
The Cost of Ca
he-Oblivious Sear
hingMi
hael A. Bender�y Gerth St�lting Brodalzx Rolf Fagerbergz Dongdong Ge�Simai He� Haodong Hu� John Ia
ono{ Alejandro L�opez-OrtizkAbstra
tTight bounds on the
ost of
a
he-oblivious sear
hingare proved. It is shown that no
a
he-oblivious sear
hstru
ture
an guarantee that a sear
h performs fewerthan lg e logB N blo
k transfers between any two lev-els of the memory hierar
hy. This lower bound holdseven if all of the blo
k sizes are limited to be powersof 2. A modi�ed version of the van Emde Boas layoutis proposed, whose expe
ted blo
k transfers between anytwo levels of the memory hierar
hy arbitrarily
lose to[lg e+O(lg lgB= lgB)℄ logB N +O(1). This fa
tor ap-proa
hes lg e � 1:443 as B in
reases. The expe
tationis taken over the random pla
ement of the �rst elementof the stru
ture in memory.As sear
hing in the Disk A

ess Model (DAM)
anbe performed in logB N + 1 blo
k transfers, this resultshows a separation between the 2-level DAM and
a
he-oblivious memory-hierar
hy models. By extending theDAM model to k levels, multilevel memory hierar
hies
an be modelled. It is shown that as k grows, the sear
h
osts of the optimal k-level DAM sear
h stru
ture andof the optimal
a
he-oblivious sear
h stru
ture rapidly
onverge. This demonstrates that for a multilevel mem-ory hierar
hy, a simple
a
he-oblivious stru
ture almostrepli
ates the performan
e of an optimal parameterizedk-level DAM stru
ture.�Department of Computer S
ien
e, SUNY Stony Brook,Stony Brook, NY 11794, USA. fbender,dge,simaihe,hhaodongg�
s.sunysb.edu.yPartially supported by Sandia National Laboratories andthe National S
ien
e Foundation grants EIA-0112849 and CCR-0208670.zBRICS, Department of Computer S
ien
e, Universityof Aarhus, Ny Munkegade, 8000 �Arhus C, Denmark.fgerth,rolfg�bri
s.dk. Partially supported by the Future andEmerging Te
hnologies programme of the EU under
ontra
tnumber IST-1999-14186 (ALCOM-FT).xSupported by the Carlsberg Foundation (
ontra
t numberANS-0257/20).{Department of Computer and Information S
ien
e, Poly-te
hni
University, Brooklyn,NY 11530, USA. jia
ono�poly.edu.kS
hool of Computer S
ien
e, University of Waterloo, Water-loo, Ontario N2L 3G1, Canada. alopez-o�uwaterloo.
a.

1 Introdu
tionHierar
hi
al Memory Models. Traditionally, al-gorithms were designed to run eÆ
iently in a ran-dom a

ess model (RAM) of
omputation, whi
h as-sumes a
at memory with uniform a

ess times. How-ever, as hierar
hi
al memory systems be
ome steeperand more
ompli
ated, algorithms are in
reasingly de-signed assuming more a

urate memory models; seee.g., [2{5, 7, 8, 10, 22, 31{33, 38{40℄. Two of the mostsu

essful memory models are the disk-a

ess model(DAM) and the
a
he-oblivious model.The DAM model, developed by Aggarwal and Vit-ter [4℄, is a two-level memorymodel, in whi
h the mem-ory hierar
hy
onsists of an internal memory of size Mand an arbitrarily large external memory partitionedinto blo
ks of size B. Algorithms are designed in theDAM model with full knowledge of the values of B andM . Be
ause memory transfers are relatively slow, theperforman
e metri
 is the number of blo
k transfers.The
a
he-oblivious model, developed by Frigo,Leiserson, Prokop, and Rama
handran [21, 29℄, allowsprogrammers to reason about a two-level memory hi-erar
hy but to prove results about an unknown mul-tilevel memory hierar
hy. As in the DAM model,the obje
tive is to minimize the number of blo
ktransfers between two levels. The main idea of the
a
he-oblivious model is that by avoiding any memory-spe
i�
 parametrization (su
h as the blo
k sizes) the
a
he-oblivious algorithm has an asymptoti
ally opti-mal number of memory transfers between all levels ofan unknown, multilevel memory hierar
hy.Optimal
a
he-oblivious algorithms have memoryperforman
e (i.e., number of memory transfers) thatis within a
onstant fa
tor (independent of B and M)of the memory performan
e of the optimal DAM algo-rithm, whi
h knows B and M . There exist surpris-1

ingly many (asymptoti
ally) optimal
a
he-obliviousalgorithms [1,9,11{21,24,25,29,30,35℄.I/O-EÆ
ient Sear
hing. This paper fo
uses on thefundamental problem of sear
hing: Given a set S of N
omparison-based totally-ordered elements, produ
e adata stru
ture that
an exe
ute sear
hes (or prede
es-sor queries) on items in S.We provide tight bounds on the
ost of
a
he-oblivious sear
hing. We show that no
a
he-oblivioussear
h stru
ture
an guarantee that a sear
h per-forms fewer than lg e logB N 1 blo
k transfers be-tween any two levels of the memory hierar
hy, evenif all of the blo
k sizes are limited to powers of 2.We also prove a sear
h stru
ture in whi
h the ex-pe
ted number of blo
k transfers between any twolevels of the memory hierar
hy is arbitrarily
lose to[lg e+O(lg lgB= lgB)℄ logB N+O(1), whi
h approa
heslg e logB N+O(1) for largeB. This expe
tation is takenover the random pla
ement of the �rst element of thestru
ture in memory.In
ontrast, the performan
e of the B-tree, the
las-si
 optimal sear
h tree in the DAM model, is as fol-lows: A B-tree with N elements has nodes with fan-outB, whi
h are designed to �t into one memory blo
k.The B-tree has height logB N + 1, and a sear
h haslogB N + 1 memory transfers (blo
k
ost).A stati

a
he-oblivious sear
h tree, proposed byProkop [29℄, also performs sear
hes in �(logB N) mem-ory transfers. The stati

a
he-oblivious sear
h tree isbuilt as follows: Embed a
omplete binary tree withN nodes in memory,
on
eptually splitting the tree athalf its height, thus obtaining �(pN) subtrees ea
hwith �(pN) nodes. Lay out ea
h of these trees
on-tiguously, storing ea
h re
ursively in memory. Thistype of re
ursive layout is
alled a van Emde Boaslayout be
ause it is reminis
ent of the re
ursive stru
-ture of the van Emde Boas tree [36, 37℄. The stati

a
he-oblivious sear
h tree is a basi
 building blo
kof essentially all
a
he-oblivious sear
h stru
tures, in-
luding the (dynami
)
a
he-oblivious B-tree of Ben-der, Demaine, and Fara
h-Colton [14℄, its simpli�
a-tions and improvements [15, 19, 30℄, and other
a
he-oblivious sear
h stru
tures [1,6,12,13,17,18℄. Any im-provements to the stati

