zt; zt] , (zt;∞)

y belongs. That tree has height at most dlg(2t+ 1)e, since a perfectly balanced binary search tree on Sv (having, say,
comparisons of type “<” in the internal nodes), with one layer of t nodes added at the leaves to resolve the equality
questions, will do.

We now describe how the set Sv is chosen. First consider the case of a node v marked τ2. Here, we let the subset
Sv consist of the at most B1 distinct elements in the block of size B1 accessed by v, plus every B2

2B1
th element in

sorted order among the at most B2 distinct elements in the block of size B2 accessed by v. The size of Sv is at most
B1 + B2/(B2/(2B1)) = 3B1, so the tree Tv has height at most dlg(6B1 + 1)e. As B1 is a power of two, lg(8B1) is
an integer and hence an upper bound on the height.

Next, for the case of a node v marked τ1, note that v in T has exactly one ancestor u marked τ2 that accesses the
same sizeB2 block β as v does. When the tree Tu was substituted for u, the inclusion in Su of the 2B1 evenly sampled
elements from β ensures that below any leaf of Tu, at most B2

2B1
− 1 of the elements in β can still have an unknown

relation to the search key. We let Sv be these B2

2B1
− 1 elements. The corresponding tree Tv has height at most at most

dlg(2(B2/2B1 − 1) + 1)e, which is at most lgB2/B1, as B1 and B2 are powers of two.
For the case of an unmarked internal node v (i.e. a node where the size B1 block accessed at the node has been

accessed before), we can simply discard v together with either the left or right subtree, since we already have resolved
the relation between the search key y and the element accessed at v. This follows from the choice of trees inserted at
marked nodes: when we access a size B2 block β2 for the first time at some node u, we resolve the relation between
the search key y and all elements in the size B1 block β1 accessed at u (due to the inclusion of all of β1 in Su), and
when we the first time access a key in β2 outside β1, we resolve all remaining relations between y and elements in β2.
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By the height stated above for the inserted Tv trees, it follows that if a search for a key y in T corresponds to a path
containing a1 and a2 tokens of type τ1 and τ2, respectively, then the search in T ′ corresponds to a path with length
bounded from above by the following expression.

a2 lg(8B1) + a1 lg
B2

B1
= b2 lg(8B1) + (b1 − b2) lg

B2

B1
= b2

[
lg(8B1)− lg

B2

B1

]
+ b1 lg

B2

B1

The coefficients of b2 and b1 are positive by the assumption B1 < B2 ≤ B1
2, so upper bounds on b1 and b2 imply

an upper bound on the expression above. By assumption, the average over all searches of b1 and b2 are bounded by
δ logB1

N and δ logB2
N = (δ logB1

N)/c, respectively.
If we prune the tree for paths not taken by any search for the keys x1, . . . , xN , the lengths of root-to-leaf paths can

only decrease. The resulting tree has N leaves, and each leaf corresponds to a search, so averages over searches and
averages over leaves are the same. As Lemma 2.1 gives a lgN lower bound on the average depth of a leaf, we get

lgN ≤ δ

c
logB1

N

[
lg(8B1)− lg

B2

B1

]
+ δ logB1

N lg
B2

B1

=
δ

c
logB1

N [3 + lgB1 − (c− 1) lgB1] + δ logB1
N(c− 1) lgB1

= δ lgN [3/(c lgB1) + 1/c− (c− 1)/c+ (c− 1)]

= δ lgN [3/(c lgB1) + c+ 2/c− 2] .

It follows that δ ≥ 1/[3/(c lgB1) + c+ 2/c− 2]. 2

Corollary 2.3 If a search algorithm on a search structure guarantees, for all block sizes B, that the average number
of distinct blocks read during searches is at most δ logB N , then δ ≥ 1/(2

√
2− 2) ≈ 1.207.

Proof: Letting c =
√

2 in Lemma 2.2, we get δ ≥ 1/[2
√

2− 2 + 3/(
√

2 lgB1)]. The lower bound follows by letting
B1 grow to infinity. 2

Lemma 2.4 If a search algorithm on a search structure for block sizes B1, B2, . . . , Bk, where Bi = B1
ci and 1 =

c1 < c2 < · · · < ck ≤ 2, guarantees that the average number of distinct blocks read during searches is at most
δ logBi

N for each block size Bi, then

δ ≥ 1

2
ck

[
1 + lg(8k)

2 lgB1

]
+
k−1∑
i=1

ci+1

ci
− k

.

Proof: The proof is a generalization of the proof of Lemma 2.2 for two block sizes, and we here assume familiarity
with that proof. The transformation is basically the same, except that we have a token τi, i = 1, . . . , k, for each of the
k block sizes.

Again, a node v is marked if none of its ancestors access the size B1 block accessed by v, i.e. if v is the first access
to this block. The node v may also be the first access to blocks of larger sizes, and we mark v by τi, where Bi is
the largest block size for which this is true. Note that by the assumption stated above Lemma 2.1, v must be the first
access to the size Bj block accessed by v for all j with 1 ≤ j ≤ i.

For any root-to-leaf path, let bi denote the number of distinct size Bi blocks accessed and let ai denote the number
of τi tokens on the path, for i = 1, . . . , k. We have bi =

∑k
j=i aj . Solving for ai, we get ak = bk and ai = bi − bi+1,

for i = 1, . . . , k − 1.
As in the proof of Lemma 2.2, the transformation proceeds in a top-down fashion, and substitutes marked nodes v

by binary decision trees Tv . We now describe the trees Tv for different types of nodes v.

6



For a node v marked τk, the tree Tv resolves the relation between the query key y and a set Sv of size (2k− 1)B1,
consisting of the B1 elements in the block of size B1 accessed at v, plus for i = 2, . . . , k every Bi

2B1
th element in

sorted order among the elements in the block of size Bi accessed at v. This tree can be chosen to have height at most
dlg(2(2k − 1)B1 + 1)e ≤ lg(8kB1).

For a node v marked τi, i < k, let βj be the block of size Bj accessed by v, for 1 ≤ j ≤ k. For i + 1 ≤ j ≤ k,
βj has been accessed before, by the definition of τi. We now consider two cases. Case I is that βi+1 is the only block
of size Bi+1 that has been accessed inside βk. By the definition of the tree Tu inserted at the ancestor u of v where
βk was first accessed, at most Bi+1/2B1 − 1 of the elements in βi+1 can have unknown relations with respect to
the search key y. The tree Tv inserted at v resolves these relations. It can be chosen to have height at most lg Bi+1

B1
.

Case II is that βi+1 is not the only block of size Bi+1 that has been accessed inside βk. Then consider the smallest
j for which βj+1 is the only block of size Bj+1 that has been accessed inside βk (clearly, j ≤ k − 1). When we the
first time accessed the second block of size Bj inside βk at some ancestor u of v, this access was inside βj+1, and a
Case I substitution as described above took place. Hence a tree Tu was inserted which resolved all relations between
the search key and elements in βj+1. This includes the element accessed by the comparison at v, so the empty tree can
be used for Tv , i.e. v and one of its subtrees is simply discarded.

For an unmarked node v, there is a token τi on the ancestor u of v in T for which the size B1 block β1 accessed
by v was first accessed. This gave rise to a tree Tu in the transformation, and this tree resolved the relations between
the search key and all elements in β1, either directly (i = k) or by resolving the relations for all elements in a block
containing β1 (1 ≤ i < k), so v and one of its subtrees can be discarded.

After transformation and final pruning, the length of a root-to-leaf path in the final tree is bounded from above by
the following equation.

ak lg(8kB1) +

k−1∑
i=1

ai lg
Bi+1

B1

= bk lg(8kB1) + lgB1

k−1∑
i=1

(bi − bi+1)(ci+1 − 1)

= lgB1

[
bk

(
1 +

lg(8k)

lgB1

)
+ b1(c2 − 1) +

k−1∑
i=2

bi(ci+1 − ci)− bk(ck − 1)

]

= lgB1

[
bk

(
2 +

lg(8k)

lgB1
− ck

)
+

k−1∑
i=1

bi(ci+1 − ci)

]
.

For all i, the average value of bi over all search paths is by assumption bounded by δ logBi
N = (δ logB1

N)/ci,
and the coefficient of bi is positive, so we get the following upper bound on the average number of comparisons on a
search path.

δ logB1
N lgB1

[
1

ck

(
2 +

lg(8k)

lgB1
− ck

)
+

k−1∑
i=1

1

ci
(ci+1 − ci)

]

= δ lgN

[
1

ck

(
2 +

lg(8k)

lgB1

)
+

k−1∑
i=1

ci+1

ci
− k

]
.

By Lemma 2.1 we have

δ lgN

[
1

ck

(
2 +

lg(8k)

lgB1

)
+

k−1∑
i=1

ci+1

ci
− k

]
≥ lgN ,
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and the lemma follows. 2

Theorem 2.5 If a search algorithm on a search structure guarantees, for all block sizes B, that the average number
of distinct blocks read during searches is at most δ logB N , then δ ≥ lg e ≈ 1.443.

Proof: Let k be an integer, and for i = 1, . . . , k define Bi = 2k+i−1. In particular, we have B1 = 2k and Bi = B1
ci

with ci = (k + i− 1)/k. Consider the following subexpression of Lemma 2.4.

