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problem consists of an agent searching for a target in an unknown terrain.In the worst case a search by a robot in a general domain can be arbitrarilyineÆcient as compared to the shortest path from the initial position to thetarget. However, as it is to be expected, strategies can be improved dependingon the type of terrain and the searching capabilities of the robot.In this work we assume that the robot is equipped with an on-board visionsystem that allows it to see its local environment. Since the robot has to makedecisions about the search based only on the part of its environment that ithas seen before, the search of the robot can be viewed as an on-line problem.As such, the performance of an on-line search strategy can be measured bycomparing the distance traveled by the robot with the length of the shortestpath from the starting point s to the target location t. The worst case ratio ofthe distance traveled by the robot to the optimal distance from s to t is calledthe competitive ratio of the search strategy.There are several classes of polygons that admit constant competitive ratios,most notably streets [10,13,23], G-streets [6,18] and HV-streets [5]. However,the existence of a searching strategy with a constant competitive ratio forthese classes of polygons depends on the position of the target.A natural question is to �nd non-trivial classes of polygons that allows searcheswith a constant competitive ratio independently of the starting position of therobot or the position of the target. Since the target may hide anywhere insidethe polygon, a natural choice is to explore the class of polygons which can beseen in its entirety from a single point. Such a polygon is called star-shaped.The set of points that see the whole polygon is called the kernel of the polygon.In a preliminary version of this paper [19] star-shaped polygons were the �rstclass shown to admit position-independent target searches. Using techniquesderived from this work, street polygons were later also shown to be searchablewithout restriction on the initial positions of the target or the searcher [4].Icking and Klein studied the problem of on-line searching for the kernel of astar-shaped polygon. In this case, the competitive ratio is given by the ratio ofthe length of the path traversed by the robot from the starting point s to theclosest kernel point p as compared to the distance from s to p. They present astrategy with a competitive ratio of � 5:331 [8,9], which was later shown to beexactly � + 1 competitive [16]. A strategy with a competitive ratio boundedby 1 + 2p2 � 3:829 was given by J-H. Lee et al. [17] and recently improvedto � 3:1226 by L. Palios [21].In this work we present a position-independent target search strategy withconstant competitive ratio for star-shaped polygons. In section 2 we introducesome concepts and de�nitions for on-line searching in simple polygons. Insection 3 we present a 11.52-competitive algorithm for target searching in star-2



Fig. 1. Visibility polygon.
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pFig. 2. Left and right pockets.shaped polygons and prove a lower bound of 9 for the competitive ratio of allsearch strategies in star-shaped polygons. In section 4 we use a variation ofthe strategy in section 3 to construct the �rst constant competitive algorithmfor recognition of star-shaped polygons. That is, given a polygon, the robotfollows a path that proves or disproves that the polygon is star-shaped that isno more than 28:85 times longer than a shortest path with the same property.We present a lower bound of p82 for this problem.Finally, we improve the lower bound of p2 � 1:41 for searching for a kernelof a star-shaped polygon [8] �rst to � 1:49 and then to � 1:5.2 De�nitionsWe say two points p and p0 in a polygon P are visible to each other if theline segment pp0 is contained in P . If A and B are two sets, then A is weaklyvisible from B if every point in A is visible from some point in B. The visibilitypolygon of p is the subset of points in P that are visible to p; it is denoted byVP (p). We assume that the robot has access to its local visiblity polygon bya range sensing device, e.g. a laser radar (also known as ladar). Now we cande�ne a star-shaped polygon.De�nition 1 ([22]) A simple polygon P is a star-shaped polygon if there ex-ists a point p in P such that VP (p) = P . The set of all points p inside P withVP (p) = P is the kernel of P .If the robot does not start in the kernel of P , then there are regions in Pthat cannot be seen by it. The connected components of P n VP (p) are calledpockets. The boundary of a pocket is made of some polygon edges and one linesegment that does not belong to the boundary of P|which is called a windowof VP (p). Note that a window intersects the boundary of P only in its endpoints, one of the endpoints is a vertex of P . This point is called the entranceto the pocket. More generally, a line segment that intersects the boundary ofP only in its end points is called a chord.3



Let p and q be two points in P . We denote the shortest path from p toq by shp(p; q). The union of all shortest paths from p to the vertices of Pforms a tree-like structure called the shortest path tree of p. We denote it byshp-tree(p). Such a structure can be enlarged by prolonging each line segmentof the shortest path tree away from p until it intersects the boundary of P . Weterm this new structure the extended shortest path tree of p which we denoteby shp-tree�(p). The end points of the prolonged line segments are called theextension points of p.The extended shortest path tree of p partitions P into triangles. The point ofa triangle that is the closest to p is called the anchor of the triangle.A pocket edge of p is a line segment (in P ) that starts at p and contains atleast one window. Each pocket edge is part of the extended shortest path treeshp-tree�(p) of p. More generally, an extended pocket path of p is a shortestpath from p to an extension point of p. Obviously, an extended pocket pathis also part of shp-tree�(p).A pocket is said to be a left pocket if it lies locally to the left of the pocket raythat contains its window. A pocket edge is said to be a left pocket edge if itde�nes a left pocket. An extended pocket path is a left extended pocket pathif its �rst line segment is collinear with a left pocket edge. Right pocket, rightpocket edge, and right extended pocket path are de�ned analogously.Since a point in the kernel of P sees all the points in P , in particular p, apocket of VP (p) does not intersect the kernel of P which implies the followingobservation.Observation 1 The kernel lies locally to the right of all left pocket edges andlocally to the left of all right pocket edges.For example, in the polygon of Figure 2, the kernel, if it exists, lies to the rightof the pocket edges �!pv1 and �!pv2 and to the left of �!pv3.Observation 1 implies that, in a star-shaped polygon, all left pocket edgesappear consecutively in a clockwise scan of the boundary; similarly, all rightpocket edges appear consecutively in a counterclockwise scan of the boundary.In particular, we can order the left pocket edges clockwise and the right pocketedges counterclockwise before we switch from left to right pocket edges or viceversa. Hence, there is a clockwisemost (or rightmost) left pocket edge El and acounterclockwisemost (or leftmost) right pocket edge Er. The kernel is betweenEl and Er. We will make use of this ordering in our algorithm to search ina star-shaped polygon. Note that we can extend this ordering to extendedpocket paths as well. 4
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stFig. 3. Searching for atarget via the kernel. Fig. 4. Extended pocket path search.3 Target Searching in Star PolygonsIn this section we present a strategy to search for a target in a star-shapedpolygon. At �rst sight it may seem that searching for a target is a variationof searching for the kernel of P : A natural strategy is to �rst search for thekernel and once it is reached to go directly to the target|since the targetis seen from any point in the kernel. However, as illustrated in Figure 3 thisapproach does not lead to a constant competitive ratio.In fact, searching for a target of unknown location inside a star-shaped polygonprovably requires a larger detour in the worst case than walking into the kernel.We show this in the second part of this section. First we present a strategy tosearch for a target in a star polygon. We start with the following observation.Lemma 1 If c is a chord in star polygon P that splits P into two parts P1and P2, then one of P1 and P2 is weakly visible from c and the other containsat least one point of the kernel of P .Proof: Let q be a point in the kernel of P . The point q is contained in one ofthe two parts, say in P1. As q is in the kernel, all of P2 can be seen from it.But any line contained in the polygon and joining a point in P1 with a pointin P2 intersects the chord c. This implies that the chord weakly sees all pointson the opposite side as well. 2Notice that the above lemma also holds for a simple path joining two pointson the boundary of the polygon.Theorem 1 There exists a strategy for searching for a target inside a star-shaped polygon with a competitive ratio of at most 14.5.Proof: In the following we describe a strategy to search in a star-shaped poly-gon. The main idea is to search alternatingly on a (suitably chosen) left andright extended pocket path from s increasing the search depth each time by5