a
he-oblivious sear
h stru
-ture immediately translate to improvements to these1Throughout the paper lgN means log2N

dynami
 stru
tures.Results. We present the following results:� We give an analysis of Prokop's stati

a
he-oblivious sear
h tree [29℄, proving that sear
hes per-form at most 2�1 + 3pB� logB N + O(1) expe
tedmemory transfers; the expe
tation is taken onlyover the random pla
ement of the data stru
turein memory. This analysis is tight to within a o(1)fa
tor.� We then present a
lass of generalized van EmdeBoas layouts that optimizes performan
e throughthe use of uneven splits on the height of thetree. For any
onstant � > 0, we optimizethe layout a
hieving a performan
e of [lg e + � +O(lg lgB= lgB)℄ logB N + O(1) expe
ted memorytransfers. As before, the expe
tation is taken overthe random pla
ement of the data stru
ture inmemory. We prove that a numeri
al analysis withina limited range of values of N
an bound this
on-stant over an in�nite range of values of N .� Finally, we demonstrate that it is harder to sear
hin the
a
he-oblivious model than in the DAMmodel. Previously the only lower bound for sear
h-ing in the
a
he oblivious model was the logB Nlower bound from the DAM model. We prove alower bound of lg e logB N memory transfers forsear
hing in the average
ase in the
a
he-obliviousmodel, whi
h also proves that our layout is optimalin this model to within an additive
onstant as Bin
reases.Interpretation. We present a
a
he-oblivious sear
hstru
ture that takes 44% more blo
k transfers than theoptimal DAM stru
ture, and we prove that we
annotdo any better. However, this result does not mean thatour
a
he-oblivious stru
ture is 44% slower than an op-timal algorithm for a multilevel memory hierar
hy. Tothe
ontrary, this worst-
ase behavior only o

urs on atwo-level memory hierar
hy. To design a stru
ture fora k-level memory hierar
hy, one
an extend the DAMmodel to k levels. A data stru
ture for a k-DAM is de-signed with full knowledge of the size and blo
k size ofea
h level of the memory hierar
hy. Thus, the 2-DAMis the standard DAM where sear
hes
ost logB N + 1blo
k transfers (using a B-tree). Surprisingly, in the 3-DAM this performan
e
annot be repli
ated in general.2

We show in Corollary 2.3 that a 3-DAM algorithm
an-not a
hieve less than 1:207 logB N blo
k transfers on alllevels simultaneously. Thus, the performan
e gap be-tween a 3-DAM and the optimal
a
he-oblivious stru
-ture is about half that of the 2-DAM and the optimal
a
he-oblivious stru
ture; naturally, a modern mem-ory hierar
hy has more than three levels. Further-more, we show that as the number k of levels in thememory hierar
hy grows, the performan
e loss of our
a
he-oblivious stru
ture relative to an optimal k-DAMstru
ture tends to zero. Thus, for a modern memoryhierar
hy, our
a
he-oblivious stru
ture
ombines sim-pli
ity and near-optimal performan
e.Our
a
he-oblivious sear
h trees also provide newinsight into the optimal design strategy for divide-and-
onquer algorithms. More generally, it has been knownfor several de
ades that divide-and-
onquer algorithmsfrequently have good data lo
ality [34℄. The
a
he-oblivious model provides a me
hanism to understandwhy divide-and-
onquer is advantageous.When there is a
hoi
e, the splitting in a divide-and-
onquer algorithm is traditionally done evenly. The un-questioned assumption is that splitting evenly is best.Our new sear
h stru
ture serves to disprove the myththat even splits yield the best results. This paper sug-gests the
ontrary: uneven splits
an yield better worst-
ase performan
e.2 Lower BoundIn this se
tion, we prove lower bounds for the I/O
ost of
a
he-oblivious
omparison based sear
hing.The problem we
onsider is the average
ost of su
-
essful sear
hes among N distin
t elements, where theaverage is over a uniform distribution of the sear
h keyy on the N input elements. For lower bounds, average
ase
omplexity is stronger than worst
ase
omplexity,so our bounds also apply to the worst
ase
ost. Wenote that our bounds hold even if the blo
k sizes areknown to the algorithm, and that they hold for anymemory layout of data, in
luding any spe
i�
 pla
e-ment of a single data stru
ture.Formally, our model is as follows. Given a set Sof N elements x1 < � � � < xN from a totally ordereduniverse, a sear
h stru
ture for S is an array M
on-taining elements from S, possibly with several
opiesof ea
h. A sear
h algorithm for M is a binary de
isiontree where ea
h internal node is labeled with either

y < M [i℄ or y �M [i℄ for some array index i, and ea
hleaf is labeled with a number 1 � j � N . A sear
h ona key y pro
eeds in a top-down fashion in the tree, andat ea
h internal node advan
es to the left
hild if the
omparison given by the label is true, otherwise it ad-van
es to the right. A binary de
ision tree is a
orre
tsear
h algorithm if for any xi 2 S, the path taken bya sear
h on key y = xi ends in a leaf labeled i. Anysu
h tree must have at least N leaves, and by pruningpaths not taken by any sear
h for x1; : : : ; xN , we mayassume that it has exa
tly N leaves.To add I/Os to the model, we divide the array Minto
ontiguous blo
ks of size B. An internal node of asear
h algorithm is said to a

ess the blo
k
ontainingthe array index i in the label of the node. We de�nethe I/O
ost of a sear
h to be the number of distin
tblo
ks of M a

essed on the path taken by the sear
h.The main idea of our proof is to analyze the I/O
ostof a given sear
h algorithmwith respe
t to several blo
ksizes simultaneously. We �rst des
ribe our method forthe
ase of two blo
k sizes. This will lead to a lowerbound of 1:207 logB N . We then generalize this proofto a larger number k of blo
k sizes, and prove thatin the limit as k grows, this gives a lower bound oflg e logB N � 1:443 logB N .Throughout this se
tion, we assume that blo
k sizesare powers of two and that blo
ks start at memoryaddresses divisible by the blo
k size. This re
e
ts thesituation on a
tual ma
hines, and entails no loss of gen-erality, as any
a
he-oblivious algorithm at least shouldwork for this
ase. The assumption implies that for twoblo
k sizes B1 < B2, a blo
k of size B1 is
ontained inexa
tly one blo
k of size B2.Lemma 2.1 ([23, Se
tion 2.3.4.5℄) For a binarytree with N leaves, the average depth of a leaf is atleast lgN .Lemma 2.2 If a sear
h algorithm on a sear
h stru
-ture for blo
k sizes B1 and B2, where B2 = B1
 and1 <
 � 2, guarantees that the average number of blo
kreads is at most Æ logB1 N and Æ logB2 N , respe
tively,then Æ � 12=
+
� 2 + 3=(
 lgB1) :Proof: Let T denote the binary de
ision tree
onsti-tuting the sear
h algorithm. Our goal is to transformT into a new binary de
ision tree T 0 by transforming3

ea
h node that a

esses a new size B1 blo
k in T into abinary de
ision tree of small height, and dis
arding allother nodes in T . A lower bound on the average depthof leaves in T 0 then translates into a lower bound onthe average number of blo
ks a