2

ck

(
1 +

lg(8k)

2 lgB1

)
+

k−1∑
i=1

ci+1

ci
− k

=
2k

2k − 1

(
1 +

lg(8k)

2k

)
+

k−1∑
i=1

k + i

k + i− 1
− k

=
2k

2k − 1

(
1 +

lg(8k)

2k

)
− 1 +

k−1∑
i=1

1

k + i− 1

≤ 2k

2k − 1

(
1 +

lg(8k)

2k

)
− 1 +

∫ 2k−2

k−1

1

x
dx

=
2k

2k − 1

(
1 +

lg(8k)

2k

)
− 1 + ln 2.

Letting k grow to infinity Lemma 2.4 implies δ ≥ 1/ ln 2 = lg e. 2

3 Upper Bound for van Emde Boas Layout

In this section we give a tight analysis of the cost of searching in a binary tree stored using the van Emde Boas
layout [34]. As mentioned earlier, in the vEB layout, the tree is split evenly by height, except for roundoff. Thus, a
tree of height h is split into a top tree of height dh/2e and bottom tree of height bh/2c. It is known [15, 22] that the
number of memory transfers for a search is 4 logB N in the worst case; we give a matching configuration showing that
this analysis is tight. We then consider the average-case performance over all starting positions of the tree in memory,
and we show that the expected search cost is 2(1 + 3/

√
B) logB N +O(1) memory transfers, which is tight within a

1+o(1) factor. We assume that the data structure begins at a random position in memory; if there is not enough space,
then the data structure “wraps around” to the first location in memory.

A relatively straightforward analysis of this layout shows that in the worst case the number of memory transfers is
no greater than four times that of the optimal cache-size-aware layout. More formally,

Theorem 3.1 Consider an (N − 1)-node complete binary search tree that is stored using the Prokop vEB layout. A

search in this tree has memory-transfer cost of at least
(

4− 4

1 + log6B

)
logB N and at most 4 logB N in the worst

case.

Proof: The upper bound has been established before in the literature [15, 22]. For the lower bound we show that this
value is achieved asymptotically. Let the block size be B =

(
22k − 1

)
/5 for any even number k ≥ 4 and consider a

tree T of size N − 1, where N = 2k2
m+1

for some constant m. Number the positions within a block from 0 to B − 1.
As we recurse, we eventually obtain subtrees of size 5B = 22k − 1 and one level down of size 2k − 1. We align the
subtree of size 5B that contains the root of T so that its first subtree R of size 2k − 1 (which also contains the root of
T ) starts in position B − 1 of a block. In other words, any root-to-leaf search path in the subtree of size 5B crosses
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the block boundary because the root is in the last position of a block. Observe that R has 2k−1 subtrees of size 2k − 1

hanging from its bottom level. Number these 2k−1 subtrees as they are laid in memory in the recursive decomposition
and consider the b2(2k + 1)/5c+ 1-th subtree of size 2k − 1 in this ordering. The root of this tree starts at a position
between B − 1 + (2k − 1)(2(2k + 1)/5 − 1) + 1 = 3B − (2k − 1) and B − 1 + (2k − 1)2(2k + 1)/5 = 3B − 1.
Thus, any root-to-leaf search path in this subtree crosses the block boundary. Observe that because trees are laid out
consecutively, and 5B is a multiple of the block size, all other subtrees of size 5B start at position B − 1 inside a
block and share the above that we can find a root-to-leaf path that has cost 4 inside this size-5B subtree. Notice that
a root-to-leaf path accesses 2m many size-5B subtrees, and if we choose the path according to the above position we
know that the cost inside each size 5B subtree is 4, i.e., the first 4 blocks as a contiguous structure of size 5B may
span at most 6 blocks. Thus, the total search cost is 4 · 2m. Because 2k2

m+1

= N and 5B = 22k − 1, we have

4 · 2m =
4 logB N

logB(5B + 1)
= 4

lgB

lg(5B + 1)
logB N.

Furthermore, we bound the parameter lgB/ lg(5B + 1) as follows:

lgB

lg(5B + 1)
>

lgB

lg 6B

= 1− lg 6

lg 6 + lgB

= 1− 1

1 + log6B
.

Therefore, the total search cost has 4(1− 1/(1 + log6B)) logB N memory transfers in the worst case. 2

However, few paths in the tree have this property, which suggests that in practice, the Prokop vEB layout results
in a much lower memory-transfer cost assuming random placement in memory.

In Theorem 3.3, appearing shortly, we formalize this notion. First, however, we give the following useful inequality
to simplify the proof.

Claim 3.2 Let B be a power of 2, t and t′ be positive numbers satisfying t/2 ≤ t′ ≤ 2t,
√
B/2 ≤ t ≤

√
B, and

tt′ ≥ B. Then

2 +
t+ t′

B
≤ 2

(
1 +

3√
B

)
lg t+ lg t′

lgB
.

Proof: Because t2 + (t′)2 ≤ 5tt′/2 for all t/2 ≤ t′ ≤ 2t, we have

t+ t′ ≤ 3

√
tt′

2
. (1)

Define x = tt′ and define

f(x) = 2

(
1 +

3√
B

)
lg x

lgB
− 2− 3

B

√
x

2
.

We will show that f(x) ≥ 0 for B ≤ x ≤ 2B. First, we calculate the second derivative of f(x).

f ′′(x) = −2

(
1 +

3√
B

)
1

x2 lnB
+

3

4
√

2B

1

x3/2
.

Because x ≤ 2B (i.e., x1/2 ≤
√

2B), we obtain

f ′′(x) ≤ 1

x2

[
3
√

2B

4
√

2B
− 2

(
1 +

3√
B

)
1

lnB

]
.
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By removing the term −6/(
√
B lnB), we bound f ′′(x) as follows:

f ′′(x) ≤ 1

x2

(
3

4
√
B
− 2

lnB

)
≤ 0.

Thus, we establish that f(x) is convex in the range B ≤ x ≤ 2B. Because both f(B) and f(2B) are greater than
zero, we obtain f(x) ≥ 0 for B ≤ x ≤ 2B, which is equivalent to

2 +
3

B

√
x

2
≤ 2

(
1 +

3√
B

)
lg x

lgB
.

From (1) and the above inequality, we obtain the follows:

2 +
t+ t′

B
≤ 2

(
1 +

3√
B

)
lg x

lgB
.

2

Theorem 3.3 Consider a path in an (N−1)-node complete binary search tree of height h that is stored in vEB layout,
with the start of its representation in memory determined uniformly at random within a block B. Then the expected
memory-transfer cost of the search is at most 2(1 + 3/

√
B) logB N .

Proof: Although the recursion proceeds to the base case where trees have height 1, conceptually we stop the recursion
at the level of detail where each recursive subtree has at most B nodes. We call those subtrees critical recursive
subtrees, because they are recursive subtrees in the most ”important” level of detail. Let the number of nodes in a
subtree T be |T |. Therefore, any critical recursive subtree T has |T | nodes, where

√
B/2 ≤ |T | ≤ B. Note that

because of roundoff, we cannot guarantee that |T | ≥
√
B. In particular, if a tree has B + 1 nodes and its height h′

is odd, then the bottom trees have height bh′/2c, and therefore contain roughly
√
B/2 nodes. Then there are exactly

|T | − 1 initial positions for the upper tree that results in T being laid out across a block boundary. Similarly there are
B− |T |+ 1 positions in which the block does not cross a block boundary. Hence, the local expected cost of accessing
T is

2(|T | − 1)

B
+
B − |T |+ 1

B
= 1 +

|T | − 1

B
.

Now we need two cases to deal with the roundoff. If
√
B/2 ≤ |T | ≤

√
B for the critical recursive subtree T , then

we consider the next larger level of detail. There exists another critical recursive subtree T ′ immediately above T on
the search path in this level of detail. Notice that |T ||T ′| ≥ B. Because otherwise we would consider the coarser level
of detail for our critical recursive subtree. Because we cut in the middle, we know that 2|T ′| ≥ |T | ≥ |T ′|/2. From
Claim 3.2 the expected cost of accessing T and T ′ is at most

1 +
|T | − 1

B
+ 1 +

|T ′| − 1

B
≤ 2

(
1 +

3√
B

)
lg(|T ||T ′|)

lgB
.

For
√
B ≤ |T | ≤ B for the critical recursive subtree T , we show that the cost of accessing T is less than

2(1 + 1/
√
B) lg |T |/ lgB. Define f(x) as follows:

f(x) = 2
lg x

lgB

(
1 +

1√
B

)
− 1− x− 1

B
.

By calculating

f ′′(x) = − 2

x2 lgB

(
1 +

1√
B

)
≤ 0,
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we know f(x) is convex. Because both f(
√
B) and f(B) are greater than zero, we obtain f(x) ≥ 0 for the entire

range
√
B ≤ x ≤ B. Thus, considering f(|T |), we obtain that the expected cost of accessing T is

1 +
|T | − 1

B
≤ 2

(
1 +

1√
B

)
lg |T |
lgB

.

Combining the above arguments, we conclude that although the critical recursive subtrees on a search path may
have different sizes, their expected memory-transfer cost is at most∑

T

2

(
1 +

3√
B

)
lg |T |
lgB

= 2

(
1 +

3√
B

)
logB N.

This is a factor of 2(1 + 3/
√
B) times the (optimal) performance of a B-tree. 2

4 Upper Bounds for Cache Oblivious Searching

We give two cache-oblivious layouts for achieving our main upper bound. One layout, which we term the generalized
van Emde Boas layout is very simply defined, but has a lengthy proof of complexity. The other layout, termed multi-
layer van Emde Boas layout is slightly more involved, but allows a shorter proof.