a constant factor c. For the algorithm we need the de�nition of a \rightmost"left extended pocket path, which we denote by Edleft, for a given distance d.The idea is that we want to seal o� as much as possible to the left of Edleft ifwe go a distance of at most d. To this end let V be the set of all reex verticesof P and extension points of the start point s of the search; let v 2 V be apoint belonging to a left extended pocket path Ev and similarly, let v0 2 Ev0where Ev 6= Ev0 . We say that shp(s; v) is to the right of shp(s; v0) if eithershp(s; v) contains shp(s; v0) or Ev is to the right of Ev0 (see Figure 4).Let v be a point in V such that shp(s; v) is the rightmost shortest path withlength at most d. If such a path exists, then the extended pocket path Edleftis de�ned as shp(s; v) together with the extension of the last line segment ofshp(s; v). If such a path does not exist, then we arbitrarily de�ne Edleft to bethe rightmost left extended pocket path. It is easy to see that Edleft can becomputed on-line by repeatedly going to the rightmost visible point v 2 V on aleft extended pocket path such that d(s; v) � d. The de�nition of a \leftmost"right extended pocket path Edright, for a given distance d, is analogous. Thisis illustrated in Figure 4, the value of d in Edright in this example is such thatd(s; u) � d < d(s; u0) .Finally, we de�ne :left = right and :right = left. The algorithm can now bedescribed as follows.Algorithm Star SearchInput: A star polygon P and a starting point sOutput The location of the target point t1 let p0 be the closest entrance point to s and E0 the pocket edgecorresponding to p02 let d0  d(p0; s); let i 03 if E0 is a left pocket edge4 then let side left5 else let side right6 loop7 traverse di units on Ei starting from s8 if t is seen then exit loop9 let di+1  c � di10 move back to s11 let side :side12 let Ei+1  Edi+1side13 i i + 1end loop14 if t is seen then move to t
6