esses in T .To
ount the number of I/Os of ea
h type (size B1blo
ks and size B2 blo
ks) for ea
h path in T , we marksome of the internal nodes by tokens �1 and �2. A nodev is marked i� none of its an
estors a

esses the size B1blo
k a

essed by v, i.e. if v is the �rst a

ess to theblo
k. The node v may also be the �rst a

ess to thesize B2 blo
k a

essed by v. In this
ase, v is marked by�2, else it is marked by �1. Note that the word \�rst"above
orresponds to viewing ea
h path in the tree asa timeline|this view will be impli
it in the rest of theproof.For any root-to-leaf path, let bi denote the numberof distin
t size Bi blo
ks a

essed and let ai denote thenumber of �i tokens on the path, for i = 1; 2. By theassumption stated above Lemma 2.1, a �rst a

ess toa size B2 blo
k implies a �rst a

ess to a size B1 blo
k,so we have b2 = a2 and b1 = a1 + a2.We transform T into a new binary de
ision tree T 0in a top-down fashion. The basi
 step in the transfor-mation is to substitute a marked node v with a spe
i�
binary de
ision tree Tv resolving the relation betweenthe sear
h key y and a
arefully
hosen subset Sv of theelements. More pre
isely, in ea
h step of the transfor-mation, the subtree rooted at v is �rst removed, thenthe tree Tv is inserted at v's former position, and �nallya
opy of one of the two subtrees rooted at the
hildrenof v is inserted at ea
h leaf of Tv. The top-down trans-formation then
ontinues downwards at the leafs of Tv.When the transformation rea
hes a leaf, it is left un-
hanged. The resulting tree
an
ontain several
opiesof ea
h leaf of T .We now des
ribe the tree Tv inserted, and �rst
on-sider the
ase of a node v marked �2. We let the subsetSv
onsist of the at most B1 distin
t elements in theblo
k of size B1 a

essed by v, plus every B22B1 th ele-ment in sorted order among the at most B2 distin
telements in the blo
k of size B2 a

essed by v. Thesize of Sv is at most B1 + B2=(B2=(2B1)) = 3B1.The tree Tv is a binary de
ision tree of minimalheight resolving the relation of the sear
h key y to allkeys in Sv . If we have Sv = fz1; z2; : : : ; ztg, with ele-ments listed in sorted order and t � 3B1, this amounts

to resolving whi
h of the at most 6B1 + 1 intervals(�1; z1) ; [z1; z1℄ ; (z1; z2) ; : : : ; [zt; zt℄ ; (zt;1)that y belongs to (we resolve for equality be
ause we
hose to allow both < and �
omparisons in the def-inition of
omparison trees, and want to handle bothtypes of nodes in the transformation). The tree Tvhas height at most dlg(6B1 + 1)e, sin
e a perfe
tly bal-an
ed binary sear
h tree on Sv, with one added layerto resolve equality questions, will do. As B1 is a powerof two, lg(8B1) is an integer and hen
e an upper boundon the height.For the
ase of a node v marked �1, note that v in Thas exa
tly one an
estor u marked �2 that a

esses thesame size B2 blo
k � as v does. When the tree Tu wassubstituted for u, the in
lusion in Su of the 2B1 evenlysampled elements from � ensures that below any leaf ofTu, at most B22B1 � 1 of the elements in �
an still havean unknown relation to the sear
h key. The tree Tv is abinary de
ision tree of minimal height resolving theserelations. Su
h a tree has at most 2 B22B1 � 1 = B2B1 � 1leaves and hen
e height at most lg B2B1 , as B1 and B2are powers of two.Sin
e in both
ases Tv resolves the relation betweenthe sear
h key y and all sampled elements, the relationbetween the sear
h key and the element a

essed at v isknown at ea
h leaf of Tv, and we
an
hoose either theleft or right
hild of v to
ontinue the transformationwith.When we in the top-down transformation meet anunmarked internal node v (i.e. a node where the size B1blo
k a

essed at the node has been a

essed before),we
an similarly dis
ard v together with either the leftor right subtree, sin
e we already have resolved therelation between the sear
h key y and the element a
-
essed at v. This follows from the
hoi
e of trees in-serted at marked nodes: when we a

ess a size B2 blo
k�2 for the �rst time at some node u, we resolve the re-lation between the sear
h key y and all elements in thesize B1 blo
k �1 a

essed at u (due to the in
lusionof all of �1 in Su), and when we �rst time a

ess akey in �2 outside �1, we resolve all remaining relationsbetween y and elements in �2.The tree T 0 resulting from this top-down transfor-mation is a binary de
ision tree. By
onstru
tion, ea
hsear
h in T 0 ends in a leaf having the same label asthe leaf that the same sear
h in T ends in (this is an4

invariant during the transformation), so T 0 is a
orre
tsear
h algorithm if T is.By the height stated above for the inserted Tv trees,it follows that if a sear
h for a key y in T
orrespondsto a path
ontaining a1 and a2 tokens of type �1 and�2, respe
tively, then the sear
h in T 0
orresponds to apath with length bounded by the following expression.a2 lg(8B1) + a1 lg B2B1= b2 lg(8B1) + (b1 � b2) lg B2B1= b2�lg(8B1)� lg B2B1�+ b1 lg B2B1The
oeÆ
ients of b2 and b1 are positive by the as-sumption B1 < B2 � B12, so upper bounds on b1 andb2 imply an upper bound on the expression above. Byassumption, the average values over all sear
h paths ofb1 and b2 are bounded by Æ logB1 N and Æ logB2 N =(Æ logB1 N)=
, respe
tively.If we prune the tree for paths not taken by anysear
h for the keys x1; : : : ; xN , the lengths of root-to-leafs paths
an only de
rease. The resulting tree hasN leaves, and Lemma 2.1 gives a lgN lower bound onthe average depth of a leaf. Hen
e, we getlgN � Æ
 logB1 N �lg(8B1)� lg B2B1�+ Æ logB1 N lg B2B1= Æ
 logB1 N (3 + lgB1 � (
� 1) lgB1)+ Æ logB1 N (
� 1) lgB1= Æ lgN (3=(
 lgB1) + 1=
� (
 � 1)=
+ (
 � 1))= Æ lgN (3=(
 lgB1) +
+ 2=
� 2) :It follows that Æ � 1=(3=(
 lgB1) +
 + 2=
� 2). 2Corollary 2.3 If a sear
h algorithm on a sear
h stru
-ture guarantees, for all blo
k sizes B, that the averagenumber of blo
k reads for a sear
h is at most Æ logB N ,then Æ � 1=(2p2� 2) � 1:207.Proof: Letting
 = p2 in Lemma 2.2, we get Æ �1=(2p2 � 2 + 3=(p2 lgB1)). The lower bound followsby letting B1 grow to in�nity. 2Lemma 2.4 If a sear
h algorithm on a sear
h stru
-ture for blo
k sizes B1; B2; : : : ; Bk, where Bi = B1
i

