Search Engines and Web Information Retrieval*

Alejandro Lépez-Ortiz!

School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
alopez-oQuwaterloo.ca

Abstract. This survey describes the main components of web informa-
tion retrieval, with emphasis on the algorithmic aspects of web search
engine research.

1 Introduction

The field of information retrieval itself has a long history predating web search
engines and going back to the 1960s. From its very beginnings there was an
algorithmic component to this field in the form of data structures and algo-
rithms for text searching. For most of this time the state of the art in search
algorithms stayed well ahead of the largest collection size. By the late 1980°s
with the computerization of the new edition of the Oxford English Dictionary
the largest text collections could be searched in subsecond times. This situation
prevailed until the second half of 1995 when the web reached a size that would
tax even the best indexing algorithms. Initially the web was manually indexed
via the “What’s new?” NCSA web page, a role later taken over by Yahoo!. By
early 1995 the growth of the web had reached such a ce that a comprehensive,
manually maintained directory was no longer practicable. At around the same
time researchers at Carnegie Mellon University launched the Lycos indexing ser-
vice which created an index over selected words in web pages. In the Fall of
1995, OpenText started crawling the entire web and indexing “every word of
every page”. This last was the first comprehensive index of the Web. It utilized
state of the art indexing algorithms for searching the Web. Shortly thereafter
DEC launched the Altavista search engine which used what was then a massive
computer to host their search engine. Since then there has been a steady stream
of theoretical and algorithmic challenges in web information retrieval. Today
Google indexes around eight billio pages using a cluster of an estimated size of
100,000 computers.

In this survey we consider the main challenges of web information retrieval.
Typically a web search engine performs the following high level tasks in the
process of indexing the web:

Typically a web search engine performs the following three high level tasks
in the process of indexing the web:

* A shorter version of this survey appears as part of “Algorithmic Foundations of the

Internet”, A. Lépez-Ortiz, SIGACT News, v. 36, no. 2, June 2005.

1. Crawling, which is the process of obtaining a copy of every page in the web.

2. Indexing, in which the logical equivalent of the index at the back of a book
is created.

3. Ranking, in which a relevance ordering of the documents is created.

Over the next few sections we will we discuss in more detail how to implement
each of these steps.

2 Crawling

Discovery process Search engines start by collecting a copy of the web through
a process known as crawling. Starting from an arbitrary URL, a program called
a “spider” (which “crawls the web”) downloads the page, stores a copy of the
HTML and identifies the links (anchor tags) within the page.
The “spider” is sometimes also called a “crawler” or a “robot”.

The URL of each link encountered is then inserted into a database (if not
already present) and marked as uncrawled. Once the spider has downloaded and
completed the analysis of the current page it proceeds to the next uncrawled
page in the database. This process continues until no new links have been found.
In the past search engines only crawled pages that were believed to be “static”
such as .html file as opposed to pages which were the result of queries (e.g.
CGI scripts). With the increase of dynamically served content search engines
now crawl what before would have been considered dynamic content. Nowadays
a large commercial web site is usually served from a database, which has control
over who can access and update the content and how often it must be refreshed.
So in a certain sense, all the content appears to be dynamic. Crawlers must
distinguish then this dynamically served, but rather static, content from a true
dynamic web page such as a registration page.

If we create a graph in which each web page is a node and each HTML link is
a directed edge, the crawling process will only reach those pages that are linked
to starting from the arbitrary URL. To be more precise:

Definition 1. The web-page graph, denoted as P, has a node for every web
page and the directed edge (u,v) if web page u has an html link linking to page
v.

In these terms, the crawling process described above will succeed if and only
if there is a path in the web graph from the starting node to all other nodes in
the graph. In practice it has been observed that this is not the case. Indeed the
web-page graph is formed of thousands of disconnected components. To make
things more complicated the web-page graph is a directed graph as links are not
bidirectional. That is to say, if page a links to page b, then b is reachable from a,
but the converse is not true, unless b explictly links back to page a. This process
needs to be repeated a large number of times each with a different starting URL.