In the following we show that when the algorithm terminates, it has seen thetarget, and it travelled no more than 14.5 times the distance from s to t.We �rst show that after the �rst two iterations the loop has the followinginvariant on line 11:Invariant: All triangles of the partition induced by shp-tree�(s) whose anchorhas a distance of at most di�2 to s have been explored.Proof: (Invariant) Assume that side = left and consider a triangle T of thepartition induced by shp-tree�(s) whose anchor v has a distance of at mostdi�2 to s. We assume that the vertex v belongs to a left pocket. The argumentis analogous with Ei�1 instead of Ei�2 if v belongs to a right pocket.If v belongs to Ei�2, then, clearly, T has been explored. If v does not belongto Ei�2, then Ei�2 is to the right of shp(s; v). In particular, there is a point v0on Ei�2 with v0 2 V and d(s; v0) � di�2 such that v is to the left of shp(s; v0).Hence, shp(s; v0) contains a chord c such that T belongs to the subpolygonto the left of c. Since the kernel of P is the right of c by Observation 1, T isweakly visible from c by Lemma 1.The correctness of the algorithm now follows from the fact that di increasesexponentially and all the triangles that belong neither to a left nor a rightpocket are visible to s.We claim that Algorithm Star Search has a competitive ratio of 14.5. Theworst case to discover the target occurs when the robot sees the target at adistance of di=c2+ �, at the very end of Step i when it has traveled a distanceof di (see Figure 5; notice that qi de�nes the entrance to a left pocket). Thedistance traveled by the robot to go to t is now 2d0Pi�1j=0 cj for the previoussteps, d0ci to discover t, d0ci to return to s, and d(s; t) to go to t. Hence, thecompetitive ratio is bounded byd(s; t) + 2Pij=0 cjd0d(s; t) � 1 + 2Pij=0 cjci�2 � 1 + 2c3c� 1 :
Substituting the value 3=2 which minimizes 2c3=(c � 1) gives a competitiveratio of 14:5. In fact, it can be shown that there is no choice of the step lengthsdi that yields a better competitive ratio for the above algorithm [1,7]. 27
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Fig. 5. The worst case to discover the target. If the robot follows the dashed path,then t is detected at w instead of qi.3.1 Improving the StrategyLet qi be the end point of the exploration of Ei visited in Step i. The worstcase con�guration occurs when the angle \qi�2sqi is relatively at. In thiscase the competitive ratio can be improved if the robot does not follow thestraight line segment sqi but follows a curve that allows it to detect the targetearlier (see Figure 5). So instead of traveling along one chord f` = v`v`+1 thatbelongs to Ei the robot now travels along the semi-circle C` that is spannedby f`.More precisely, the robot computes the curve C` that is the upper envelope ofall circles that are contained in the polygon and whose diameter is containedin f`. The curve C` consists of parts of circles C(1); : : : ; C(k`). The center c(j)of each circle C(j) is contained in f` with c(j+1) to the right of c(j), for 1 �j � k` � 1. An equivalent, constructive, de�nition is as follows. C(1) is themaximal inscribed circle passing through v` with center on f` and inscribedby P [ fv`+1g. If this half circle reaches v`+1 this completes the constructionof C`. Otherwise the half circle contains a point q(1) on the boundary of P . Byconstruction, the entire half circle is contained in P . Hence q(1) is visible fromv`. To construct C(1) in this case, the robot examines all visible points (fromv`) on the boundary of P and identi�es the point of inscription q(1) whichde�nes the center and radius of C(1). The part of C(1) between v` and q(1) isthe �rst part of Ci. Now assume that Ci is already constructed up to circleC(j) with 1 � j � ki � 1. There is a point q(j) such that C(j) intersects theboundary of P in q(j). The circle C(j+1) is de�ned as a maximal-radius halfcircle with center and diameter on f` inscribed inside P passing through q(j)(see Figure 6). An edge e incident to q(j) may intersect all circles with centerto the right of c(j) that contain q(j). In this case a circle C with center to theright of c(j) is computed that intersects one end point v of e and a di�erentedge e0 of the boundary of P . We set q(j+1) = v. The part of e from q(j) toq(j+1) is included in Ci and, for simplicity, denoted as C(j+1). The circle C(j+2)is now de�ned as C and the intersection point of C and e0 is the point q(j+2).Note that we can use other curves in the above construction as well. A semi-8
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Fig. 6. The new strategy of the robot.circle is the set of points p such that the angle � at p between the line segmentsconnecting p to the left and right end point of the semi-circle is �=2. Insteadof choosing �=2 we may also choose other values for �. We again obtain circlesegments in this way. The construction of C` is also well de�ned using the newtype of curves. In the appendix it is shown that the length of C` is at most(� � �)= sin � d(v`; vl+1).3.1.1 Analysing the Competitive RatioNow assume that n is the last step of Algorithm Star Search and that side =left. We analyse the distance that the robot travels in this step. First assumethat En is a simple pocket edge. Let C(j) be the circle of Cn which separates tfrom s. Let q` be the left point and qr the right point at which C(j) intersectsEn. Furthermore, let p be the point at which the robot detects t, Bn be thearc of C(j) from p to qr, and Cp the part of Cn from s to p. By our aboveconsiderations the length of the concatenation of Cp with Bn is bounded by(� � �)= sin � d(s; qr). Hence, if we consider the path eC that consists of theconcatenation of the circle segment C over sq` and C(j), then this path isat least as long as Cp concatenated with Bn. Since Bn is also part of eC, thepart of eC from s to p is at least as long as Cp. In the following we assumethat the robot has travelled along eC instead of Cp (see Figure 7). We choose acoordinate system with origin at q` and q`qr as the unit vector in x-direction.We �rst show how to reduce the case that t is to the left of y-axis to the casethat t is on or to right of the y-axis. If t is to the left of the y-axis, then letq be the intersection point of the path traveled by the robot with the y-axis.There is a vertex v on C(j) that belongs to shp(s; t). Let C[q] be the part ofthe path of the robot from s to q.Assume that we can show that jC[q]j � c d(s; q) = c d(s; v)+ c d(v; q), for somec > 1. If we observe that the angle \tqv is at least �=2 since the line throughqt is collinear with qr, then simple trigonometric calculations 2 show that thelength of the path of the robot is bounded by2 If we choose a coordinate system with origin at v and vq as the unit vector in9



q
s

t
qrql veC

Fig. 7. If Cn consists of more than one circle, then it can be assumed that the robot�rst travels from s to ql.jC[q]j+ d(q; t)� cd(s; v) + cd(v; q) + d(q; t) � cd(s; v) +pc2 + 1d(v; t)�pc2 + 1d(s; t)Hence, we only need to analyse the case that t is on or to the right of they-axis.We assume that t has coordinates (x; 1), x � 0, and s has coordinates (�z; 0).We now compute what distance the robot traverses in the last step. It �rsttravels a distance of at most (� � �)= sin � z to reach q`. Now consider howmuch the robot travels from ql to t. The situation is displayed in Figure 8.Note that the robot detects t at p at the latest; otherwise, t is not seen by q`qrin contradiction to Lemma 1. We denote the angle \pq`t by � and the angle\qrpt by �. Some simple trigonometric calculations show that the ratio of thex-direction and let � = \tqv, thend(v; t) �q(1 + x cos(� � �))2 + x2 sin2(� � ga)where x = d(q; t). We are interested in the smallest d > 0 such thatc+ x � dq(1 + x cos(� � �))2 + x2 sin2(� � ga)The right hand side is minimized for � = �=2 and the inequality simpli�es toc+ x � dp1 + x2 or d2(1 + x2)� c2 � 2cx� x2 � 0:If we minimize w.r.t. x, we obtain x = c=(d2� 1) and the above condition simpli�esto d2 � c2 � c2=(d2 � 1) which leads to d � pc2 + 1.10



ql qr��
t p

Fig. 8. Bounding the distance traveled by the robot if En is a simple pocket edgeand Cn = Cn.distance traveled by the robot to d(s; t) is bounded by(� � �) sin(� � �)sin2 � + sin �sin � :If we set � = 2:152, then the maximum for the above expression is assumedfor � � 1:03 and is less than 2.302.Since d(qr; t) � px2 + 1 and d(s; t) = q(x + z)2 + 1, the ratio of the distancetraveled in the last step to d(s; t) is given by(� � �)= sin �z + cpx2 + 1q(x+ z)2 + 1where c = 2:302. If we maximize the above expression w.r.t. to z, then weobtain a function which is convex in x and a simple calculation shows thatthe maximum is achieved for x = 0. This leads to a value of � 2:588 and thecompetitive ratio is bounded by�1 + ���sin ��Pn�1i=0 cid0 + (p2:592 + 1)d(s; t)d(s; t) � 2:78 +  1 + � � �sin � ! c2c� 1since d(s; t) � cn�2d0 and the distance that the robot travels on its way toqi and back is bounded by 1 + (� � �)= sin � di with � = 2:152. The aboveexpression is minimized for c = 2 and we obtain that the competitive ratio isbounded by 2:78 + (1 + 1:1841) � 4 < 11:52. Note that worst case still occurswhen the target is found in step i at a distance di�2. Indeed, in this case therobot traverses the entire path of step i� 1 and back to the starting point s.Any distance traversed in step i only worsens the competitive ratio.In the above analysis we have assumed that En is a simple pocket edge. If Enis not a simple pocket edge, then the robot constructs the curve Ci described11