and 1 =
1 <
2 < � � � <
k � 2, guarantees that theaverage number of blo
k reads for a sear
h is at mostÆ logBi N for ea
h blo
k size Bi, thenÆ � 1Pk�1i=1
i+1
i + 2
k �1 + lg(8k)2 lgB1�� k :Proof: The proof is a generalization of the proof ofLemma 2.2 for two blo
k sizes, and we here assumefamiliarity with that proof. The transformation isbasi
ally the same, ex
ept that we have a token �i,i = 1; : : : ; k, for ea
h of the k blo
k sizes.Again, a node v is marked if none of its an
estorsa

ess the size B1 blo
k a

essed by v, i.e. if v is the�rst a

ess to the blo
k. The node v may also be the�rst a

ess to blo
ks of larger sizes, and we mark v by�i, where Bi is the largest blo
k size for whi
h this istrue. Note that v must be the �rst a

ess to the size Bjblo
k a

essed by v for all j with 1 � j � i.For any root-to-leaf path, let bi denote the numberof distin
t size Bi blo
ks a

essed and let ai denote thenumber of �i tokens on the path, for i = 1; : : : ; k. Wehave bi =Pkj=i aj . Solving for ai, we get ak = bk andai = bi � bi+1, for i = 1; : : : ; k � 1.As in the proof of Lemma 2.2, the transformationpro
eeds in a top-down fashion, and substitutes markednodes v by binary de
ision trees Tv. We now des
ribethe trees Tv for di�erent types of nodes v.For a node v marked �k, the tree Tv resolves therelation between the query key y and a set Sv of size(2k � 1)B1,
onsisting of the B1 elements in the blo
kof size B1 a

essed at v, plus for i = 2; : : : ; k everyBi2B1 th element in sorted order among the elements inthe blo
k of size Bi a

essed at v. This tree
an be
hosen to have height at most dlg(2(2k � 1)B1 + 1)e �lg(8kB1).For a node v marked �i, i < k, let �j be the blo
kof size Bj a

essed by v, for 1 � j � k. For i + 1 �j � k, �j has been a

essed before, by the de�nitionof �i. We now
onsider two
ases. Case I is that �i+1is the only blo
k of size Bi+1 that has been a

essedinside �k. By the de�nition of the tree Tu inserted atthe an
estor u of v where �k was �rst a

essed, at mostBi+1=2B1�1 of the elements in �i+1
an have unknownrelations with respe
t to the sear
h key y. The tree Tvinserted at v resolves these relations. It
an be
hosento have height at most lg Bi+1B1 . Case II is that �i+1 isnot the only blo
k of size Bi+1 that has been a

essed5

inside �k. Then
onsider the smallest j for whi
h �j+1is the only blo
k of size Bj+1 that has been a

essedinside �k. When we �rst time a

essed the se
ond blo
kof size Bj inside �k at some an
estor u of v, this a

esswas ne
essarily inside �j+1, and a Case I substitutionas des
ribed above took pla
e. Hen
e a tree Tu wasinserted whi
h resolved all relations between the sear
hkey and elements in �j+1, and the empty tree
an beused for Tv, i.e. v and one of its subtrees
an simply bedis
arded.For an unmarked node v, there is a token �i on thean
estor u of v in T where the size B1 blo
k �1 a

essedby v was �rst a

essed. This gave rise to a tree Tu inthe transformation, and this tree resolved the relationsbetween the sear
h key and all elements in �1, eitherdire
tly (i = k) or by resolving the relations for allelements in a blo
k
ontaining �1 (1 � i < k), so v andone of its subtrees
an be dis
arded.After transformation and �nal pruning, the lengthof a root-to-leaf path in the �nal tree is bounded bythe following equation.ak lg(8kB1) + k�1Xi=1 ai lg Bi+1B1= bk lg(8kB1) + lgB1 k�1Xi=1(bi � bi+1)(
i+1 � 1)= lgB1 �bk�1 + lg(8k)lgB1 �+ b1(
2 � 1)+ k�1Xi=2 bi(
i+1 �
i)� bk(
k � 1)#= lgB1 "k�1Xi=1 bi(
i+1 �
i) + bk�2 + lg(8k)lgB1 �
k�#For all i, the average value of bi over all sear
hpaths is by assumption bounded by Æ logBi N =(Æ logB1 N)=
i, and the
oeÆ
ient of bi is positive, sowe get the following bound on the average number of
omparisons on a sear
h path.Æ logB1 N lgB1 "k�1Xi=1 1
i (
i+1 �
i)+ 1
k �2 + lg(8k)lgB1 �
k��= Æ lgN "k�1Xi=1
i+1
i + 1
k �2 + lg(8k)lgB1 �� k#

By Lemma 2.1 we haveÆ lgN "k�1Xi=1
i+1
i + 1
k �2 + lg(8k)lgB1 �� k# � lgN ;and the lemma follows. 2Theorem 2.5 If a sear
h algorithm on a sear
h stru
-ture guarantees, for all blo
k sizes B, that the averagenumber of blo
k reads for a sear
h is at most Æ logB N ,then Æ � lg e � 1:443.Proof: Let k be an integer, and for i = 1; : : : ; k de�neBi = 2k+i�1. In parti
ular, we have Bi = B1
i with
i = (k+i�1)=k. Consider the following subexpressionof Lemma 2.4.2
k �1 + lg(8k)2 lgB1�+ k�1Xi=1
i+1
i � k= 2k2k � 1 �1 + lg(8k)2k �+ k�1Xi=1 k + ik + i� 1 � k= 2k2k � 1 �1 + lg(8k)2k �� 1 + k�1Xi=1 1k + i � 1� 2k2k � 1 �1 + lg(8k)2k �� 1 + Z 2k�2k�1 1x dx= 2k2k � 1 �1 + lg(8k)2k �� 1 + ln2Letting k grow to in�nity Lemma 2.4 implies Æ �1= ln 2 = lg e. 23 Upper BoundIn this se
tion we give a tight analysis of the vanEmde Boas layout of Prokop [29℄. Then we proposeand analyze a generalized van Emde Boas layout.In Prokop's vEB layout, we split the tree evenly byheight, ex
ept for roundo�. Thus, a tree of height his split into a top tree of height dh=2e and bottomtree of height bh=2
. In Subse
tion 3.1 we analyze thismethod. It is shown in [14, 15, 19℄ that the numberof memory transfers for a sear
h is 4 logB N in theworst
ase; we give a mat
hing
on�guration show-ing that this analysis is tight. We then
onsider theaverage-
ase performan
e over starting positions of thetree in memory, and we show that the expe
ted sear
h
ost is 2(1 + 3=pB) logB N + O(1) memory transfers,6