The intuition behind both methods is to ensure an appropriate diversity of sizes of subtrees at each level of recursion
of a van Emde Boas type layout. When looking at the level of recursion where the sizes of subtrees get below the block
size B, these sizes will then be spread out in the interval [

√
B,B]. Under randomization of the starting position of the

data structure in memory, smaller subtrees will be less likely to straddle a block boundary thus avoiding a second I/O
for these trees during a search. On the other hand, smaller subtrees mean more such subtrees on a search path, hence
more I/Os. The main question is what is the best possible balance between the two effects holding true for any value
of the block size B.

In the multi-layer van Emde Boas layout, we specify an explicit diversity of sizes of subtrees at each level of the
recursion, which we can prove achieves a balance between the two effects that entails a cache-oblivious search time
asymptotically meeting our lower bound.

In the van Emde Boas layout, we split the tree height in a fixed, uneven way during the recursion of the van Emde
Boas layout, and we are able to show that this simple scheme achieves the same result. Intuitively, the recursive uneven
division provides a spread of subtree sizes with the same effect as our explicit scheme.

5 Upper Bound for the Generalized van Emde Boas Layout

We now propose and analyze a generalized van Emde Boas layout having a better search cost. In the original vEB
layout, the top recursive subtree and the bottom recursive subtrees have the same height (except for roundoff). At first
glance this even division would seem to yield the best memory-transfer cost. Surprisingly, we can improve the van
Emde Boas layout by selecting different heights for the top and bottom subtrees.

The generalized vEB layout is as follows: Suppose the complete binary tree contains N − 1 = 2h − 1 nodes and
has height h = lgN . Let a and b be constants such that 0 < a < 1 and b = 1−a. Conceptually we split the tree at the
edges below the nodes of depth dahe. This splits the tree into a top recursive subtree of height dahe, and k = 2dahe

bottom recursive subtrees of height bbhc. Thus, there are roughly Na bottom recursive subtrees and each bottom
recursive subtree contains roughly N b nodes. We map the nodes of the tree into positions in the array by recursively
laying out the subtrees contiguously in memory. The base case is reached when the trees have one node, as in the
standard vEB layout.
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We find the values of a and b that yield a layout whose memory-transfer cost is arbitrarily close to
[lg e+O(lg lgB/ lgB)] logB N + O(1) for a = 1/2 − ξ and large enough N . We focus our analysis on the first
level of detail where recursive subtrees have size at most the block size B. In our analysis memory transfers can be
classified in two types. There are V path-length memory transfers, which are caused by accessing different recursive
subtrees in the level of detail of the analysis, and there are C page-boundary memory transfers, which are caused
by a single recursive subtree in this level of detail straddling two consecutive blocks. It turns out that each of these
components has the same general recursive expression and differs only in the base cases. The total number of memory
transfers is at most V + C by linearity of expectation.

The recurrence relation obtained contains rounded-off terms (b·c and d·e) that are cumbersome to analyze. We
show that if we ignore the roundoff operators, then the error term is small. We obtain a solution expressed in terms
of a power series of the roots of the characteristic polynomial of the recurrence. We show for both V and C that the
largest root is unique and hence dominates all other roots, resulting in asymptotic expressions in terms of the dominant
root.

Using these asymptotic expressions, we obtain the main result, namely a layout whose total cost is arbitrarily close
to [lg e + O(lg lgB/ lgB)] logB N + O(1) as the split factor a = 1/2 − ξ approaches 1/2 and for N large enough.
This performance matches the lower bound from the Section 2 up to low-order terms.

Causes of Memory Transfers: Path-Length and Block-Boundary-Crossing Functions

We let B(x) denote the expected block cost of a search in a tree of height x. To begin, we explain the base case for
the recurrence, when the entire tree is a critical recursive subtree. Recall that a critical recursive subtree is a recursive
subtree of size less than B. If a critical recursive subtree crosses a block boundary, then the block cost is 2; otherwise
the block cost is 1. As in the Theorem 3.3, the expected block cost of accessing a critical recursive subtree T of size
|T | = t− 1 and height x = lg t is

1 +
t− 2

B
= 1 +

2x − 2

B
.

Thus, the base case is when |T | < B, which means that t ≤ B and 1 ≤ x ≤ lgB.
We next give the recurrence for the block cost B(x) of a tree T of height x. By linearity of expectation, the

expected block cost is at most that of the top recursive subtree plus the bottom recursive subtree, i.e.,

B(x) ≤ B(daxe) + B(bbxc),

for x > lgB, 3 for a+ b = 1, 0 < a ≤ b < 1.
We decompose (an upper bound on) the cost of B(x) into two pieces. Let V(x) be the number of critical recursive

subtrees visited along a root-to-leaf path (V stands for “vertical”), i.e.,

V(x) =

{
V(daxe) + V(bbxc), x > lgB;

1, 1 ≤ x ≤ lgB.
(2)

Let C(x) be the expected number of critical recursive subtrees straddling block boundaries along the root-to-leaf path
(C stands for “crossing”), i.e.,

C(x) =

{
C(daxe) + C(bbxc), x > lgB;

(2x − 2)/B, 1 ≤ x ≤ lgB.
(3)

3We cannot claim equality, i.e., that B(x) = B(daxe) + B(bbxc), because the leaf node of the top recursive subtree and root node of a bottom
recursive subtree can belong to the same block. Thus, an equal sign in the recurrence might double count one memory transfer.
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Observe that both V(x) and C(x) are monotonically increasing. By linearity of expectation, we obtain

B(x) ≤ V(x) + C(x)

for all x ≥ lgB.
The recurrences for V(x) and C(x) are both of the form

F(x) = F(daxe) + F(bbxc).

As we will see, it is easier to analyze a recurrence of the form

G(x) = G(ax) + G(bx),

where the roundoff error is removed. In the next few pages, we show that F(x) can be approximated by G(x) as x
increases. Afterwards, we show how to calculate G(x).

Roundoff Error Is Small

We next show that as x increases, the difference between F(x) and G(x) can be bounded. To quantify the difference
between F(x) and G(x) — see Theorem 5.4 — we use functions β(x) and δ(x) defined recursively below:

Definition 5.1 Let a < min{1/2, 1− 2/ lgB}. Define the recursive function β(x) and δ(x) as follows:

β(x) =

{
0, x ≤ lgB;

β(ax+ 1) + 1, x > lgB.

δ(x) =

{
1, x ≤ lgB;

δ(ax+ 1)(1 + 2aβ(x)−2/ lgB), x > lgB.

The following lemma gives upper and lower bounds of β(x).

Lemma 5.2 For all x > lgB, the function β(x) satisfies

2

a2x
≥ aβ(x)−2

lgB
≥ 1

2ax
. (4)

Proof: For parameter n, define the nth interval In to be

In =

[
lgB

2an−1
+

1

1− a
,

lgB − 1− a− · · · − an−1

an

]
.

We now prove the following inequality for all x > lgB:

1

2
lgB

(
1

a

)β(x)−1
≤ x− 1

1− a
≤ lgB

(
1

a

)β(x)
. (5)

We establish (5) in two parts.

1. We first show that the inequality holds for all n and all x ∈ In.

2. We then explain that the interval I0 ∪ I1 ∪ I2 ∪ · · · covers the interval [ lgB,∞ ).
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We now prove the first part, showing by induction on n that (5) holds for all n and all x ∈ In.
Base Case: The base case is when

x ∈ I0 =

[
a

2
lgB +

1

1− a
, lgB

]
.

Because a < 1/2,
1

1− a
> 0.

Therefore, because x ∈ I0,
a

2
lgB ≤ x− 1

1− a
≤ lgB. (6)

Because x ≤ lgB and from Definition 5.1, β(x) = 0. Observe that (6) is equivalent to (5) when β(x) = 0. Therefore,
(5) holds in the base case.

Induction step: Assume that (5) holds for the nth interval In. We will show that (5) also holds for the (n + 1)st
interval In+1, i.e., when

x ∈ In+1 =

[
lgB

2an
+

1

1− a
,

lgB − 1− a− · · · − an

an+1

]
,

or equivalently when
lgB

2an
+

1

1− a
≤ x ≤ lgB − 1− a− · · · − an

an+1
. (7)

Multiplying by a and adding 1 to both sides of (7), we see that (7) is equivalent to

lgB

2an−1
+

1

1− a
≤ ax+ 1 ≤ lgB − 1− a− · · · − an−1

an
,

i.e.,
ax+ 1 ∈ In.

Thus, by induction (plugging ax+ 1 for x in (5)), we obtain

1

2
lgB

(
1

a

)β(ax+1)−1

≤ ax+ 1− 1

1− a
≤ lgB

(
1

a

)β(ax+1)

.

Noticing that β(ax+ 1) = β(x)− 1 by Definition 5.1 and

(ax+ 1)− 1

1− a
= a

(
x− 1

1− a

)
,

we establish
1

2
lgB

(
1

a

)β(x)−2
≤ a

(
x− 1

1− a

)
≤ lgB

(
1

a

)β(x)−1
,

which is equivalent to (5) for x ∈ In+1.
We now prove the second part, that

⋃∞
n=0 In covers the interval [ lgB,∞). This claim follows when a < 1 −

2/ lgB, which is guaranteed when B > 16. The claim follows because intervals overlap, i.e., the right endpoint of the
In is between the left and right endpoints of the In+1, that is,

lgB

2an
+

1

1− a
≤ lgB − 1− a− · · · − an−1

an
≤ lgB − 1− a− · · · − an

an+1
.