above for each edge of En separately. Note that the circles constructed for aleft pocket edge are to the left of En and, therefore, the circles over one edge ofEn are naturally separated from the circles over another edge by the vertices ofthe polygon that are intersected by En. Moreover, the situation if t is detectedto the left of the edge e of En, then we can consider the closer end point p of eto be s and apply the above analysis. Since the shortest path from s to t alsogoes through p, the competitive ratio is only decreased by adding the pathfrom s to p. We have shown the following result which improves Theorem 1.Theorem 2 There exists a strategy for searching for a target inside a starpolygon with a competitive ratio of at most 11.52.It is interesting to note that the above algorithm can also be used as algorithmto \look around a corner" in a simple polygon [11].3.2 A Lower Bound on the Competitive RatioIn this section we show that any on-line strategy to search in a star-shapedpolygon has a competitive ratio of at least 9. Our lower bound proof is basedon a reduction to a variant of searching on the real line. In this setting therobot starts at the origin of the real line and has to �nd a target that is locatedeither to its left or to its right. The distance to the target is at least one. Therobot can only detect the target if it stands on top of it.Before we present the reduction, we �rst need to argue about some propertiesof strategies to search on the real line. To start with we need the followingtheorem.Theorem 3 ([20]) Any on-line strategy to search on the real line for a targetat a distance of at most D has a competitive ratio of at least 9� f(D) wheref(D) � 162= log2(D=16), for suÆciently large D.Now that we have a precise bound on searching on a line segment, we canuse this fact to obtain a lower bound for target searching in a star-shapedpolygon.Theorem 4 There exists a family of star-shaped polygons such that the worstcase competitive ratio for �nding a target of unknown position has a competi-tive ratio of at least 9.Proof: Consider the polygon in Figure 9. The length of the base is 2n and theheight is n4 +1. The base of each of the indentations is of width one-half andspaced one-half units apart. Let the center of the base be the origin. For eachdent one of its lower corners lies exactly over a point of integer coordinates12



Fig. 9. Lower bound for searching for a target.on the x axis. The slope of a wall at position i is �n4=i. The intersection ofall the half-planes in the polygon contain the point (0; n4), thus forming astart-shaped polygon.Now, the robot follows a search path S in the plane. This path S must intersectthe extension of the quasi-vertical walls of each dent to \see" into each dentuntil it �nds the target and moves towards it. Without loss of generality, thestrategy S visits some quasi-vertical extended lines on the positive side ofthe x-axis up to wall x1, then turns around and eventually examines someextended lines on the negative side of the x-axis up to wall x2, then on thepositive side until x3, and so on until all dents have been examined.The sequence X = (x1; x2; : : : ; xm) also describes a strategy for searching onthe real line, namely the strategy that moves from the origin to x1, then backto the origin and past to x2, then to x3 and so on. As we know any suchstrategy is 9� f(n) competitive.Let xi be a dent where X is 9�f(n) competitive. Let pi = (ui; vi) be the pointwhere the robot path �rst intersects the extension of the quasi-vertical lineover xi. Note that vi = (xi � ui)mi where mi = �n4=i. Therefore if vi > 9nthe competitive ratio is at least 9n=xi > 9 and there is nothing to show.Otherwise, the distance traversed by the robot from the quasi-vertical lineabove xi to xi+1 is given by d(pi+1; pi) � jui+1 � uij = jui+1j + juij. If xi ispositive ui > xi�9n=mi > xi�9=n2 and otherwise ui < xi�9n=mi < xi+9=n2(recall that vi � 9n). Therefore jui+1 � uij � jxi � 9=n2j + jxi+1 + 9=n2j forpositive xi, and similarly jui+1� uij � jxi + 9=n2j+ jxi+1 � 9=n2j for negativexi. In both cases we have d(pi; pi+1) > jxij+ jxi+1j � 18=n2 which implies thatthe competitive ratio of S is 13



P kernel of P
Fig. 10. Lower boundcon�guration for walkinginto the kernel.
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1 2Fig. 11. Polygon withtwo beams. Beams
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Fig. 12. Lower boundcon�guration.CS � Pij=1 d(pj; pj+1) + d(pi+1; pi) + d(pi; xi)jxij� Pij=1(jxjj+ jxj+1j � 18=n2) + jxij+ jxi+1j � 18=n2jxij=9� f(n)� 18(i+ 1)jxijn2� 9� f(n)� 18n2This last expression converges to 9 as n!1. 2
4 Walking into the Kernel|a Lower BoundIn this section we consider the problem of on-line searching and walking intothe kernel of a star-shaped polygon [8,9,17]. We present a lower bound of� 1:492 on the competitive ratio of any strategy to walk into the kernel.Figure 10 shows a lower bound of p2. Any on-line strategy with a competitiveratio of at most p2 has to follow the dashed path [8]. In the following weshow that any strategy to search for the kernel of a star-shaped polygon hasa competitive ratio that is signi�cantly larger than p2.De�nition 2 The visibility region of a subset B of a polygon is the set of allpoints in the polygon which see all points in B.De�nition 3 Given the current position of the robot p and a pocket B ofVP (p), the beam of the pocket is the visibility region of B.Notice that if the pocket is a trapezoid, the visibility region resembles a searchlight beam (see Figure 11).Observation 2 The kernel lies in the intersection of all beams.14