whi
h is tight within a o(1) fa
tor. We assume that thedata stru
ture begins at a random position in memory;if there is not enough spa
e, then the data stru
ture\wraps around" to the �rst lo
ations in memory.In Prokop's vEB layout, the top re
ursive subtreeand the bottom re
ursive subtrees have the same height(ex
ept for roundo�). At �rst glan
e this even di-vision would seem to yield the best memory-transfer
ost. Surprisingly, we
an improve the van Emde Boaslayout substantially by sele
ting di�erent sizes for thetop and bottom subtrees instead of the even split ofthe Prokop's vEB layout. The result is that we gen-erate a
onstant approximation where the
onstant issigni�
antly less than 2.The generalized vEB layout is as follows: Supposethe
omplete binary tree
ontains N�1 = 2h�1 nodesand has height h = lgN . Let a and b be
onstantssu
h that 0 < a < 1 and b = 1 � a. Con
eptually wesplit the tree at the edges below the nodes of depthdahe. This splits the tree into a top re
ursive subtreeof height dahe, and k = 2dahe bottom re
ursive subtreesof height bbh
. Thus, there are roughly Na bottomre
ursive subtrees and ea
h bottom re
ursive subtree
ontains roughly N b nodes. We map the nodes of thetree into positions in the array by re
ursively layingout the subtrees
ontiguously in memory. The base
ase is rea
hed when the trees have one node as in thestandard vEB layout.In Subse
tion 3.2 we �nd the values of a and b, whi
hyield a layout whose memory-transfer
ost is arbitrar-ily
lose to [lg e + O(lg lgB= lgB)℄ logB N + O(1) fora = 1=2� �. In the full version we show that a numer-i
al analysis within a limited range of values of N
anbound this
onstant over an in�nite range of values ofN .Memory transfers
an be
lassi�ed in two types. Wefo
us our analysis on the �rst level of detail where re-
ursive subtrees have size at most the blo
k size B.There are V path-length memory transfers, whi
h are
aused by a

essing di�erent re
ursive subtrees in thelevel of detail, and there are C page-boundary mem-ory transfers, whi
h are
aused when a single re
ursivesubtree in this level of detail straddles two
onse
utiveblo
ks. The total number of memory transfers is V +Cby linearity of expe
tation.The idea of the analysis is to derive a re
ursive equa-tion for the number of memory transfers V+C from the

re
ursive de�nition of the layout. It turns out that ea
hof these
omponents has the same general re
ursive ex-pression and di�ers only in the base
ases.The re
ursive form obtained
ontains rounded-o�terms (b�
 and d�e) that are
umbersome to analyze.We establish that if we ignore the roundo� operators,the error term is small. We obtain a solution expressedin terms of power series of the roots of the
hara
teristi
polynomial of the re
urren
e. We show for both V andC that the largest root is unique and hen
e dominatesall other roots, resulting in asymptoti
 expressions interms of the dominant root.Using this asymptoti
 expressions, we obtain themain result, namely a layout whose total
ost is ar-bitrarily
lose to [lg e+O(lg lgB= lgB)℄ logB N +O(1)as the split fa
tor a = 1=2 � � approa
hes 1=2. Thismat
hes the lower bound from the previous se
tion upto low-order terms. However, in our experiments weobserved that the O(1) fa
tor be
omes too large whena is too near to 1=2. Based on preliminary simulations,a reasonable tradeo� is a = 3=7.
3.1 Exact Analysis of van Emde Boas LayoutA simple analysis of this layout shows that the num-ber of memory transfers of this layout, in the worst
ase, is no greater than four times that of the optimal
a
he-size-aware layout. More formally,Theorem 3.1 Consider an (N � 1)-node
omplete bi-nary sear
h tree that is stored using the Prokop vEBlayout. A sear
h in this tree has memory-transfer
ostof �4� 42+lgB� logB N in the worst
ase.Proof: The upper bound has been established beforein the literature [14, 15, 19℄. For the lower bound weshow that this value is a
hieved asymptoti
ally. Letthe blo
k size be B = �22k � 1� =3 for any odd numberk and
onsider a tree T of size N�1, where N = 22k2mfor some
onstant m. Number the positions within ablo
k from 0 to B � 1. As we re
urse, we eventuallyobtain subtrees of size 3B = 22k�1 and one level downof size 2k� 1. We align the subtree of size 3B
ontain-ing the root of T so that its �rst subtree of size 2k � 1(whi
h also
ontains the root of T) starts in positionB�1 of a blo
k. In other words, any root-to-leaf sear
hpath in this subtree
rosses the blo
k boundary be
ausethe root is in the last position of a blo
k. Consider the7

�2k+13 + 1�-th subtree of size 2k � 1. The root of thistree starts at positionB�1+(2k�1)(2k+1)=3 = 2B�1,whi
h is also the last position of a blo
k. Thus, anyroot-to-leaf sear
h path in this subtree
rosses the blo
kboundary. Observe that be
ause trees are laid out
on-se
utively, and 3B is a multiple of the blo
k size, allother subtrees of size 3B start at position B � 1 insidea blo
k and share the above property (that we
an �nda root-to-leaf path that has
ost 4 inside this size-3Bsubtree). Noti
e that a root-to-leaf path a

esses 2mmany size-3B subtrees, and if we
hoose the path a
-
ording to the above position we know that the
ostinside ea
h size 3B subtree is 4. More pre
isely, ea
hsize 2k�1 subtree on this path starts at positionB�1 ina blo
k. Thus, the total
ost is 4 � 2m = 4 log3B+1N =4(log3B+1B) logB N � 4�1� 12+lgB� logB N . 2However, few paths in the tree have this property,whi
h suggests that in pra
ti
e, the Prokop vEB layoutresults in a mu
h lower memory-transfer
ost assumingrandom pla
ement in memory. We formalize this no-tion as follows:Claim 3.2 Let B be a power of 2, t and t0 be positivenumbers satisfying t=2 � t0 � 2t, pB=2 � t � pB,and t � t0 � B. Then2 + t+ t0B � 2�1 + 3pB� lg t+ lg t0lgB :Theorem 3.3 Consider a path in an (N � 1)-nodebinary
omplete sear
h tree of height h that is storedin vEB layout, with the initial page starting at a uni-formly random position in a blo
k B. Then the ex-pe
ted memory-transfer
ost of the sear
h is at most2(1 + 3=pB) logB N .Proof: Although the re
ursion pro
eeds to the base
ase where trees have height 1,
on
eptually we stopthe re
ursion at the level of detail where ea
h re
ursivesubtree has at most B nodes. De�ne t so that thenumber of nodes in T is t � 1; thus the height of Tis lg t. Therefore, any re
ursive subtree T has (t �1)-nodes, where pB=2 � t � B. Note that be
auseof roundo�, we
annot guarantee that pB � t. Inparti
ular, if a tree has B + 1 nodes and the height his odd, then the bottom trees have height bh=2
, andtherefore
ontain roughly pB=2 nodes. Then there aret� 2 initial positions for the upper tree that results in