We have now established that (5) holds for all x > lgB.
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We next show that (5) is equivalent to the lemma statement, i.e., (4). Taking inverses on both sides of (5), we have

2
aβ(x)−1

lgB
≥ 1

x− 1

1− a

≥ aβ(x)

lgB

i.e.,
1

a2x− a2

1− a

≥ aβ(x)−2

lgB
≥ 1

2ax− 2a

1− a

.

Because x > lgB and a < 1− 2/ lgB, we have x > 2/(1− a), i.e., a2x/2 > a2/(1− a). Therefore, the left side of
the above inequality is less than 2/(a2x). The right side is greater than 1/(2ax) because 2a/(1 − a) > 0. Thus, we
prove the following

2

a2x
≥ aβ(x)−2

lgB
≥ 1

2ax

for all x > lgB as claimed. 2

The following lemma gives the properties and the upper bound of δ(x).

Lemma 5.3 The function δ(x) has the following properties:

(1) If β(x) = β(y), then δ(x) = δ(y).

(2) For all x > lgB,
(ax+ 1)δ(ax+ 1) ≤ axδ(x).

(3) For all x > lgB,

δ(x) ≤ exp

[
2

a(1− a) lgB

]
,

which is

1 +O

(
2

a(1− a) lgB

)
= 1 +O

(
1

lgB

)
.

Proof: (1) This claim follows from Definition 5.1.
(2) This claim follows from Definition 5.1 of δ(x) and Lemma 5.2

aβ(x)−2

lgB
≥ 1

2ax
.

(3) Recall that from Definition 5.1, we have

δ(x)

δ(ax+ 1)
= 1 + 2

aβ(x)−2

lgB

for all x > lgB. Furthermore, because 1 + y < ey is true for any y > 0, we bound the function δ(·) as follows

δ(x)

δ(ax+ 1)
≤ exp

[
2
aβ(x)−2

lgB

]
. (8)

For simplification, we define Pi be the polynomial aix + ai−1 + · · · + 1. In the following, we show there exists
some big integer n such that Pn+1 = an+1x+ an + · · ·+ 1 < lgB. First of all, because a < 1, an is arbitrary small
when n goes to infinity. Thus, if n is big enough, then

an+1x <
lgB

2
(9)
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for fixed number x. Second, for big B > 16, we have 1/(1− a) < (lgB)/2. Thus,

an + · · ·+ a+ 1 <
1

1− a
<

lgB

2
(10)

is true for all integer n. Therefore, combining both (9) and (10), we obtain that there exists some big integer n such
that

Pn+1 = an+1x+ an + · · ·+ 1 < lgB,

which means, by Definition 5.1 of δ(x), δ(Pn+1) = δ(an+1x+ an + · · ·+ 1) = 1. Therefore, δ(x) can be expressed
as the multiplication of n+ 1 items, i.e.,

δ(x) =
δ(x)

δ(ax+ 1)

δ(ax+ 1)

δ(a2x+ ax+ 1)
· · · δ(a

nx+ an−1 + · · ·+ 1)

δ(an+1x+ an + · · ·+ 1)

Using the term Pi in the above equation, we get the simplified version

δ(x) =

n∏
i=0

δ(Pi)

δ(Pi+1)
. (11)

To bound δ(x), we give the upper bound for δ(Pi)/δ(Pi+1) first. Notice that Pi+1 = aPi + 1, Replacing x by Pi
in (8), we have the upper bound

δ(Pi)

δ(Pi+1)
≤ exp

[
2
aβ(Pi)−2

lgB

]
.

We claim that β(Pi) = n+ 1− i for all 0 ≤ i ≤ n+ 1. We prove this claim by induction. The base case is for Pn+1.
From Definition 5.1 and Pn+1 < lgB, we have β(Pn+1) = 0. Assume the claim holds for some Pi. We prove the
claim holds for Pi−1. Because Pi = aPi−1+1, we have β(Pi−1) = β(Pi)+1 from Definition 5.1 of β(x). Therefore,
by induction, we obtain β(Pi−1) = β(Pi) + 1 = n + 1 − i + 1 = n + 1 − (i − 1) as claimed. Thus, each of those
items δ(Pi)/δ(Pi+1) has the upper bound

exp

[
2
an−i−1

lgB

]
.

Therefore, we obtain

δ(x) ≤ exp

[
2

n∑
i=0

an−i−1

lgB

]
= exp

[
2

lgB

n∑
i=0

ai−1

]
.

Because
n∑
i=0

ai−1 <

∞∑
i=0

ai−1 =
1

a(1− a)
,

we prove that

δ(x) ≤ exp

[
2

a(1− a) lgB

]
,

as claimed. 2

Theorem 5.4 (Roundoff Error) Let F(x) = F(daxe) + F(bbxc) and G(x) = G(ax) + G(bx) for 0 < a ≤ b < 1

and a+ b = 1. Then for B > 8, all x > 1, and constant c,

F(x) ≤ G(x δ(x)) ≤ c
[

1 +O

(
1

lgB

)]
x+O(1).
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Proof: First recall that F(x) and G(x) are monotonically increasing. Thus, from daxe ≤ ax + 1 and bbxc ≤ bx, we
have

F(x) ≤ F(ax+ 1) + F(bx). (12)

We proveF(x) ≤ G(x δ(x)) inductively. The base case is when 1 < x ≤ lgB, where δ(x) = 1 from Definition 5.1
and F(x) = G(x). Thus, F(x) ≤ G(x δ(x)) is true when 1 < x ≤ lgB.

Assuming F(x) ≤ G(xδ(x)) is true for 1 < x ≤ t, we prove it is true for 1 < x ≤ (t − 1)/b. Noticing that
(t− 1)/b ≤ min{t/b, (t− 1)/a} (because b ≥ a), we have ax+ 1 ≤ t and bx ≤ t for all 1 < x ≤ (t− 1)/b. Thus,
by assumption and (12), we obtain

F(x) ≤ G((ax+ 1)δ(ax+ 1)) + G(bxδ(bx)), 1 < x ≤ (t− 1)/b. (13)

From Condition (2) in Lemma 5.3 and δ(bx) ≤ δ(x), we obtain

G((ax+ 1)δ(ax+ 1)) ≤ G(axδ(x)) and G(bxδ(bx)) ≤ G(bxδ(x)). (14)

Plugging (14) into (13), we derive that

F(x) ≤ G(axδ(x)) + G(bxδ(x)) = G(xδ(x)), 1 < x ≤ (t− 1)/b.

Therefore, after two inductive steps, it is true for

1 < x ≤ t− 1− b
b2

,

and after n inductive steps, it is true for all

1 < x ≤ t− 1− b− · · · − bn−1

bn
=
t− (1− bn)/(1− b)

bn
.

Therefore, as long as t > 1/(1 − b) = 1/a, we have F(x) ≤ G(xδ(x)) for all x > 1. Thus, we need lgB > 1/a,
which holds when B > 8 and a > 1/3.

Furthermore, if G(x) ≤ c x+O(1), then by Condition (3) in Lemma 5.3, we obtain the following:

F(x) ≤ G(xδ(x)) ≤ c x δ(x) +O(1) ≤ c[ 1 +O(1/ lgB) ]x+O(1).

2

Bounding the Path-Length Function

We now determine the constant in the search cost O(logB N), for given values of a and b. To do so, we assume

a =
1

qk
and b =

1

qm
, (15)

for positive real number q > 1 and relatively prime integers m and k. Plugging (15) into a + b = 1, we obtain
1/qk + 1/qm = 1. Define

n = k −m. (16)

Observe that because k > m (since a < b), n is positive. We now have the simplified formula

qk = qn + 1 . (17)
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The rationale behind this assumption is that this additional structure helps us in the analysis while still being dense;
that is, for any given a and b satisfying a + b = 1, we can find a′ and b′ defined as (15) that are arbitrary close to a
and b. Because there exits a real number r such that a = br, we choose rational number k/m, (k,m) = 1 as close as
desired to r. Let q = b−1/m. Then a′ = 1/qk and b′ = 1/qm. We call such an (a, b) pair a twin power pair.

As before we analyze V(x) first. We ignore the roundoff based on Theorem 5.4. Furthermore, we normalize the
range for which V(x) = 1 by introducing a function

H(x) =

{
H(ax) +H(bx) , x > 1;

1 , 0 < x ≤ 1.
(18)

Note that V(x lgB) ≤ H(xδ(x lgB)) by Theorem 5.4.
First we state a primary lemma of the subsection, which we prove later.

Lemma 5.5 Let (1/qk, 1/qm) be a twin power pair, and let n = k −m. Then for any constant ε > 0 and

c1 =

(
n∑
i=1

q−i +

k∑
i=n+1

qk−i

)
/
(
kqk−1 − nqn−1

)
,

when x ≥ O(k/ε) we have
H(x) ≤ (c1 + ε)qkx+O(1).

Corollary 5.6 For any constant ε > 0, the number V(x) of recursive subtrees on a root-to-leaf path is bounded by

(c1 + ε)qk logB N +O(1),

when N ≥ BO(k/ε).

We obtain the main upper-bound result of the paper by showing that c1qk ≈ lg e for some twin power pair.

