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Abstract

We present sharper upper and lower bounds for a known polynomial approximation scheme
due to Li, Ma and Wang [5] for the CONSENSUS-PATTERN problem. This NP-hard problem is an
abstraction of a common bioinformatic discovery task, and numerous heuristic programs exist to
solve it in practice. The PTAS due to Li et al. is simple, and a preliminary implementation [6]
gave reasonable results in practice. However, the previously known bounds on its performance
are useless when runtimes are actually manageable. Here, we present lower and upper bounds
on the performance of this algorithm that partially explain why its behavior is better in practice
than what has been predicted in theory, and which still give specific examples of instances of
the problem for which the PTAS performs poorly in practice.

1 Introduction

Bioinformaticists often find themselves with several different DNA or protein sequences that are
known to share a particular function, but where the origin in the sequence of the function is
unknown. For example, suppose one has the DNA sequence of the region surrounding several
genes, known to be regulated by a particular transcription factor. Here, the shared regulation
may be caused by a sequence element common to all, to which the transcription factor binds.
Discovering this experimentally is very expensive, so computational approaches can be helpful to
limit searches.

The motif discovery problem is an abstraction of this problem. In it, we are given n sequences,
all of length m, over an alphabet >. We seek a single motif, of length L that is found approximately
as a substring of all sequences. Several variants of this problem exist. One can seek to minimize the
maximum Hamming distance between the motif and its instances in all strings (e.g. [8, 2]), maximize
the information content (minimize the entropy) of the chosen motif instances (e.g. [3, 1, 4]), or
minimize the total of the Hamming distances between the motif and its instances [5]. This latter
problem can be formally defined as follows:

Definition 1 (CONSENSUS-PATTERN). Given are n sequences Si,..., Sy of length m each over an
alphabet of size A. Find a substring t; of given length L in each of the sequences and a median
string s of length L so that the total Hamming distance Y ; dg(s,t;) is minimized.

Li, Ma and Wang [5] give a very simple polynomial-time approximation scheme (PTAS) for this
combinatorial motif problem. For a given value of r, consider all choices of r substrings of length
L from the n sequences (the same substring may occur multiple times). For each such collection C
of substrings, we compute its consensus by identifying the most common letter in the first position
of each substring, the second position, and so on, producing a motif M¢. It is easy to identify for a



New results Previous
Condition Lower bound Upper bound upper bound
r=1 2 2 N/A
r=3 1.5 ~ 1.528 ~1+4.006-(A—-1)
general r 1+0(1/r?) 1+06(1/yr)
binary alphabet | conjecture: 1+ O(1/4/r)
general 14+ O(A/\/r)

Table 1: Overview of the results.

given motif M its closest match in each of the n sequences, and thus its score. We do this for all
n"(m — L+1)" collections of substrings, and pick the collection with the best score. The algorithm
has O(L(nm)"*!) run time, and is thus polynomial-time for any particular value of r. Li et al. also
give a quite large bound on the worst-case approximation ratio of this algorithm for r > 3:
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where A is the size of the alphabet . For example, for r = 3, this gives us O(L(nm)*) algorithm
with approximation ratio of ~ 13 even for DNA sequences. To achieve reasonable approximation
ratio of 2, we would have to use r > 8 for DNA sequences (A = 4), or r > 27 for protein sequences
(A = 20), thus requiring unreasonable running times. The high value of the proven bound would
seem to suggest that the algorithm will be useless in practice.

However, many successful combinatorial motif finders do work by generalizing from small sam-
ples in this way, such as SP-STAR [?] and CONSENSUS (samples of 1) [3], COMBINE (samples
of 2 to 3) [7], COPIA (samples of arbitrary size) [6]. Here, focusing on Li et al.’s PTAS, we show
tighter bounds on its performance much closer to reasonable numbers for practical values of r. We
also provide first lower bounds on the PTAS’s performance, identifying specific examples of the
problem for which the algorithm performs poorly. Our results are summarized in Table 1.

2 Basic Observations

Assume that the PTAS achieves some approximation ratio « for a given r, L, and sequences
$1,...,8,. Now consider only the true occurrences t1,...,t, of the optimal motif s*. If we run the
same PTAS on input strings ¢1,...,t,, we would get solution with approximation ratio at least «,
because we consider fewer collections of r substrings C, and for each such collection we have also
fewer choices to find a good occurrence of the consensus string M¢. Therefore we need to consider
only inputs in which m = L, i.e. all input strings have the same length as the desired motif.