T being laid out a
ross a blo
k boundary. Similarlythere are B � t + 2 positions in whi
h the blo
k doesnot
ross a blo
k boundary. Hen
e, the lo
al expe
ted
ost of a

essing T is2(t� 2)B + B � t+ 2B = 1 + t� 2B :If pB=2 � t < pB for the re
ursive subtree T , we
onsider the next larger level of detail. There exists an-other re
ursive subtree T 0 immediately above T on thesear
h path in this level of detail. Noti
e that tt0 � B.Be
ause otherwise
on
eptually there is no
on
eptualre
ursion splitting into T and T 0. Also be
ause we al-ways
ut in the middle, we know that 2t0 � t � 12t0.From Lemma 3.2 the expe
ted
ost of a

essing T andT 0 is1 + t� 2B + 1 + t0 � 2B � 2�1 + 3pB� lg(tt0)lgB :If pB � t < B for the re
ursive subtree T , de�nef(x) = 2 lgxlgB �1 + 1pB�� 1� t� 2B :By
al
ulating f 00(x) we learn that f(x) � 0 for theentire range pB � x � B. Thus, the expe
ted
ost ofa

essing T is at most 2(1 + 1=pB) lg t= lgB.Combining the above arguments, we
on
lude thatalthough the re
ursive subtrees on a sear
h path mayhave di�erent sizes, their expe
ted memory-transfer
ost is at mostXT 2�1 + 3pB� lg tlgB = 2�1 + 3pB� logB N:This is a fa
tor of 2(1 + 3=pB) times the (optimal)performan
e of a B-tree. 2
3.2 Analysis of Generalized vEB LayoutWe now analyze the generalized vEB layout. In The-orems 3.1 and 3.3 we fo
us on the �rst level of detailwhere re
ursive subtrees have sizes less than B. If are
ursive subtree
rosses a blo
k boundary, then we as-sume its blo
k
ost is 2. Thus, the expe
ted blo
k
ostof a

essing a re
ursive subtree T , where jT j = t�1, isat most 1+ (t� 2)=B. If the height of a re
ursive sub-tree is x = lg t, where 1 � x � lgB, then the blo
k
ostB(x) for this subtree is at most B(x) = 1+ 2x�2B . Notethat by linearity of expe
tation the expe
ted memory-transfer
ost B(x) satis�es B(x) = B(daxe) + B(bbx
)for x > lgB.8

3.2.1 Where Memory Transfers Come From:Path-Length and Blo
k-Boundary-Crossing Fun
tionsWe de
ompose the
ost of B(x). Let V(x) be the num-ber of re
ursive subtrees visited along a root-to-leafpath (V stands for \verti
al"), i.e.,V(x) = V(daxe) + V(bbx
)with V(x) = 1 for 1 � x � lgB. Let C(x) be the ex-pe
ted number of subtrees straddling blo
k boundariesalong the root-to-leaf path (C stands for \
rossing"),with C(x) = C(daxe) + C(bbx
):Hen
e, by linearity of expe
tation B(x) = V(x) + C(x)for all x � 1. It is easy to see that the three re
ursivefun
tions above are monotoni
ally in
reasing.The re
urren
es des
ribing the fun
tions B(x), V(x),and C(x) are of the form F(x) = F(daxe) + F(bbx
),for 0 < a � b < 1 and a+ b = 1. The
oor and
eilingin the re
urren
e make the analysis more
ompli
ated.As we will see, it is easier to analyze the re
urren
eG(x) = G(ax) +G(bx) with the roundo� removed. Thebase
ases for the re
ursively de�ned fun
tions F(x)and G(x) are the range 1 � x � lgB, in whi
h F(x) =G(x).3.2.2 Roundo� Error Is SmallWe analyze the di�eren
e between these two fun
tionsF(x) and G(x) de�ned above, and we show that thedi�eren
e is small.De�nition Let a < minf1=2; 1�2= lgBg. De�ne there
ursive fun
tion �(x) and Æ(x) as follows:�(x) = (0; x � lgB;�(ax + 1) + 1; x > lgB:Æ(x) = (1; x � lgB;Æ(ax+ 1)(1 + 2a�(x)�2lgB); x > lgB:Lemma 3.4 For all x > lgB, the fun
tion �(x) sat-is�es 2a2x � a�(x)�2lgB � 12ax:

Lemma 3.5 The fun
tion Æ(x) has the following prop-erties:(1) If �(x) = �(y), then Æ(x) = Æ(y).(2) For all x > lgB,Æ(ax+ 1)(ax+ 1) � axÆ(x):(3) For all x � 1, Æ(x) � e 2a(1�a) lgB ;whi
h is 1 + O� 2a(1�a) lgB� = 1 +O(1= lgB).Proof: (1) This
laim follows from indu
tion.(2) This
laim follows from the re
ursive de�nition ofÆ(x) and a�(x)�2lgB � 12ax:(3) For all x > lgB,Æ(x)Æ(ax+ 1) = 1 + 2 � a�(x)�2lgB � exp�2a�(x)�2lgB � :Thus, Æ(x) � exp 2 �(x)Pi=1 ai�2lgB ! � exp� 2a(1�a) lgB� : 2Theorem 3.6 (Roundo� Error) Let F(x) =F(daxe) + F(bbx
), and G(x) = G(ax) + G(bx), for0 < a � b < 1, and a + b = 1. Then for all x � 1,F(x) � G(x Æ(x)).Proof: We prove the bound indu
tively. First re
allthat F(x) and G(x) are monotoni
ally in
reasing. Thebase
ase is F(x) = G(x) and Æ(x) = 1 when x � lgB.If F(x) � G(xÆ(x)) when x � t, then for all lgB < x �t=a� 1, we haveF(x) = F(daxe) + F(bbx
) � F(ax+ 1) + F(bx)� G((ax+ 1)Æ(ax+ 1)) + G(bxÆ(bx))� G(axÆ(x)) + G(bxÆ(x))= G(xÆ(x)):Thus, for all x � 1, we have F(x) � G(xÆ(x)). Fur-thermore, if G(x) �
 x+ O(1), then by of Lemma 3.5Condition 3, F(x) � G(xÆ(x)) �
 x Æ(x) + O(1) �
[1 + O(1= lgB)℄x+ O(1). 29

3.2.3 Bounding the Path-Length and thePage-Boundary Crossing Fun
tionWe now develop methods so that given values for aand b, we
an determine values of the approximationratio. We restri
t ourselves to splits a and b of theform a = 1qk and b = 1qm , for integers m and k thatare relatively prime and q > 1. Noti
e that k > m,and thus qk = qn + 1, where n = k�m. The rationalebehind this
hoi
e is that this additional stru
ture helpsus in the analysis while still being dense; that is, forany given a0 and b0, we
an �nd a and b de�ned asabove that are as
lose as we want to a0 and b0. We
allsu
h an (a; b) pair a twin power pair.We ignore the roundo� based on Corollary 3.6. Fur-thermore, we normalize the range for whi
h V(x) = 1by introdu
ing a fun
tion H(x) = H(ax) + H(bx)with H(x) = 1 for 0 < x � 1 as desired. Note thatV(x lgB) � H(xÆ(x lgB)) by Theorem 3.6.First we state a lemma, whi
h we prove later in thissubse
tion.Lemma 3.7 Let (1=qk; 1=qm) be a twin power pair,and let n = k � m. Then, we have H(x) � (
1 +�)qkx+ O(1), where the value of
1 is nXi=1 q�i + kXi=n+1 qk�i! = �kqk�1 � nqn�1� :Corollary 3.8 The number of re
ursive subtrees V(x)on a root-to-leaf path is bounded by (
1+ �)qk logB N +O(1).Theorem 3.9 (Path-Length Cost) The number ofre
ursive subtrees on a root-to-leaf path is (lg e +�) logB N +O(1) � 1:443 logB N + O(1).Proof: Let a = 1=qk and b = 1=qk�1, where 1=qk +1=qk�1 = 1. From this we have q � 1 + ln2=k. Apply-ing Lemma 3.7 and for large k we obtain
1qk k!1����!1= ln 2 = lg e and hen
e V(x) ! lg e logB N + O(1) �1:443 logB N + O(1) as
laimed. 2To
omplete the proof of Lemma 3.7, we establishsome properties of H(x). Sin
e H(x) is monotoni
allyin
reasing we
an bound the valueH(x)=x for qi � x �qi+1 as follows:

1q min�H(qi)qi ; H(qi+1)qi+1 � � H(qi)qi+1 � H(x)x� H(qi+1)qi � qmax�H(qi)qi ; H(qi+1)qi+1 � :Hen
e, if d is a lower bound and
 is an upper boundonH(qi)=qi when i is larger than a given integer s, thend=q is a lower bound on H(x)=x and
q is an upperbound on H(x)=x when x > qs.De�ne �i = H(qi�k+1). From the re
ursive formulafor H(x) we know that for i � 0,�i+k = H(qi+1) = H(aqi+1) +H(bqi+1)= H(qi�k+1) +H(qi+n�k+1) = �i+n + �i:Let r1; r2; : : : ; rk be the (possibly
omplex) roots ofthe
hara
teristi
 polynomial fun
tion w(x) = xk �xn � 1. We will
laim they are all unique.The following four lemmas have te
hni
al proofs,whi
h appear in the full version.Lemma 3.10 The k roots of w(x) = xk � xn � 1 areunique, when k and n are relatively prime integers su
hthat 1 � n < k.Be
ause h0(x) = kxk�1�nxn�1 > 0 when x > 1 andby
onstru
tion q > 1, there is one unique root q > 1of w(x). Without loss of generality let r1 = q.We now show that if the k roots of the
hara
teristi
polynomial fun
tion of a series are unique, then theseries in question is a linear
ombination of power seriesfrijg of the roots.Lemma 3.11 Consider a series f�ig satisfying�k+s = Pk�1i=0 di�i+s for
omplex numbers di, and letr1; r2; : : : ; rk be the k unique roots of the
hara
teristi
fun
tion g(x) = xk �Pk�1i=0 dixi for the series f�ig.Then there exists
omplex numbers
1;
2; : : : ;
k su
hthat for all i, �i =Pkj=1
jrij:Hen
e we
an solve the re
urren
e f�ig by �nding
i that satisfy �i =Pkj=1
jrij for i = 0; : : : ; k�1. Thebase
ases of f�igk�1i=0 are determined by the originalde�nition of �i = H(qi�k+1). For i = 0; : : : ; k � 1 wehave 0 < qi�k+1 < 1 and hen
e H(qi�k+1) = 1 = �i.Lemma 3.12 The dominant root (i.e., the root withlargest absolute value) for w(x) = xk�xn�1 is r1 = q.All other roots r2;: : :rk have absolute value less than q.10

Lemma 3.13 The
oeÆ
ient
1 in Lemma 3.11 is nXi=1 q�i + kXi=n+1 qk�i! =(kqk�1 � nqn�1):After establishing the properties of H(x), we givethe proof of Lemma 3.7:Proof of Lemma 3.7: To
omplete the proof we onlyneed to show that H(x) � (
1+ �)qkx, where � = o(1).Observe that the fun
tion H(x) is monotoni
ally in-
reasing and for ea
h x > 1, we have qx � qdlnq xe � x.So H(x) � �dlnq xe+k�1 � (
1 + �)qdlnq xe+k�1 �(
1 + �)qkx; as
laimed. The �rst inequality is fromthe de�nition of H(x); the se
ond inequality is fromthe equation �i = Pkj=1
jrij and r1 = q is the domi-nant root; the third inequality is from the monotoni
property of H(x). 2We study the memory-transfer
ost from blo
k-boundary
rossings, and show that it is dominated bythe the memory-transfer
ost from the path length. We
onsider the
ase when a � 1=4, whi
h in
ludes thebest layouts. Using similar reasoning for
omputingthe path-length
ost, we obtain the following theorem:Theorem 3.14 (Blo
k-Boundary Crossing Cost)The expe
ted number of blo
k-boundary-indu
edmemory transfers C(x) on a sear
h is at mostO(lg lgB= lgB) logB x when 1=4 � a < 1=2.Combining Theorems 3.9 and 3.14, we obtain themain theorem.Theorem 3.15 (Generalized vEB Layout)The expe
ted
ost of a sear
h in the general-ized vEB layout is at most (lg e + o(1)) logB N +O(lg lgB= lgB) logB N + O(1).Referen
es[1℄ P. Agarwal, L. Arge, A. Danner, and B. Holland-Minkley.On
a
he-oblivious multidimensional range sear
hing. InPro
. 19th ACM Symp. on Comp. Geom. (SOCG), pages237{245, 2003.[2℄ A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir.A model for hierar
hi
al memory. In Pro
. of the 19thAnn. ACM Symp. on Theory of Computing (STOC), pages305{314, 1987.[3℄ A. Aggarwal, A. K. Chandra, and M. Snir. Hierar
hi
almemory with blo
k transfer. In Pro
. of the 28th AnnualIEEE Symp. on Foundations of Computer S
ien
e (FOCS),pages 204{216, 1987.