Theorem 5.7 (Path-Length Cost) For any constant ε > 0, the number of recursive subtrees on a root-to-leaf path is

(lg e+ ε) logB N +O(1) ≈ 1.443 logB N +O(1),

as the split factor a = 1/2− ξ approaches 1/2.

Proof: Choose the twin power pair a = 1/qk and b = 1/qk−1 such that

1

qk
+

1

qk−1
= 1,

which is equivalent to
qk = q + 1.

The approximate solution for the above equation is

q ≈ 1 +
ln 2

k
,

for k →∞. Therefore, we have

a =
1

1 + q
≈ 1

2 + ln 2/k
. (19)

18



From Lemma 5.5, for m = k − 1 (and therefore n = 1), we have

c1 =

(
q−1 +

k∑
i=2

qk−i

)
/
(
kqk−1 − 1

)
=

qk − 1

(q − 1)(kqk − q)
.

Thus, for large k, we obtain

c1q
k =

qk − 1

q − 1

1

k − 1

qk−1

k→∞−−−−→ 1

ln 2
= lg e.

That is, for a given ε/2 > 0, we can choose a big constant kε such that

c1q
k ≤ lg e+ ε/2, (20)

for all k ≥ kε.
From Corollary 5.6, for a given ε/8 > 0 and the above constant kε, we can choose big constant Nε,k such that

V(x) ≤ (c1 + ε/8)qk logB N +O(1), (21)

for all N ≥ Nε,k. Plugging (20) into (21) and noticing that qk = 1/a < 4, we obtain

V(x) ≤ (lg e+ ε) logB N +O(1) ≈ 1.443 logB N +O(1)

as claimed.
Noticing that for big k ≥ kε, we see that the split factor a approaches 1/2 by (19). In particular, as long as

ξ ≤ 1

2
− 1

2 + ln 2/kε
=

ln 2

4kε + ln 4
,

it suffices that the split factor a = 1/2− ξ. 2

To complete the proof of Lemma 5.5, we establish some properties of H(x). Since H(x) is monotonically in-
creasing, we can bound the value H(x)/x for qi ≤ x ≤ qi+1 as follows:

H(qi)

qi+1
≤ H(x)

x
≤ H(qi+1)

qi
. (22)

Let Hmin be the lower bound and Hmax be the upper bound of H(qi)/qi, when i is larger than a given integer
j. Noticing that the left part in Inequality (22) is H(qi)/qi+1 ≥ Hmin/q and the right part in Inequality (22) is
H(qi+1)/qi ≤ qHmax, we obtain

Hmin

q
≤ H(x)

x
≤ qHmax,

when x is bigger than qj .
We give the recurrence of H(·). From (18), we have that for i ≥ 0,

H(qi+1) = H(aqi+1) +H(bqi+1). (23)

Plugging (15) into (23) and since n = k −m, we obtain

H(qi+1) = H(qi−k+1) +H(qi+n−k+1). (24)

For the sake of notational simplicity, we denote αi = H(qi−k+1). Therefore, (24) is equivalent to

αi+k = αi+n + αi . (25)

We define the characteristic polynomial function of Recurrence (25) as w(x) = xk − xn− 1. Let r1, r2, . . . , rk be the
(possibly complex) roots of w(x). We claim below that these roots are all unique.

The following four lemmas supply basic mathematical knowledge behind the proof of Lemma 5.5.
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Lemma 5.8 The k roots of w(x) = xk − xn − 1 are unique, when k and n are relatively prime integers such that
1 ≤ n < k.

Proof: We prove this lemma by contradiction. If a root r of w(x) is not unique, then (x− r)2 is a factor of w(x), and
x− r is a factor of w′(x) = kxn−1(xk−n − n/k). Thus, r is either 0 or a root of xk−n − n/k. But 0 is not a root of
w(x). Therefore,

rk−n = n/k, (26)

which means |r| < 1 (because n < k).
On the other hand, because r is a root of w(x), w(r) = rn(rk−n − 1)− 1 = 0. Plugging (26) into w(r) = 0, we

obtain rn = k/(n− k), which means |r| > 1 (because |k| > |k− n|). This is the contradiction. Therefore, every root
of w(x) is unique. 2

Because w′(x) = kxk−1 − nxn−1 > 0 when x > 1 and q is a root of w(x) greater than 1 (see Equation (17)),
there is one unique real root q > 1 of w(x). Without loss of generality, let r1 = q.

We now show that if the k roots of the characteristic polynomial function of a series are unique, then the series in
question is a linear combination of power series {rij} of the roots.

Lemma 5.9 Consider a series {αi} satisfying αk+s =
∑k−1
i=0 diαi+s for complex numbers di and any integer s, and

let r1, r2, . . . , rk be the k unique roots of the characteristic function g(x) = xk−
∑k−1
i=0 dix

i for the series {αi}. Then
there exists complex numbers c1, c2, . . . , ck such that for all i,

αi =

k∑
j=1

cjr
i
j . (27)

Proof: First we show that we can find c1, c2, . . . , ck such that for the base values of αi, αi =
∑k
j=1 cjr

i
j for all

i = 0, . . . , k − 1. This can be derived by observing that the determinant of the Vandermonde matrix

V =


1 r1 · · · rk−11

1 r2 · · · rk−12

· · · · · · · · · · · ·
1 rk · · · rk−1k


is nonzero, and that c1, c2, . . . , ck are the solution of the system of linear equations

(α0, α1, . . . , αk−1) = (c1, c2, . . . , ck)V.

Now we show that for all i ≥ 0,

αi =

k∑
j=1

cjr
i
j .

Define

βi =

k∑
j=1

cjr
i
j .

We show that {αi} and {βi} are the same recursive series. We know that βi = αi when 0 ≤ i ≤ k − 1. Because
r1, r2, . . . , rk are the k unique roots of the characteristic function g(x), we know that the power series {rij} satisfies the
same recursive formula as {αi}. Thus {βi} satisfies the same recursive formula (for all s ≥ 0, bk+s =

∑k−1
i=0 dibi+s)

by linearity. Now observe that the k base values together with the inductive formula uniquely determine the series and
hence αi = βi for all i ≥ 0. 2
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Hence we can solve Recurrence (25) by finding ci that satisfy αi =
∑k
j=1 cjr

i
j for i = 0, . . . , k − 1. The base

cases of {αi}k−1i=0 are determined by the original definition of αi = H(qi−k+1). Because 0 < qi−k+1 < 1 for
i = 0, . . . , k − 1, we obtain H(qi−k+1) = αi = 1.

Lemma 5.10 The dominant root (i.e., the root with the largest absolute value) for w(x) = xk − xn − 1 is r1 = q. All
other roots r2,. . .rk have absolute value less than q.

Proof: We first show that all other roots have magnitude less than q. Suppose that the magnitude of a root rj (other
than r1) is |rj | = d. We show that d ≤ q. Since rj is a root we have

1 = |(rk−nj − 1) rnj | = |rk−nj − 1||rnj | ≥ (|rk−nj | − 1) dn = dk − dn, (28)

which means w(d) = dk − dn − 1 ≤ 0. Because w(q) = 0 and w′(x) = kxk−1 − nxn−1 > 0 when x ≥ q > 1, we
obtain w(x) > 0 for all real x > q. Therefore, d ≤ q, i.e., no root has magnitude strictly greater than q.

Now we prove by contradiction that d 6= q. Assume that d = q. Then, (28) becomes an equation, since 1 = dk−dn
by (17). Thus,

|rmj − 1| = |rmj | − 1.

From the triangle inequality it follows that rmj is a real number. Therefore, we have rmj = qm. Thus, for some integer
1 ≤ s ≤ m− 1, we have

rj = qe2πs
√
−1/m.

However, because m and n are relatively prime,

rnj = qne2πsn
√
−1/m 6= qn.

Therefore, rnj (rmj − 1) 6= qn(qm − 1) = 1, i.e., w(rj) 6= 0. This is contradiction because rj is a root of w(x). 2

In the following lemma, we calculate the coefficient c1 for the dominant root r1 = q using the inverse of a
Vandermonde matrix.

Lemma 5.11 The coefficient c1 in Lemma 5.9 is(
n∑
i=1

q−i +

k∑
i=n+1

qk−i

)
/(kqk−1 − nqn−1).

Proof: We first give more notation. Let t and s be positive integers such that 1 ≤ t, s ≤ k. We define St,s as the sum
of the products of t different roots not including rs, that is,

St,s =
∑

i1<i2<...<it∈{1,2,...,k}−{s}

ri1ri2 . . . rit . (29)

We define
S0,1 = 1 , (30)

and
Sk,1 = 0 . (31)

We first give and solve the recurrence for St,1 . We denote the coefficient of xt−1 in w(x) = xk − xn − 1 =∏k
i=1(x− ri) as [[xt−1]]w(x). Thus, we have the well known equation:∑

i1<i2<...<it∈{1,2,...,k}

ri1ri2 . . . rit = (−1)t[[xk−t]]w(x). (32)
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Each product of roots in the summation in (32) either includes r1 (= q) or it does not, i.e.,∑
i1<i2<...<it∈{1,2,...,k}

ri1ri2 . . . rit = St,1 + qSt−1,1. (33)

Thus, from (32) and (33) we obtain the recurrence

St,1 + qSt−1,1 = (−1)t[[xk−t]]w(x). (34)

Because coefficients in w(x) are 0 except for [[xk]]w(x) = 1 and [[xn]]w(x) = [[x0]]w(x) = −1, we divide Recur-
rence (34) into two parts and solve each separately. Recall from (16) that m = k − n. The first part is when
t ∈ [1,m− 1] and the second part is when t ∈ [m, k− 1]. (Thus, when t = m, we need to confirm that the solution in
the first part matches that in the second part.)