Lemma 2 Walking into the kernel of a polygon is at least 1:492-competitive.Proof: Consider the polygon of Figure 11. Notice that the robot reaches theline segment v1v2 before it reaches the kernel. In addition, it is favourablefor the robot to reach v1v2 at its midpoint p, as otherwise the following con-struction can be made on the side opposite to the robot's preferred side whichobviously only increases the competitive ratio of the strategy. From p it is notyet clear where the kernel is located. In fact, depending upon the speci�c angleand location of the pockets, the beams might specify a small kernel locatedanywhere in the visibility polygon region of s which is above v1v2.We now use an adversary argument. After the robot reaches p the adversarycloses one side, and selects two candidate kernels, illustrated by the large dotsin Figure 12, such that one is next to v1 and the other on the line throughs and p. This can be achieved by locating one beam A along the line joiningthe two candidate regions, and a second beam, B, nearly parallel and to theright of A. The intersection of both beams de�nes the kernel of the polygon.We assume that the robot learns of this decision and, thus, can restrict itself,to its bene�t, to determining which of the two regions is the kernel.Still, the robot cannot decide which of the two candidates is the kernel beforeit reaches at least one of the beams A or B. If we choose the beams to havewidth " > 0 and to be " apart, then the robot has to come within a distanceof 5=2" or less of the line ` joining the midpoints of the two candidate regions.By some simple trigonometric calculations (see Appendix B) one can showthat if we choose the angle � of the line ` with the horizontal axis to be 0.655,then any strategy generates a path with a competitive ratio of at least 1:492(if we choose " suÆciently small). 2Remark 1 Notice that in fact the adversary can pre-select n candidate slopesinstead of just one. Once again, we assume that the robot learns of this deci-sion and chooses a strategy that optimizes the competitive ratio for the candi-tate slope set. In particular, if the adversary chooses three slopes with angles0:51; 0:65 and 0:82 radians, then numerical calculations show a lower boundof at least 1.5 on the competitive ratio of the robot.5 Recognition of Star-Shaped PolygonsFor the on-line star-shaped recognition problem, we assume that given a poly-gon P , it is the robot's task to determine if P is star-shaped. The competitiveratio is now given by the ratio of the distance traversed by the robot to the15



Fig. 13. Lower bound for recognitionlength of the shortest path that proves or disproves that a given polygon isstar-shaped. We present a strategy that recognizes a polygon at a constantcompetitive ratio, both in positive and negative instances, provided that theshortest path that recognizes the polygon is of length greater than or equal toa �xed � � 0. Furthermore, if the polygon is star-shaped the proposed strategyreaches the kernel, if it exists, at a constant competitive ratio as well.Theorem 5 Recognition of a star polygon is at least p82 competitive.Proof: Consider the polygon in Figure 13. This polygon is of similar dimen-sions and con�guration to the polygon of Figure 9, with the addition of dentson the left vertical edge of the polygon, which are also half-unit sized andhalf-unit spaced. The dents at the base are called base dents and the dents onthe left vertical wall are called side dents. The side dents are formed of twoedges, one horizontal, the other of slope (n4 + 1 � i)=n for a dent of heighti. This ensures that the intersection of all the half-planes in the polygon stillcontain the point (0; n4), thus forming a star-shaped polygon. Alternatively,the horizontal edge of any given side or base dent might contain a small spiralmaking the polygon not star-shaped.The robot search path must intersect the extension of the quasi-vertical wallsof each base dent and the extension of the horizontal edge of side dents to\see" into each dent until either �nds a spiral thus proving that the polygonis not star-shaped, or it has examined all the dents proving that the polygonis indeed star-shaped.As in Section 3.2 we consider the sequence X = (u1; u2; : : : ; um) of base dentsexamined by the robot. This sequence describes a strategy for searching on thereal line which is at least 9�f(n) competitive. Let pj = (uj; vj) be the point of�rst intersection of the robot path with the extension of the quasi-vertical lineover xj. Let wi be a dent where the strategyX reaches the 9�f(n) competitiveratio. Let xi be the base dent corresponding to wi and let d = jxij. Note thatvi = (xi � ui)mi where mi = �n4=i. If vi > p82n the competitive ratio is atleast p82n=xi � p82 and there is nothing to show.16



Fig. 14. Unboundedness of recognitionNow if the dent located at �xi has not yet been examined, then the compet-itive ratio is at least ((9 � f(n))juij + d(pi; p�i))=d � ((9 � f(n)) d + d)=d �10 � f(n). Hence we assume that both base dents at distance d have beenexamined.We now turn our attention to the side dent at height d. If it is unexplored, welet the strategy proceed until it has and call this path �d, otherwise, the pathup to pi is �d. The path �d can be split into monotonous paths along the xand y axis. The sum of the length of the projection of the monotonous pathsalong the y axis is at least d and along the x axis is at least (9 � f(n)) ui �(9 � f(n))(d � p82=mi) � (9 � f(n))(d � p82=(n4=d)). Therefore the totaldistance traversed by �d is at least j�dj � qd2 + (9� f(n))2(d� dp82=n4)2 �dq82� O(f(n)) which implies CS � j�dj=d � q82� O(f(n)) ! p82 asn!1. 2We now give a strategy for recognizing star-shaped polygons. In general thisproblem is of unbounded competitive ratio. Indeed, let P be a simple polygon.We denote by �opt the shortest path that decides whether P is star-shapedor not. In the case of the polygon of Figure 14, reaching either of the twodotted lines might result in a spiral being found and thus the polygon isrejected. However the robot cannot determine from the available informationon which side is the closest dotted line and at what distance. Therefore ifthe robot moves, say, to the right for a distance �, we place the left dashedline at a distance �2 resulting in a competitive ratio of 1=�. Thus we requirethat j�optj � � for some �xed, known �. The path �opt also has the followingproperties.De�nition 4 The visibility polygon of a set A inside a polygon P is de�nedas VP (A) = [x2AVP (x). 17



Fig. 15. Local left pocket edges.The following lemma states that the robot cannot infer the star-shapedness ofthe polygon from information beyond that obtained from the visibility poly-gon. This is not immediately obvious, as in principle, the robot could, forexample, attempt to use the location of the pockets to infer the nature andpotential location of the edges inside them and deduce that the polygon couldnever be completed into a star-shaped one.Lemma 3 If P is star-shaped, then �opt is the shortest path that sees all thepoints in P and if P is not star-shaped, then �opt is the shortest path in Psuch that the visibility polygon of �opt is not star-shaped.Proof: The proof is by contradiction. So �rst assume that the robot acceptsa star-shaped polygon without having looked into all of its pockets; then, anadversary creates a spiral in that pocket, and the polygon is not star-shaped|a contradiction.On the other hand, assume that the robot rejects the polygon. Consider �rstthe intersection A of the half planes de�ned by already seen edges of thepolygon. These half planes are closed sets and their intersection forms a closedconvex set in the plane. Secondly, consider the intersection B of the half planesde�ned by pocket edges into pockets that remain unexplored. These half planesare open, and thus their intersection is either the interior of a polygon or theempty set.The kernel, if it exists, lies in the intersection of A and B. If the robot rejectsthe polygon P while A\B 6= ; then the adversary selects a point p in A\B,and \empties" all the pockets by means of inserting and almost at two edgechain closing the pocket (say the chain is � dented by a vertex on its midpoint).Because B is an open set, it follows that there exists small enough � suchthat the intersection of all the open (and therefore closed) half-planes of thismodi�ed polygon contains p and thus the polygon is star-shaped|again acontradiction. 218