[4℄ A. Aggarwal and J. S. Vitter. The input/output
omplexityof sorting and related problems. Communi
ations of theACM, 31(9):1116{1127, 1988.[5℄ B. Alpern, L. Carter, E. Feig, and T. Selker. The uni-form memory hierar
hy model of
omputation. Algorith-mi
a, 12(2{3):72{109, 1994.[6℄ S. Alstrup, M. A. Bender, E. D. Demaine, M. Fara
h-Colton, J. I. Munro, T. Rauhe, and M. Thorup. EÆ-
ient tree layout in a multilevel memory hierar
hy, 2002.http://www.arXiv.org/abs/
s.DS/0211010.[7℄ M. Andrews, M. A. Bender, and L. Zhang. New algo-rithms for the disk s
heduling problem. In Pro
. of the 37thAnn. Symp. on Foundations of Computer S
ien
e (FOCS),pages 580{589, 1996.[8℄ M. Andrews, M. A. Bender, and L. Zhang. New algorithmsfor the disk s
heduling problem. Algorithmi
a, 32(2):277{301, 2002.[9℄ L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Ca
he-oblivious priority queueand graph algorithm appli
ations. In Pro
. 34th Ann. ACMSymp. on Theory of Computing (STOC), pages 268{276,2002.[10℄ R. D. Barve and J. S. Vitter. A theoreti
al frameworkfor memory-adaptive algorithms. In Pro
. of the 40thAnn. Symp. on Foundations of Computer S
ien
e (FOCS),pages 273{284, 1999.[11℄ M. Bender, R. Cole, E. Demaine, and M. Fara
h-Colton.S
anning and traversing: Maintaining data for traversals ina memoryhierar
hy. InPro
. 10th Ann. European Symp. onAlgorithms (ESA), volume 2461 of LNCS, pages 139{151,2002.[12℄ M. Bender, R. Cole, and R. Raman. Exponential stru
-tures for
a
he-oblivious algorithms. In Pro
. 29th Interna-tional Colloquium on Automata, Languages, and Program-ming (ICALP), volume 2380 of LNCS, pages 195{207, 2002.[13℄ M. Bender, E. Demaine, and M. Fara
h-Colton. EÆ
ienttree layout in a multilevel memory hierar
hy. In Pro
. 10thAnnual European Symp. on Algorithms (ESA), volume2461 of LNCS, pages 165{173, 2002.[14℄ M. A. Bender, E. Demaine, and M. Fara
h-Colton. Ca
he-obliviousB-trees. In Pro
. 41st Ann. Symp. on Foundationsof Computer S
ien
e (FOCS), pages 399{409, 2000.[15℄ M. A. Bender, Z. Duan, J. Ia
ono, and J. Wu. Alo
ality-preserving
a
he-oblivious dynami
 di
tionary. InPro
. 13th Ann. ACM-SIAM Symp. on Dis
rete Algorithms(SODA), pages 29{39, 2002.[16℄ R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, andK. H. Randall. An analysis of dag-
onsistent distributedshared-memory algorithms. In Pro
. of the 8th Ann. ACMSymp. on Parallel Algorithms and Ar
hite
tures (SPAA),pages 297{308, 1996.[17℄ G. S. Brodal and R. Fagerberg. Ca
he oblivious distribu-tion sweeping. In Pro
. 29th International Colloquium onAutomata, Languages, and Programming (ICALP), volume2380 of LNCS, pages 426{438, 2002.11

[18℄ G. S. Brodal and R. Fagerberg. Funnel heap - a
a
heoblivious priority queue. In Pro
. 13th Ann. InternationalSymp. on Algorithms and Computation (ISAAC), volume2518 of LNCS, pages 219{228, 2002.[19℄ G. S. Brodal, R. Fagerberg, and R. Ja
ob. Ca
he oblivioussear
h trees via binary trees of small height. In Pro
. 13thAnn. ACM-SIAM Symp. on Dis
rete Algorithms (SODA),pages 39{48, 2002.[20℄ E. D. Demaine. Ca
he-oblivious algorithms and data stru
-tures. Unpublished manus
ript, June 2002.[21℄ M. Frigo, C. E. Leiserson, H. Prokop, and S. Rama
han-dran. Ca
he-oblivious algorithms. In 40th Ann. Symp. onFoundations of Computer S
ien
e (FOCS), pages 285{297,1999.[22℄ J.-W. Hong and H. T. Kung. I/O
omplexity: The red-bluepebble game. In Pro
. of the 13th Ann. ACM Symp. onTheory of Computation (STOC), pages 326{333, 1981.[23℄ D. E. Knuth. The Art of Computer Programming: Funda-mental Algorithms, volume 1. 3rd edition, 1997.[24℄ P. Kumar. Ca
he oblivious algorithms. In U. Meyer,P. Sanders, and J. Sibeyn, editors, Algorithms for Mem-ory Hierar
hies, LNCS 2625, pages 193{212, 2003.[25℄ P. Kumar and E. Ramos. I/O eÆ
ient
onstru
tion ofVoronoi diagrams. Unpublished manus
ript, July 2002.[26℄ R. Ladner, R. Fortna, and B.-H. Nguyen. A
omparisonof
a
he aware and
a
he oblivious stati
 sear
h trees usingprogram instrumentation. In Algorithm Design to Robustand EÆ
ient Software, volume 2547 of LNCS, pages 78{92,2002.[27℄ R. E. Ladner, J. D. Fix, and A. LaMar
a. Ca
he per-forman
e analysis of traversals and random a

esses. InPro
. of the Tenth Ann. ACM-SIAM Symp. on Dis
reteAlgorithms (SODA), pages 613{622, 1999.[28℄ A. LaMar
a and R. E. Ladner. The in
uen
e of
a
heson the performan
e of sorting. Journal of Algorithms,31(1):66{104, 1999. An earlier version appear in SODA97.[29℄ H. Prokop. Ca
he oblivious algorithms. Master's thesis, De-partment of Ele
tri
al Engineering and Computer S
ien
e,Massa
husetts Institute of Te
hnology, June 1999.[30℄ N. Rahman, R. Cole, and R. Raman. Optimised prede-
essor data stru
tures for internal memory. In Pro
. 5thInt. Workshop on Algorithm Engineering (WAE), volume2141, pages 67{78, 2001.[31℄ C. Ruemmler and J. Wilkes. An introdu
tion to disk drivemodeling. IEEE Computer, 27(3):17{29, 1994.[32℄ J. E. Savage. Extending the Hong-Kung model to memoryhiera
hies. In Pro
. of the 1st Ann. International Con-feren
e on Computing and Combinatori
s, volume 959 ofLe
ture Notes in Computer S
ien
e, pages 270{281, 1995.[33℄ S. Sen and S. Chatterjee. Towards a theory of
a
he-eÆ
ientalgorithms. InPro
. of the 11th Ann. ACM-SIAM Symp. onDis
rete Algorithms (SODA), pages 829{838, 2000.[34℄ R. C. Singleton. An algorithm for
omputing the mixedradix fast fourier transform. IEEE Transa
tions on Audioand Ele
troa
ousti
s, AU-17(2):93{103, 1969.

[35℄ S. Toledo. Lo
ality of referen
e in LU de
omposition withpartial pivoting. SIAM Journal on Matrix Analysis andAppli
ations, 18(4):1065{1081, 1997.[36℄ P. van Emde Boas. Preserving order in a forest in less thanlogarithmi
 time. In Pro
. of the 16th Ann. Symp. on Foun-dations of Computer S
ien
e (FOCS), pages 75{84, 1975.[37℄ P. van Emde Boas. Preserving order in a forest in less thanlogarithmi
 time and linear spa
e. Information Pro
essingLetters, 6(3):80{82, 1977.[38℄ J. S. Vitter. External memory algorithms and data stru
-tures: dealingwithmassive data. ACM Computing Surveys,33(2), 2001.[39℄ J. S. Vitter and E. A. M. Shriver. Algorithms for parallelmemory I: Two-level memories. Algorithmi
a, 12(2{3):110{147, 1994.[40℄ J. S. Vitter and E. A. M. Shriver. Algorithms for parallelmemory II: Hierar
hi
almultilevel memories. Algorithmi
a,12(2{3):148{169, 1994.

12