We solve the first part when t ∈ [1,m− 1]. The base case is t = 1, that is,

S1,1 + qS0,1 = [[xk−1]]w(x) = 0 . (35)

Observe that by (29) and (33), we have∑
1≤i≤k

ri = S1,1 + qS0,1 and
∑

2≤i≤k

ri = S1,1. (36)

Thus, from (36), we confirm that S0,1 = 1, and therefore from (35), we obtain

S1,1 = −q. (37)

Because from (34),
St,1 + qSt−1,1 = 0 (1 ≤ t ≤ m− 1) , (38)

we also obtain, from (37) and (38),
St,1 = (−q)t. (39)

We now solve the second part when t ∈ [m, k − 1]. We start from k, that is,

Sk,1 + qSk−1,1 = (−1)k[[x0]]w(x) = (−1)k−1 . (40)

Observe that by (29) and (33), we have

r1r2 . . . rk = Sk,1 + qSk−1,1 and r2r3 . . . rk = Sk−1,1. (41)

From (41), we confirm that Sk,1 = 0, and therefore from (40), we obtain Sk−1,1 = (−1)k−1/q. Because by (34),

St+1,1 + qSt,1 = 0 (m ≤ t ≤ k − 1),

we obtain
St,1 = (−1)tqt−k. (42)

We now examine the special case where t = m and [[xn]]w(x) = −1, that is,

Sm,1 + qSm−1,1 = (−1)m[[xn]]w(x)

= (−1)m+1 . (43)
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We solved for all St,1 without using (43). We now confirm that our solution is consistent with (43). Notice that we
get the solution in the first part, Sm−1,1 = (−q)m−1, and the solution in the second part, Sm,1 = (−1)mq−n. In the
following, we verify the solutions of Sm−1,1 and Sm,1 satisfy (43). Plugging

Sm−1,1 = (−q)m−1 and Sm,1 = (−1)mq−n

into (43), we obtain

Sm,1 + qSm−1,1 = (−1)mq−n + q(−q)m−1

= (−1)m
1− qn+m

qn

Because q is a root of w(x), i.e.,
qk = qm+n = qn + 1 ,

we confirm (43).
In summary, for all 1 ≤ t ≤ k − 1, we have

St,1 =

{
(−q)t, if 1 ≤ t ≤ m− 1;

(−1)tqt−k, if m ≤ t ≤ k − 1.
(44)

We now give even more notation. Define

g(x) =

k∏
i=2

(x− ri). (45)

We have g(r1) = g(q) = w′(q), because

w′(x) =
d

dx

[
k∏
i=1

(x− ri)

]
=

k∑
j=1

k∏
i=1,i6=j

(x− ri)

is a sum of k terms, but k − 1 of these are 0 when x = r1 = q. Thus, we obtain

(−1)k−1g(r1) = (−1)k−1(krk−11 − nrn−11 ) =

k∏
i=2

(ri − r1). (46)

Now we are ready to calculate the value of c1. To do so, we define the Vandermonde matrix V :

V =


1 r1 · · · rk−11

1 r2 · · · rk−12
...

...
. . .

...
1 rk · · · rk−1k

 .

Recall that (27) can be expressed as

(c1, c2, . . . , ck)V = (α0, α1, . . . , αk−1) .

Recall also that
αi = H(qi−k+1) = 1 (0 ≤ i ≤ k − 1)
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(because qi−k+1 < 1). Thus,
(c1, . . . , ck) = (1, 1, . . . , 1)V −1, (47)

i.e., c1 can be calculated from the inverse matrix V −1.
In order to calculate V −1, we first present the well known result on how to calculate the determinant |V | of

Vandermonde matrix V .

|V | =

∣∣∣∣∣∣∣∣∣∣
1 r1 · · · rk−11

1 r2 · · · rk−12
...

...
. . .

...
1 rk · · · rk−1k

∣∣∣∣∣∣∣∣∣∣
=

∏
1≤s<t≤k

(rt − rs) . (48)

We now give the inverse of V . Let Ai,j be the submatrix of the transpose of the Vandermonde matrix V with the
ith column and jth row removed, that is,

Ai,j =



1 1 · · · 1 1 · · · 1

r1 r2 · · · ri−1 ri+1 · · · rk
...

...
. . .

...
...

. . .
...

rj−11 rj−12 · · · rj−1i−1 rj−1i+1 · · · rj−1k

rj+1
1 rj+1

2 · · · rj+1
i−1 rj+1

i+1 · · · rj+1
k

...
...

. . .
...

...
. . .

...
rk−11 rk−12 · · · rk−1i−1 rk−1i+1 · · · rk−1k


.

Thus, V −1 can be represented by the determinants of Ai,j and V , i.e.,

V −1 =
1

|V |


(−1)1+1|A1,1| · · · (−1)k+1|Ak,1|
(−1)1+2|A1,2| · · · (−1)k+2|Ak,2|

...
. . .

...
(−1)1+k|A1,k| · · · (−1)k+k|Ak,k|


=

 ∏
1≤s<t≤k

1

rt − rs

{(−1)i+j |Ai,j |
}
i,j
.

Thus, from (47), c1 is the sum of the first column of inverse matrix V −1, that is,

c1 =

 ∏
1≤s<t≤k

1

rt − rs

 k∑
j=1

(−1)1+j |A1,j |

 . (49)

To calculate c1, we first find |A1,j |, which is given by the following claim:

Claim 5.12
|A1,j | = Sk−j,1

∏
2≤s<t≤k

(rt − rs).
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Proof: When j = 1,

|A1,1| =

∣∣∣∣∣∣∣
r2 · · · rk
...

. . .
...

rk−12 · · · rk−1k

∣∣∣∣∣∣∣ .
By moving the common factors r2, . . . , rk out, we obtain

|A1,1| = r2 · · · rk

∣∣∣∣∣∣∣
1 · · · 1
...

. . .
...

rk−22 · · · rk−2k

∣∣∣∣∣∣∣ ,
where the matrix is the transpose of Vandermonde matrix of size k − 1. Thus, from (29) and (48), we obtain

|A1,1| = r2 · · · rk
∏

2≤s<t≤k

(rt − rs) = Sk−1,1
∏

2≤s<t≤k

(rt − rs).

The case when j ≥ 2 is more complicated than that j = 1. In the following, we only consider j = 2 because the
other cases are analogous.

To solve |A1,2|, we first perform matrix operations so that the first column becomes


1

0
...
0

. Recall that

|A1,2| =

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

r22 r23 · · · r2k
...

...
. . .

...
rk−12 rk−13 · · · rk−1k

∣∣∣∣∣∣∣∣∣∣
.

Beginning from the second row, we multiply each row by −r2 and add it to the next row.

|A1,2| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

r22 r23 r24 · · · r2k
0 r23(r3 − r2) r24(r4 − r2) · · · r2k(rk − r2)
...

...
...

. . .
...

0 rk−23 (r3 − r2) rk−24 (r4 − r2) · · · rk−2k (rk − r2)

∣∣∣∣∣∣∣∣∣∣∣∣
.

For the second row, we multiply the first row by −r22 and add it to the second row.

|A1,2| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 r23 − r22 r24 − r22 · · · r2k − r22
0 r23(r3 − r2) r24(r4 − r2) · · · r2k(rk − r2)
...

...
...

. . .
...

0 rk−23 (r3 − r2) rk−24 (r4 − r2) · · · rk−2k (rk − r2)

∣∣∣∣∣∣∣∣∣∣∣∣
.

In this way, we reduce the dimension of |A1,2| to k − 2, i.e.,

|A1,2| =

∣∣∣∣∣∣∣∣∣∣
r23 − r22 r24 − r22 · · · r2k − r22

r23(r3 − r2) r24(r4 − r2) · · · r2k(rk − r2)
...

...
. . .

...
rk−23 (r3 − r2) rk−24 (r4 − r2) · · · rk−2k (rk − r2)

∣∣∣∣∣∣∣∣∣∣
.
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By moving out the common factors r3 − r2, . . . , rk − r2 in each column, we obtain:

|A1,2| =
k∏
i=3

(ri − r2)

∣∣∣∣∣∣∣∣∣∣
r3 + r2 r4 + r2 · · · rk + r2
r23 r24 · · · r2k
...

...
. . .

...
rk−23 rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
.

Now by splitting the first row, we obtain:

|A1,2| =
k∏
i=3

(ri − r2)

∣∣∣∣∣∣∣∣∣∣
r3 r4 · · · rk
r23 r24 · · · r2k
...

...
. . .

...
rk−23 rk−23 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
+

k∏
i=3

(ri − r2)

∣∣∣∣∣∣∣∣∣∣
r2 r2 · · · r2
r23 r24 · · · r2k
...

...
. . .

...
rk−23 rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
. (50)

After moving out the common factors r3, . . . , rk, the first term in (50) is a Vandermonde matrix of size k − 2. For the
second term in (50), we move out the common factor r2 in the top row. Thus, using (48) we have

|A1,2| =

k∏
i=3

(ri − r2)r3 · · · rk
∏

3≤s<t≤k

(rt − rs) +

k∏
i=3

(ri − r2)r2

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

r23 r24 · · · r2k
...

...
. . .