We also need the following generalization of extended pocket paths.De�nition 5 We say that a straight chord is a local left pocket edge if it iscontained between two consecutive left extended pocket paths and one of its endpoints lies on the leftmost of the two pocket paths. The de�nition of a localright pocket edge is analogous.For convenience we consider in the following a local pocket edge together withthe extended pocket path to which one of its end points belongs also as anextended pocket path.In e�ect, this de�nition enlarges the set of extended pocket paths to includethe shortest path tree to edges as well as vertices. The robot then exploresthis tree. Figure 15 illustrates a polygon with local left pocket edges. Noticethat in this case some of these pockets are nearer to the starting point s thanthe entrance point of the preceeding left pocket edge. In this scenario, it is tothe robot's advantage to explore along the local left pocket edge rather thanon the preceeding left pocket edge.Theorem 6 There exists a 28:85-competitive strategy that identi�es if a poly-gon is star-shaped or not.Proof: The algorithm is almost the same as the one proposed for targetsearching in Theorem 1 except for Steps 8 and 10{11 which changed as follows.Let side 2 fleft, rightg as before.Step 8 If the intersection of the half planes induced by the edges of the visi-bility polygon is empty, then the algorithm rejects P .If all pockets have been explored, that is, P is completely visible, thenthe algorithm accepts.Otherwise the robot continues its exploration.Steps 10{11 If the pocket edges on the opposite side are not exhausted, therobot changes side side  :side. It follows the extended pocket path Eifor a distance of di to a point p; starting at p it sweeps an arc Gi of thegeodesic circle of radius di with center s in the Euclidean sub-space de�nedby the interior of P towards the extended pocket paths on the opposite side.It follows Gi until it reaches the boundary of P .If the robot reaches an extended pocket path on the opposite side, thenit identi�es the next extended pocket path Ei+1 to be explored (as in Algo-rithm Star Search), backtracks along Gi to the point at distance di on Ei+1,sets di+1 to c di, and proceeds to the next exploration step.Otherwise, if it reaches the boundary of P without crossing an extendedpocket path of the opposite side, then the robot follows the ray towardss until it intersects the previous geodesic arc Gi�1 and then moves alongGi�1 to the next extended pocket path Ei+1. In this case we set di+1 = di.The extended pocket paths on the side where the robot started are now19



considered as explored.If the pocket edges on the opposite side are exhausted, the robot followsthe extended pocket path Ei for a distance of di to a point p; backtracksalong Gi to the point at distance di on Ei+1, sets di+1 to cdi, and proceedsto the next exploration step.Invariant: The visibility region of the path explored thus far by the robotcontains the visibility region of any path of length di=c or less.As an example consider Figure 16. The robot �rst explores E1, then swipes ina clockwise direction until it hits the boundary. At this point it sets d2 to c d1and backtracks on the same circular arc until it crosses E2 (selected as in thealgorithm of section 3). From there it explores E2 and swipes again, this timecounterclockwise.In the following we show the correctness and analyze the competitive ratio ofthe strategy. We �rst argue that the strategy is correct.Consider Steps 10{11 and assume that the robot walks clockwise on a geodesicarc from left to right. If the robot cannot reach a right extended pocket path,then this implies that the robot is blocked by a boundary point p of P . Weclaim that p lies between the rightmost left and the leftmost right extendedpocket paths. To see this we �rst note that it cannot be between two rightextended pocket paths as in this case the robot would have crossed at leastone right extended pocket path. It also cannot be between two left extendedpocket paths since in this case p is the end point of a chord that starts on a leftextended pocket path which implies that p belongs to a local extended pocketpath. Since local extended pocket paths are also considered to be extendedpocket paths, the current geodesic arc would start at or to the right of p (sincep is at a distance of at most di from s)|a contradiction.As there are no pockets between the rightmost left and the leftmost rightextended pocket path, p is visible from s. The robot moves towards s untilthe previous geodesic arc is reached and continues exploring the right side. Inthis case the robot has completed searching the left side. The situation on theright side is analogous.After the ith iteration of Steps 10{11 the path of the robot divides the polygonin two parts one of which completely contains all points at distance at mostd0ci�1. Observation 1 now implies that the invariant is correct. Step 10 acceptsor rejects when either a contradiction to the fact that P is star-shaped is foundor the whole polygon has been explored. Since eventually d0ci is larger thanthe diameter of P , P either becomes completely visible or is rejected before.This concludes the proof of correctness.20
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Fig. 16. Recognizing a polygon.For the analysis we �rst observe that by the invariant and Lemma 3 the lengthof a shortest recognition path is at least d0ck�1 if the algorithm stops after kiterations. In the following we determine an upper bound on the length of thepath that is traversed up to and including the kth iteration of Steps 10{11which yields immediately an upper bound on the competitive ratio.We partition each geodesic arc Gi into two sets Ai and Ai as follows. The setAi is de�ned as the set of the points p on Gi such that p is visible from s andthe extension of the radius through p intersects Gi+1 before it intersects thepolygon border. The set Ai is de�ned as Gi n Ai.Similarly, we partitionGi+1 in two sets Bi+1 and Bi+1. A point p belongs to theset Bi+1 if there is a point q in Ai such that radius extension through q containsp. The set Bi+1 is de�ned as Gi+1 n Bi+1. For example, in Figure 16, on thegeodesic corresponding to E1, the points contained in the arc correspondingto the angles �11, �13, and �14 are in Ai while the points corresponding to angles�12 are in Ai. For E2 we have that the points in the arc over the angle �21 arein B2 while the points corresponding to the angle �21 = �22 are in B2.Clearly, Ai consists of at most two (possibly empty) connected components.One of these components is to the left of Ai and the other to the right ofAi. Notice that one of these two subsets corresponds to the arcs that arebacktracked when the robot moves on Gi to the (i + 1)st extended pocketpath Ei+1. Let �i be the angle corresponding to Ai (and Bi+1), �i be theangle corresponding to Ai, and �i be the angle corresponding to Bi. Note21