Note that if m = L, the problem can be trivially solved by finding the consensus string of all
input sequences. However, we may still apply the PTAS described above, which will in this special
case work as follows:

1. choose parameter r > 1

2. for every collection C of r strings from the set {s1,...,s,}
— set M¢ to be the consensus string of string in C
— compute cost Y., dg(Mc, s;)



3. choose the best M¢ as the median string (motif)

To simplify the notation, we will assume that the alphabet is {0,1,..., A — 1}. In the special
case m = L, we will also always renumber the characters in each column so that consensus is 0 and
therefore the overall optimal motif is s = 0” (this cannot be done in general if m > L).

Finally, we can encounter the problem of ties, that is, a situation when consensus string u of
some collection C is not unique. Consider for example r = 3 and input strings 01, 02, 10, 20. The
optimal motif is 00 with cost 4. If C contains the first three strings, the consensus Mg can be any
of the strings 00, 01, and 02. The first of them is optimal, but the latter two have cost 5.

It is not realistic to assume that the PTAS will always choose the best out of all possible
consensus strings, because their number can be exponential in L. For simplicity, we will assume
that the PTAS will choose the worst consensus u out of all possibilities (i.e., in the above example
it would choose 01 or 02).

3 Upper Bounds

In this section we give better upper bounds for practical values of r =1 and r = 3.

Theorem 1. The approzimation ratio of the PTAS is at most 2, even for r = 1 and regardless of
the size of the alphabet.

Proof. Let ¢ be the cost of the optimal motif 0, that is, the total number of non-zero elements
in all sequences. Let a; be the number of non-zero elements in sequence s;. If the PTAS chooses
sequence s; as the motif, the cost will increase by at most n for every column where s; has non-zero
element. Therefore the cost will be at most ¢+ na;. When we sum this quantity over all sequences
si, we get nc +n Y 1, a; = 2nc. Since the sum of costs for n different potential motifs is at most
2nc, at least one of the motifs has cost at most 2¢, which means the approximation ratio is at most
2. O

Theorem 2. The approzimation ratio of the PTAS for r = 3 is at most (64 + 7/7)/54 ~ 1.528
regardless of the size of the alphabet.

Proof. Let p be proportion of zeroes and ¢ = (1 —p) be proportion of non-zeroes in input sequences.
The optimal cost is therefore gnL. Let b; be the number of non-zeroes in column j.

For each column, we can estimate the expected cost of the column if the triple of rows is chosen
uniformly at random. Column with b non-zeroes will get non-zero answer only if two or three rows
in the triple are non-zeroes. There are b® 4 3b%(n — b) such triples. Each of these triples will incur
cost of at most n in this column. The consensus will be zero for triples with two or three zeroes
(their number is (n — b)3 4 3(n — b)?b). Each of these triples will incur cost b in this column.

Thus the expected cost E(b) for a column with b non-zeroes is at most C'(b)/n3, where C(b) is
the sum of costs over all triples of rows:

C(b) = b*n + 3b%(n — b)n + (n — b)*b + 3(n — b)*b* = bn® + 3b*n? — 5b°n + 2b*. (2)
From linearity of expectation, expected cost over all columns is
1 L

L
E(by,...,by) =Y E(b)) = ﬁ-ZC(bj). (3)



There must exist a triple, whose cost is at most E(by,...,br). Such triple achieves approxima-
tion ratio E(by,...,br)/nqgL.

We will prove by induction on L that E(by,...,br) < HnqL, where H = (64 + 7+/7)/54. This
implies that H is an upper bound on approximation ratio.

For L = 1, the approximation ratio is

E(qn)/ngL = 2¢® — 5¢* + 3¢+ 1

with maximum reached for ¢ = 576‘ﬁ equal to H.

Now assume that the induction hypothesis is true for L — 1. We will prove that it is also true
for L. Expected cost of the first column is F(b;). By induction hypothesis, the expected cost of the
remaining L — 1 columns is at most (ngL — by) - H (nqL — by is the optimal cost for the remaining
columns). Therefore:

24_ 3 2,2 1—-H 3
Eby,....b) < E(by) + (nglL— by) - H = 2 5b"+3bng +(1— H)bn
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We want to prove, that (*) is always negative for 0 < b < n. Indeed, (*) can be simplified as
(b/(108n3))-(6b— (5+2v/T)n)-(6b— (5—+/T)n)%. The first and third factors are always non-negative,
and the second term cannot be positive unless b > n. Therefore the whole term is negative on our
interval. O

+HngL (4)

It is, in fact, possible to easily characterize the “worst-case” scenario that maximizes E(by,...,br):
this is achieved when the non-zero elements are distributed almost equally among the columns as
follows.

Lemma 1. For a given q, n, and L, E(by,...,by) is mazimized, when for some k < L, by, ... by =
0, and by =bgio = ... = b, < n (if we allow by, ..., by, to be non-integral).

Proof. (by induction on L). For L = 1, the hypothesis holds trivially.