...
rk−23 rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
= r3 · · · rk

∏
2≤s<t≤k

(rt − rs) + r2

k∏
i=3

(ri − r2)

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

r23 r24 · · · r2k
...

...
. . .

...
rk−23 rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
. (51)

Notice that the determinant in (51) is a form ofA1,2 of size k−2. By the same method, we compute the determinant
in (51) as∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

r23 r24 · · · r2k
...

...
. . .

...
rk−23 rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
= r4 · · · rk

∏
3≤s<t≤k

(rt − rs) + r3

k∏
i=4

(ri − r3)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1

r24 · · · r2k
...

. . .
...

rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
. (52)

Thus, by plugging (52) into (51) we obtain

|A1,2| = (r3 · · · rk + r2r4 · · · rk)
∏

2≤s<t≤k

(rt − rs) + r2r3

k∏
i=3

(ri − r2)

k∏
i=4

(ri − r3)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1

r24 · · · r2k
...

. . .
...

rk−24 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
.

With one more recursion, we obtain

|A1,2| = (r3 · · · rk + r2r4 · · · rk + r2r3r5 · · · rk)
∏

2≤s<t≤k

(rt − rs)

+ r2r3r4

k∏
i=3

(ri − r2)

k∏
i=4

(ri − r3)

k∏
i=5

(ri − r4)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1

r25 · · · r2k
...

. . .
...

rk−25 · · · rk−2k

∣∣∣∣∣∣∣∣∣∣
.
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Repeating recursive steps and recalling that Sk−2,1 = r3r4 · · · rk+r2r4 · · · rk+ · · ·+r2r3 · · · rk−1 from the definition
of St,s in (29), we obtain

|A1,2| = Sk−2,1
∏

2≤s<t≤k

(rt − rs) .

We thus establish the claim. 2

By combining Claim 5.12 and (49) we obtain

c1 =

 ∏
1≤i<j≤k

(rj − ri)−1
 k∑

i=1

(−1)i+1Sk−i,1
∏

2≤s<t≤k

(rt − rs)

 . (53)

Multiplying through and separating two cases of Si,1 in (44), we obtain

c1 =
∏

2≤j≤k

(rj − r1)−1

(
n∑
i=1

+

k∑
i=n+1

)
(−1)i+1Sk−i,1. (54)

Plugging (44) into (54), we have

c1 =
∏

2≤j≤k

(rj − r1)−1

[
n∑
i=1

(−1)k+1q−i +

k∑
i=n+1

(−1)k+1qk−i

]
. (55)

Plugging (46) into (55), we solve for c1:

c1 =

(
n∑
i=1

q−i +

k∑
i=n+1

qk−i

)
/(kqk−1 − nqn−1) , (56)

which concludes the proof of Lemma 5.11. 2

Thus, the value of c1 is as claimed in the hypothesis of Lemma 5.5. After establishing the properties of H(x), we
can now give a proof of Lemma 5.5.
Proof of Lemma 5.5: To complete the proof we only need to show that

H(x) ≤ (c1 + ε)qkx+O(1),

when x ≥ O(k/ε).
Observe that H(x) is monotonically increasing and for each x > 1, we have x ≤ qdlogq xe ≤ qx. Thus, we bound

H(x) as follows:
H(x) ≤ H(qdlogq xe) = αdlogq xe+k−1, (57)

where the second equality is the definition of αi. We denote dlogq xe + k − 1 as i to simplify notation in the rest of
the proof. Recall that αi =

∑k
j=1 cjr

i
j and that r1 = q is the dominant root. Thus, we have

αi
qi

= c1 +

k∑
j=2

cj

(
rj
q

)i
. (58)

Because r1 is the dominant root and the other roots have absolute value less than 1, we have

k∑
j=2

cj

(
rj
q

)i
≤ O

(
k

qi

)
.
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Because i = dlogq xe + k − 1, we have qi > x. Thus, for any ε > 0, we can choose x ≥ O(k/ε) such that the last
term in (58) is arbitrary small, that is,

k∑
j=2

cj

(
rj
q

)i
≤ O

(
k

x

)
≤ ε.

Therefore, we obtain αi = (c1 + ε)qi. Combining with (57), we have

H(x) ≤ (c1 + ε)qdlogq xe+k−1. (59)

Finally, plugging qdlogq xe ≤ qx into (59), we obtain, for x ≥ O(k/ε),

H(x) ≤ (c1 + ε)qkx

as claimed. 2

Bounding the Block-Boundary Crossing Function

We now give the memory-transfer cost from block-boundary crossings, and we show that it is dominated by the the
memory-transfer cost from the path length. We consider the case when a ≥ 1/4, which includes the best layouts.
Using similar reasoning for computing the path-length cost, we obtain the following theorem:

Theorem 5.13 (Block-Boundary Crossing Cost) The expected number of block-boundary-induced memory trans-
fers C(x) on a search is at most O(lg lgB/ lgB) logB x when 1/4 ≤ a < 1/2.

Proof: The idea to bound C(x) is the same as that in bounding the path-length cost. That is, we solve the same
Recurrence (25) except for the base case αi (0 ≤ i ≤ k − 1), which from (3) is

2q
i−k+1 lgB − 2

B

instead of 1.
Thus, we obtain the new value of coefficient c′1 which is similar to (53):

c′1 =

 ∏
1≤i<j≤k

1

rj − ri

 k∑
i=1

2q
i−k lgB − 2

B
(−1)i+1Sk−i,1

∏
2≤s<t≤k

(rs − rt)

 .

Multiplying through and separating the numerator, we have

c′1 =
∏

2≤j≤k

1

rj − r1

k∑
i=1

2q
i−k lgB

B
(−1)i+1Sk−i,1 −

2

B

∏
2≤j≤k

1

rj − r1

k∑
i=1

(−1)i+1Sk−i,1 . (60)

Because the second term in (60) is 2c1/B = O(1/B) by (53), we obtain

c′1 =

 ∏
2≤j≤k

1

rj − r1

( k∑
i=1

2q
i−k lgB

B
(−1)i+1Sk−i,1

)
−O

(
1

B

)
. (61)

In order to bound c′1, we count the number of terms in the summation in (61), i.e., the number of values of i, such
that

2q
i−k lgB

B
>

1

lgB
.
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That is, we determine the smallest value of i, such that

qi−k >
lg(B/ lgB)

lgB
= 1− lg lgB

lgB
.

Thus, we solve that

i− k > ln

(
1− lg lgB

lgB

)
lg e

lg q
. (62)

We now estimate the previous expression. Recall that ln(1− x) > −x for 0 < x < 1. Thus, from (62), we have

i− k > − lg e lg lgB

lg q lgB
.

If we denote

ν = k − lg e lg lgB

lg q lgB
, (63)

then we have

2q
i−k lgB

B


≤ 1

lgB
, when 1 ≤ i ≤ ν ;

>
1

lgB
, when ν < i ≤ k .

Separating the summation in (61) at ν, we obtain

c′1 ≤
∏

2≤j≤k

1

rj − r1

ν∑
i=1

1

lgB
(−1)i+1Sk−i,1 +

∏
2≤j≤k

1

rj − r1

k∑
i=ν

2q
i−k lgB

B
(−1)i+1Sk−i,1 −O

(
1

B

)
. (64)

Again, from (53), the first term in (64) is less than c1/ lgB = O(1/ lgB). Thus, we have

c′1 ≤ O

(
1

lgB

)
+

∏
2≤j≤k

1

rj − r1

k∑
i=ν

2q
i−k lgB

B
(−1)i+1Sk−i,1. (65)

Observe that 2q
i−k lgB/B ≤ 1 for 1 ≤ i ≤ k. We separate into the two cases of Si,1 in (65) as we do earlier in (54),

to obtain

c′1 ≤ O
(

1

lgB

)
+ (−1)k+1

∏
2≤j≤k

1

rj − r1

 ∑
ν<i≤n

q−i +
∑

i≥n+1, i>ν

qk−i

 .

Because both q−i and qk−i are less than qk, we obtain

c′1 ≤ O
(

1

lgB

)
+ (−1)k+1

∏
2≤j≤k

1

rj − r1

∑
ν<i≤k

qk.

Plugging (46) and (63) into the above inequality, we have

c′1 ≤ O
(

1

lgB

)
+

qk

kqk−1 − nqn−1
lg e lg lgB

lg q lgB
. (66)

We now prove the second term in (66) is O(lg lgB/ lgB). Recalling that qk = 1/a from (15), we have

lg q = − lg a

k
(67)
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and
qn = qk − 1 =

1

a
− 1 . (68)

Taking logs in (68), we obtain

n =
lg(1/a− 1)

lg q
. (69)

Plugging (67) into (69), we obtain

n = k
lg(1/a− 1)

lg(1/a)
. (70)

Notice that the function f(x) = lg(x − 1)/ lg x is increasing for x > 1 because f ′(x) > 0 for x > 1. Therefore, by
the assumption a ≥ 1/4 and (70), we have

n ≤ k lg 3

lg 4
<

4k

5
. (71)

Thus, observing that qk−1 > qn−1 > 1 and the above (71), we obtain

kqk−1 − nqn−1 > kqk−1 − 4k

5
qk−1 > k/5. (72)

Combining (15), (67), and (72), we have

qk

kqk−1 − nqn−1
lg e

lg q
≤ −1

a

5

k

k lg e

lg a
=
−5 lg e

a lg a
≤ 10 lg e.