that the total angle i of the arcs of Gi equals �i + �i and �i�1 + �i. Clearly,since P is star-shaped, i � 2� as otherwise the intersection of the half planesdetermined by the edges which are enclosed by an extended pocket path isempty (in fact this holds for an arbitrary point s in the interior of the polygon).The geodesic arc Gi consists of circular arcs which are centered at s or somevertex of P . We observe that the radius of a circular arc that belongs to Ai isat most d0ci and the radius of an arc that belongs to Bi is at most d0ci�d0ci�1.Hence, the distance traversed in step i, i � 1 at most�i�1 d0ci + d0ci � d0ci�1 + �i (d0ci � d0ci�1) + �i�1 d0ciwhere �i�1 d0ci�1 bounds the distance to backtrack on the (i � 1)st geodesicto reach the ith extended pocket path Ei, d0ci � d0ci�1 is the distance to gofrom Gi�1 to Gi and �i (d0ci � d0ci�1) + �i�1 d0ci bounds the length of thesweep on Gi.Since i � 2�, we have �i � 2� � �i and �i � 2� � �i�1. Hence, the distancetraversed in step i, i � 1, can be bounded by(2� � �i�1)d0ci�1 + d0ci�1 � d0ci�1 + (2� � �i�1)(d0ci � d0ci�1) + �i�1 d0ci= d0ci � d0ci�1 + 2� d0ci:Let k be the number of geodesics that are (partially) explored before the robotcompletes the recognition process. If the pockets on neither side are exhaustedbefore the algorithm stops, then the total distance traversed is now boundedby the telescopic sumd0 + 2� d0 + kXi=1 hd0ci � d0ci�1 + 2� d0cii= d0ck + 2� d0 kXi=0 ci= d0ck + 2� d0 ck+1 � 1c� 1 :Now consider the case when the pockets on one side are exhausted as illus-trated in Figure 16. In this case, after the robot hits the boundary it movesback to the previous geodesic and then moves again to the next geodesic on theside that was not exhausted. The total distance traversed is the same exceptfor the last step in which is increased by 2 (d0ck � d0ck�1). The competitiveratio is given by the distance traversed divided over the length of a shortestrecognition path. As we have seen above the length of a shortest recognitionpath at step k is at least d0ck�1. Therefore,22



C =minc>1 maxk2N (d0ck + 2�d0(ck+1 � 1)=(c� 1) + 2 (d0ck � d0ck�1)d0ck�1 )=minc>1 (2� c2c� 1 + 3 (c� 1))Di�erentiation yields a minimum for c = 1+q2�=(2� + 3), with a competitiveratio of 4�+1+2q2�(3 + 2�) < 28:85. If the pocket edges were not exhaustedwe obtain a lower competitive ratio for the same value of c, namely � 27:2.Thus, the worst case competitive ration is less than 28:85. 26 ConclusionsWe have presented a strategy for on-line searching in a star-shaped polygonand for on-line recognition of a star-shaped polygon. Our strategies have con-stant competitive ratios of 11.52 and 28.85 respectively, independently of thestarting position of the robot and the position of the target. This is in contrastto on-line searching in other classes of polygons where both the position ofthe target and the starting position are heavily limited.We have also presented a lower bound for on-line searching in a star-shapedpolygon which is close to the upper bound obtained by our strategy. We showthat no strategy which walks into the kernel of a star-shaped polygon can dobetter than 1:50 which improves on the best previously known lower bound ofp2 [8]. Finally, we show that recognition of a star-shaped polygon is at leastp82 competitive.References[1] R. Baeza-Yates, J. Culberson and G. Rawlins. \Searching in the plane",Information and Computation, Vol. 106, (1993), pp. 234-252.[2] P. Berman, A. Blum, A. Fiat, H. Karlo�, A. Ros�en and M. Sacks. \Randomizedrobot navigation algorithms", Proceedings of 7th ACM-SIAM Symposium onDiscrete Algorithms, (1996).[3] A. Blum, P. Raghavan and B. Schieber. \Navigating in unfamiliar geometricterrain", Proceedings of 23rd ACM Symposium on Theory of Computing, (1991),pp. 494-504.[4] Ch. Br�ocker and A. L�opez-Ortiz . \Position-independent street searching", InF. Dehne, A. Gupta, J-R. Sack and R. Tamassia, editors, Proc. 6th Internationa23



Workshop on Algorithms and Data Structures, LNCS 1663, pages 241{252.Springer Verlag, 1999y.[5] A. Datta, Ch. Hipke, and S. Schuierer. \Competitive searching in polygons|beyond generalized streets", in Proc. Sixth Annual International Symposium onAlgorithms and Computation, pages 32{41. LNCS 1004, 1995.[6] A. Datta and Ch. Icking. \Competitive searching in a generalized street",Proceedings 10th ACM Symposium on Computational Geometry, (1994),pp. 175-182.[7] S. Gal. Search Games, Academic Press, 1980.[8] Ch. Icking and R. Klein. \Searching for the kernel of a polygon. A competitivestrategy", Proceedings 11th ACM Symposium on Computational Geometry,(1995).[9] Ch. Icking, R. Klein and E. Langetepe. \Searching for the kernel of a polygon:a competitive strategy using self-approaching curves". Technical Report 211,Department of Computer Science, FernUniversit�at Hagen, Germany, 1997.[10] Ch. Icking, R. Klein and E. Langetepe. \An optimal competitive strategy forwalking in streets." In Proc. 16th Symp. on Theoretical Aspects of ComputerScience, 1999.[11] Ch. Icking, R. Klein and Lihong. Ma. \How to look around a corner." In Proc.5th Canadian Conference on Computational Geometry, pp. 443{448, 1993.[12] M.-Y. Kao, J. H. Reif and S. R. Tate. \Searching in an unknown environment:An optimal randomized algorithm for the cow-path problem", Proceedings of4th ACM-SIAM Symposium on Discrete Algorithms, (1993), pp. 441-447.[13] R. Klein. \Walking an unknown street with bounded detour", ComputationalGeometry: Theory and Applications, Vol. 1, (1992), pp. 325-351.[14] J. Kleinberg. \On-line search in a simple polygon", Proceedings of 5th ACM-SIAM Symposium on Discrete Algorithms, (1994), pp. 8-15.[15] D.T. Lee and F.P. Preparata. \An optimal algorithm for �nding the kernel ofa polygon", Journal of the ACM, Vol. 26, (1979), pp. 415-421.[16] J-H. Lee, K-Y. Chwa. \Tight analysis of a self-approaching strategy for theonline kernel-search problem", Inf. Proc. Let., Vol. 69, No. 1, 1999, pp.39-45.[17] J-H. Lee, C-S. Shin, J.H. Kim and S.Y. Shin. \New competitive strategiesfor searching in unknown star-shaped polygons", Proc. 13th ACM Symp. onComputational Geometry, (1997).[18] A. L�opez-Ortiz and S. Schuierer. \Generalized streets revisited", In J. Diaz andM. Serna, editors, Proc. 4th European Symposium on Algorithms, LNCS 1136,pages 546{558. Springer Verlag, 1996.24