Let us assume that the hypothesis holds for all L' < L. Without loss of generality, we can
assume that the columns are sorted by b;. If by = 0, the hypothesis holds trivially from induction
hypothesis. Let by > 0. Then, by induction hypothesis, all the rest of the columns must by
distributed equally (there are no columns with b; = 0, since b; is the smallest). The cost will be
therefore:

Lng—b
Cby) + (L - 1)-0<L>, (5)

L—-1
where nL(q — 1) +n < b; < gn, and b; > 0. This is indeed maximized for b; = gn (straightfor-
ward, but technical proof not shown). O

4 Lower Bounds

In this section we present first lower bounds for the Li et al.’s PTAS. For small values of r, we are
able to give lower bounds which almost match our upper bounds from previous section. For general
values of r, we show an example where the PTAS has approximation ratio 1 + ©(1/r2). Finally,
we conjecture that lower bound on approximation ratio matches asymptotically the upper bound
14+ ©(1/4/r); to support this claim, we present an example for which a slightly modified algorithm
has approximation ratio 1 + ©(1/4/7).



Theorem 3. For r =1, the approximation ratio is at least 2, even for binary alphabet.

Proof. We set L = n. The input will be the unit matrix of size n x n with ones on the diagonal and
zeroes everywhere else. The cost of the optimal solution is n. The result of the PTAS for r = 1 will
be one of the matrix rows, with cost 2n — 2. The approximation ratio is therefore 2 — 2/n which
goes to 2 as n goes to infinity. This shows that the upper bound 2 is tight for r = 1. O

Theorem 4. For r = 3, the approzimation ratio is at least 3/2.

Proof. Consider the following example:

0 1
0 k
1 0
k O

The optimal solution is 00 with cost 2k. However, for any three strings, the solution will be 0z
or 20, which has cost 3k — 1. ]

Theorem 5. The approximation ratio of the PTAS is at least 1+0(1/r?).

Proof. We create n = r + 2 sequences, each of length L = (r + 5)/2. The first L — 1 columns of
the first L — 1 sequences will be an inverted identity matrix, with zeroes on the diagonal and ones
everywhere else. The last column of these sequences contains zeroes. The remaining n — L + 1
sequences have zeroes in the first L — 1 columns and one in the last column. For example for r = 5
we get the following input:

QOO P, ~»r »r O
O O O+ = O -
O O O+ O - =
O O OO - = =
B 2, 2, O O O O

Assume that the PTAS can obtain the optimal solution 0¥. Then there must be some collection
C of strings such that each column has more than r/2 zeroes. In particular, for the last column,
more than half of these strings are chosen from the first L — 1 sequences of the input. Thus, to
achieve more than r/2 zeroes in any other column i < L, we have to include at least one copy of
sequence % (less than r/2 copies of the last n — L 4+ 1 sequences are included). That means we need
to include each of the first L — 1 sequences, and therefore each of the first L — 1 columns contain at
least L —2 = (r 4+ 1)/2 ones. This is a contradiction. Therefore PTAS cannot achieve the optimal
solution.

The optimal solution in the above example has cost ¢ = (r 4+ 1)(r + 5)/2. The PTAS will find
motif 0¥~ 11 with cost ¢+ 1. Therefore the approximation ratio is 1 +1/c = 14+4/[(r+3)? —4]. O



Theorem 6. Consider a modified PTAS, where we allow only a single sample from each input
sequence. Such modified algorithm has approzimation ratio at least 1 + O(1/4/r), even for binary
alphabet.

Proof. Consider the following example. For a given odd r, the number of sequences is n = 2r.
Every column has o = r —+/r ones and n— o = r ++/r zeroes. There is one column for each possible
combination of o ones and n — o zeroes. This means we have L = (7) columns. In this instance the
optimal cost is ¢ = (7)o.

Note, that when choosing r sequences to form a motif, it does not matter which r sequences
we choose; all options are symmetric up to reordering of columns. Therefore all choices lead to the
same cost and we can assume without loss of generality, we have selected first r rows.

For every k, denote K (k) number of columns that have exactly k ones in the first » rows. This
can be computed simply as follows:

o) i) b)

Let K be the number of columns that yield 1 in the consensus pattern. Each of these columns
contains at least (r + 1)/2 ones in the first 7 rows. Therefore, for r > 25:

i e v . L\
K=Y KK> Y KK> Y <k>-<k+ﬁ>zﬁ-<%+2ﬁ> @

_r+1 _r+1 _r+1
k=== k== k=11

According to Maple:
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We have shown that regardless of choice of rows, there are at least aL columns with consensus
1 instead of 0, as r approaches infinity. Each of these columns will contribute 2,/r more than the
optimal solutions. Therefore, the cost of the solution given by PTAS is at least ¢ 4+ 2aL+/r, and

therefore the approximation ratio is at least ¢/(c + 2aL+/r) = 1 + fi% =1+06(1/r). O
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