Finally, from (66) we obtain

c′1 ≤ O
(

1

lgB

)
+O

(
lg lgB

lgB

)
= O

(
lg lgB

lgB

)
,

as claimed. 2

Now we present the main Theorem, which we obtain by combining Theorem 5.7 and 5.13.

Theorem 5.14 (Generalized vEB Layout) The expected cost of a search in the generalized vEB layout is at most
[ lg e+ o(1) ] logB N +O(lg lgB/ lgB) logB N +O(1).

6 Multi-Layer van Emde Boas Layout

In this section we propose a somewhat more complex layout than in the previous part, but whose analysis is, in
comparison, less cumbersome. First note that as observed in the proof of Theorem 3.1 if the size of the tree is a
particular unfortunate multiple of the block size this can lead to a factor of two larger number of block transfers during
a search as compared to the non-oblivious layout. Observe that as the block size B is unknown we cannot avoid this
problem so long as we insist in decomposing a tree into equal-size fixed subtrees. Here we propose a recursive layout
in which we select a large number of initial sizes for the second level of the decomposition.

Theorem 6.1 For any constant ε > 0, there exists a cache-oblivious layout of a complete binary search tree with N
leaves, such that any root-to-leaf traversal requires expected O(1/ε) + (lg e + ε + O(lg lgB/ lgB)) logB N I/Os,
where the expectation is taken over the starting position in memory of the layout.
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Figure 1: A multi-layer van Emde Boas tree decomposition. To the left is shown a tree decomposed into layers, and
within each layer, the second recursive decomposition is indicated. Thinnest lines indicate tree levels; medium thin
lines demarcate the first recursion layers; dashed lines indicate the height of the second recursive decomposition. To
the right, the decomposition within a single layer i is shown for four additional recursive steps. The black circles on
the left indicate tree levels, and the rest of the vertical lines each indicates a recursive level in the decomposition, with
the recursive level increasing from left to right. The remainder part is shown in grey in each recursive level.

Proof: Since the tree is a complete binary tree, N is a power of two, and the height is lgN . We group the nodes in
the tree by depth into H = 1 + lgN levels numbered from zero to H − 1, with the root being at depth zero. The
van Emde Boas layout splits the tree by depth at its mid-height level then recursively lays out of each the subtrees,
which are again themselves split by depth into pieces of equal height. In contrast, in our layout we split the tree into
L different layers of equal size and then within each layer aim for different heights of subtrees created during the
recursion. For the second level in the decomposition, we split the layer in two, with the height of the top tree ranging
across the layers from the entire layer down to half the layer. The further recursion within each layer is then defined by
splitting into halves all subtrees at the current level of recursion, except the lowest subtrees. The latter, which we term
the remainder subtrees, are given special consideration as described below. As an example, see Figure 1, in which the
left part shows a tree decomposed into four equal sized layers, with each of these layers split into two parts at uneven
depths. The right part shows the further recursive decomposition within a single layer.

We now give the full details. To simplify rounding issues in expressions involving levels and heights, we formulate
our splitting strategy using intervals [x, y) ⊆ [0, H), where x, y ∈ R. We define the levels spanned by an interval
[x, y) as the levels numbered bxc . . . by − 1c, and use this definition to transfer the interval-based decomposition of
[0, H) into a decomposition by depth of the H levels of the tree.

Let δ > 0 be a constant given by δ = lg(1 + ε/ lg e). We partition the H levels into L = d1/δe layers of
consecutive levels of the tree. Layer i ∈ {0, 1, ..., L− 1} starts at level biKc where K = H/L. In other words, layer i
is the levels spanned by the interval [iK, (i+ 1)K).

The entire tree is laid out in memory starting at a random memory position. First the nodes in layer zero are laid
out, followed by the nodes in layer one, and so on. The nodes in a layer i are laid out by independently laying out each
subtree of the layer rooted at level biKc of the tree.

Each such subtree is laid out in a recursive way similar to the standard van Emde Boas layout, except that the goal
is to make the heights of the subtrees of the jth recursion in layer i be

hi,j =
K

2j+i/L
,

for j = 0, 1, 2, . . .. For fixed i (i.e., within a layer), hi,j decreases by a factor of two at each recursion. For fixed j
(i.e., for a given depth of recursion), hi,j decreases by a factor of 21/L when advancing to the next layer i + 1. Note
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that this happens in a cyclic fashion if one from the last layer i = L − 1 continues to the first layer i = 0, but at the
next recursive depth: hL−1,j/21/L = h0,j+1. More precisely, the heights of the subtrees are defined by intervals (via
the levels spanned by them), and our goal is to find intervals of length hi,j .

If we for a given layer i and recursive depth j use the lowest (in the root-to-leaf sense in the global tree we are laying
out) interval as a remainder interval, we can achieve a length of exactly hi,j for all the other intervals. Specifically,
for any layer i, consider the first recursion depth j = 0. The interval [iK, (i + 1)K) of the layer, of length K, is
divided into a first interval of length hi,0, and a second interval of length K − hi,0. Note that K/2 < hi,0 ≤ K for
all i. The latter interval is the remainder interval at the first recursion depth. At each further recursive step within the
layer, all intervals except the remainder interval are divided into two halves of equal length. The remainder interval, of
lengthX , is divided ifX > hi,j , in which case it is divided into two intervals of lengths hi,j andX−hi,j , respectively.
The latter of these becomes the remainder interval at the next recursive depth. Note that X/2 < hi,j < X , since hi,j
decreases by a factor of two for each new recursive depth. If X ≤ hi,j , the remainder interval is not divided, and
continues as the remainder interval at the next recursive depth.

The recursion stops at intervals spanning less than two levels. If the remainder interval for this reason is not
recursed on, there will be no remainder interval on larger recursive depths within the layer. It is easy to see that when
halving an interval spanning at least two levels, each of the halves spans at least one level. This implies that leaf
intervals of the recursion span exactly one level (except for the single leaf being the deepest remainder interval, which
may happen to span zero levels).

We now consider a root-to-leaf traversal in a tree with a layout as described above. Let H0 = lgB − lg lgB. We
first count the number of subtrees traversed on the path, for subtrees of the recursive layout defined by intervals [x, y),
where y − x ≤ H0. For each layer we find the smallest j such that hi,j ≤ H0. By the cyclic progression of hi,j , the
L identified values hi,j will form a set

K0

20/L
,
K0

21/L
,
K0

22/L
, . . . ,

K0

2(L−1)/L
,

where H0/2
1/L < K0 ≤ H0. Each hi,j satisfies 1

2H0 < hi,j ≤ H0. Note that the smallest value hi,j in the above list
is not necessarily from layer zero.

The number of subtrees on a path with an interval spanning at most H0 levels is:

L−1∑
k=0

⌈
K

K0/2k/L

⌉
≤ L+

K

K0

L−1∑
i=0

2k/L ≤ L+
K

K0
· 1

21/L − 1
.

Observing that 2x − 1 ≥ x ln 2, and substituting above, we get

L+
K

K0
· 1

21/L − 1
≤ L+

K

K0 · (1/L) ln 2
≤ L+

K

K0
· L · lg e ≤ L+

H/L

H0/21/L
· L · lg e = L+

H

H0
21/L · lg e .

Since a recursively laid out subtree with s ≤ B nodes consists of a consecutive sequence of s memory cells, the
probability that the subtree is split over two blocks is (s− 1)/B, when taken over all possible initial placements of the
tree in memory. An interval [x, y) where y − x ≤ H0 can at most span dH0e levels, i.e. the corresponding subtrees
contain at most 2dH0e − 1 nodes. Accessing such a tree can cause two I/Os with probability at most (2dH0e − 2)/B.
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We can now bound the total expected number of I/Os by(
L+

H

H0
· 21/L · lg e

)
·
(

1 +
2dH0e − 2

B

)
=

(
d1/δe+

1 + lgN

lgB − lg lgB
· 21/d1/δe · lg e

)
·
(

1 +
2dlgB−lg lgBe − 2

B

)
≤

(
d1/δe+

1 + lgN

lgB − lg lgB
· 2δ · lg e

)
·
(

1 +
2

lgB

)
= O(1/ε) + logB N ·

1

1− lg lgB/ lgB
· 2δ · lg e ·

(
1 +

2

lgB

)
(73)

≤ O(1/ε) + logB N · (1 + 2 lg lgB/ lgB) · 2δ · lg e ·
(

1 +
2

lgB

)
(74)

= O(1/ε) + logB N · (2δ · lg e+O(lg lgB/ lgB))

= O(1/ε) + logB N · (lg e+ ε+O(lg lgB/ lgB)) ,

where (73) for the first term used lg(1 + x) = Θ(x) for x→ 0, and (74) for the second term used 1/(1− x) ≤ 1 + 2x

for x ∈ [0, 1/2] and w.l.o.g. assumed 2 lg lgB ≤ lgB. 2

7 Conclusion

This paper gives upper and lower bounds on the cost of cache-oblivious searching; our bounds are tight to within
low-order terms. Specifically, the paper shows a lower bound of lg e logB N memory transfers and an upper bound of
[lg e + ε + O(lg lgB/ lgB)] logB N + O(1) expected memory transfers in the cache-oblivious model. In contrast,
searching uses only logB N + 1 memory transfers in the DAM model. Interestingly, this lg e multiplicative slowdown
in the cache-oblivious model compared to the DAM model comes about because the DAM model has only two levels
of memory rather then because the memory parameters are unknown in the cache-oblivious model.
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