A2aC(1) 1A1 C vl+1vlFig. A.1. The situation for two circles.[19] A. L�opez-Ortiz and S. Schuierer, \Position-independent near optimal searchingand on-line recognition in star polygons", Proc. 5th Workshop on Algorithmsand Data Structures (WADS), (1997), Lecture Notes in Computer Science,pp. 284-296.[20] A. L�opez-Ortiz and S. Schuierer. \The ultimate strategy to search on m rays?"In W.-L. Hsu and M.-Y. Kao, editors, Proc. 4th Intl. Conf. on Computing andCombinatorics, volume 1449 of LNCS, pages 75{84, 1998.[21] L. Palios, \A new competitive strategy for reaching the kernel of an unknownpolygon", To appear, Proc. 7th SWAT, 2000.[22] F. P. Preparata, M. I. Shamos. Computational Geometry, Springer-Verlag, NewYork, 1985.[23] S. Schuierer and I. Semrau. \An optimal strategy for searching in unknownstreets." In Proc. 16th Symp. on Theoretical Aspects of Computer Science. toappear, 1999.A Computing the length of ClLemma 4 The length of Cl is at most (� � �)= sin � d(vl; vl+1). 3Proof: The proof is by induction. First note that we can replace all partsof edges C(j) that are part of Cl by circle segments that intersect the endpoints of C(j). Hence, we assume in the following that Cl consists only of circlesegments.The argument clearly holds if Cl consists of only one circular arc. So as-sume that the claim is true for all curves that consist of k circular arcs andconsider a curve that consists of k + 1 circular arcs that belong to the cir-cles C(1); : : : ; C(k+1) from left to right. Note that Cl is the upper envelope ofC(1); : : : ; C(k+1). Consider the upper envelope Ck of C(1); : : : ; C(k) and the arcAk+1 of C(k+1) that belongs to C. Let Bk be the arc of C(k) that is contained inC(k+1). Clearly, the length of C is given by the length of Ck minus the length ofBk plus the length of Ak+1. Finally, let Dj be the length of the part of vlvl+13 For the de�nition of Cl refer to page 8.25



that is contained in the disks spanned by C(1); : : : ; C(j), 1 � j � k + 1. Weare interested in the ratiork+1 = jCjDk+1 = jCkj � jBkj+ jAk+1jDk+1 :By the induction hypothesis jCkj � (� � �)= sin � Dk. If we write Dk+1 =Dk + �D where �D is the increase in the diameter of C caused by C(k+1),thenrk+1 � (� � �)= sin � Dk � jBkj+ jAk+1jDk +�D :If jAk+1j�jBkj < (���)= sin � �D, then the claim follows immediately. Hence,we can assume that jAk+1j � jBkj � (� � �)= sin � �D which implies that theabove ratio decreases monotonically in Dk. Hence, Dk should be chosen assmall as possible. The smallest value for Dk is the line segment containedin C(k) which implies that Ck consists only of C(k) and all other circles haveradius 0. Hence, we have to check if the ratio for two circles is less than orequal to (� � �)= sin � and the claim follows.Consider the situation in Figure A.1. Let C be the upper hull of the two circlesC(1) and C(2) and Ai the part of C(i) that is contained in C, for i = 1; 2. W.l.o.g.we can assume that the distance from the left end point to the right end pointof C is one. We denote the length of the overlap of the two circle segmentsby a. We want to show that the sum of the lengths of A1 and A2 is no morethan (���)= sin �. To see this consider the sum of the lengths of the completeupper circle segments of C(1) and C(2) which equals (1 + a)(� � �)= sin �. Inorder to obtain the length of A1 and A2 we need to substract the length of thedashed circle segments in Figure A.1. The sum of the length of these segmentsis clearly larger than the length of the circle segment over the line segment oflength a. Therefore,jA1j+ jA2j � jC(1)j+ jC(2)j � a� � �sin � = (1 + a)� � �sin � � a� � �sin � = � � �sin �as claimed. This concludes the proof that the length of C is at most (� ��)= sin �. 2B Walking into the kernelConsider a coordinate system as shown in Figure B.1. The starting positionof the robot has coordinates (1;�1). The possible kernel locations are, in the26



(x,y)
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Fig. B.1. Walking into the kernel.limit, at positions (0; 0) and (u; v) where (u; v) is a point on a line ` at anangle � to the horizontal.The optimal robot path consists of (1) a path from the start point (1;�1) to(1; 0), (2) a path from (1; 0) to a point (x; y) within a distance of 5=2 � or lessfrom ` and (3) a path from (x; y) to the kernel selected by the adversary. As�! 0, (x; y) becomes arbitrarily close to `.The distance traversed by the robot is at least the length of the polygonalchain through the start/end points of steps (1)-(3) above. Since (x; y) and(u; v) are in ` and u = 1, we have that y = x tan� and (u; v) = (1; tan�).Thus the robot's path has lengthj�0j � d((1;�1); (1; 0)) + d((1; 0); (x; y)) + d((x; y); (0; 0))= 1 +q(1� x)2 + (x tan�)2 + xcos�if the kernel is located at (0; 0) andj�uj � d((1;�1); (1; 0)) + d((1; 0); (x; y)) + d((x; y); (u; v))= 1 +q(1� x)2 + (x tan�)2 + 1� xcos�if the kernel is located at (u; v). The competitive ratio of the strategy is givenby max8<: j�ujd((1;�1); (u; v)); j�0jq(2)9=;The expresion above is minimized when the two terms are equal. Substitutingthe angle � = 655=1000 = 0:655 selected by the adversary in the equalityj�ujd((1;�1); (u; v)) = j�0jq(2) 27



results in a quadratic expression. The exact solution can readily be computedusing a symbolic algebra package such as Maple. The closed form solution forx has 42 terms, which we omit for obvious reasons. Substituting the x valueinto either of terms say, j�0j=q(2) gives a closed form for the competitive ratiowhich evaluates numerically to 1:492.
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