In fact Broder et al. [2] showed that the web-page graph has a bow-tie struc-
ture as shown in Figure 2. The center knot, or core is a strongly connected

oo O O

IN ouT

)/ N

Fig. 1: Bow-tie structure.

component (SCC) on the web-page graph. In this core we can reach any one
page starting from any other page in the core. The left part of the tie consists
of pages that point to the SCC core but are not themselves reachable from the
core by “clicking” on links from page to page. These pages are called origination
pages (IN).

The right part of the tie are those pages that are pointed to by at least
one page in the core, but they themselves do not point back to the core. Those
pages are called “termination” pages (OUT). The finger-like structures are called
tendrils, which are connected to the main bow-tie but in the “wrong” direction
(dead-ends). Lastly there are the disconnected components. At the time of the
study the number of them was estimated at 17 million, however since then there
has been some indication that their prevalence might have been overestimated
due to the practice by some commercial web sites to return non-standard “404
Not Found” pages.

Observe that for the crawler to collect all pages, it must visit all tendrils and
pages in the origination section. This means that the crawler has to be manually
seeded to start millions of searches in the origination and disconnected section.

Clearly, these seeds cannot be discovered by following links alone. Hence
alternative methods to collect URLs are needed. In practice some commonly
used ones are: submit URL, random IP/URL probing, passive listening, and
previously discovered URLs.

Certain disconnected components can still be reached if their creators manu-
ally submitted the URL of their web site to the search engine. A second method
is for the crawler to perform random samplings by generating a random IP ad-
dress not already in the URL database and requesting a web page from that ad-
dress. Passive listening consists of scanning open communication channels such

as newsgroups and TRCs extracting URLs contained in them, which are then

added to the URL database to be crawled.

Once an URL has been discovered it remains in the database even if later on
cannot be reached through an external link. This way even if a page eventually
becomes part of a disconnected component it can still be reached by the crawler.

URL database The URL database has a relatively simple structure. The chal-
lenge comes from both the rate of access and the fact that most most web pages
have more than one valid URL that refers to them. Observe that URLs can
be added off-line to the database. That is, when the spider finds a link in the
process of crawling, the spider can continue crawling while the URL database
processes the insert/lookup operation for the link found. Later on the crawler
can request from the database the next batch of links to be followed. This means
that the URL database does not need to depend on the traditional on-line data
structures such as B-trees which fully complete an operation before proceeding
on to a second one.

Document duplication detection Another challenge is the duplicate document
detection problem. Popular documents tend to be replicated numerous times
over the network. If the document is in the public domain, users will make local
copies available for their own benefit. Even if the popular content in question
is proprietary, such as the web page of a news organization, it is likely to be
duplicated (mirrored) by content distribution networks for caching purposes.
Under certain circumstances a crawler can chance upon a mirror site and index
this alternate copy.

In the case of public domain content, duplicate detection is complicated by
the fact that users tend to change formatting and add extra headers and footers
when creating a local copy. Hence we cannot use a straightforward tool such
as checksum to check if two documents are identical. A second challenge in
document duplication is the speed at which the documents must be processed.
If time were not an issue, tools such as UNIX’s diff whose performance is proven
could be used to compare documents in a pairwise fashion. In the context of web
page crawling this solution is not practicable as there are over four billions of
pages on the web and hence a pairwise comparison would be too time consuming.
To be effective and algorithm must make a determination of duplication within
the time it takes to download a document.

Web site duplication detection Certain commercial web sites replicate their entire
web sites in various geographic locations around the world. In such cases we
would like to determine that the entire site is duplicated and hence it suffices to
crawl only one of the copies. See [10, 3] which survey some of these problems in
further detail.

3 Indexing

Once a copy of the web is available locally, the search engine can, in principle,
receive queries from users searching for documents containing certain keywords
or patterns. There are several different ways to accomplish this. For example,
for small, rapidly changing files UNTX provides a facility called grep which finds
patterns in a source text in time proportional to the length of the text. Clearly,
in the case of the web which has an estimated size of several terabytes of text,
grep would be too slow. Hence, we can benefit from the use of an index. A
computerized index for a source text is not unlike the index of a book, where
relevant words are listed together with the page number in which they appear.
In the case of the web, we can generally index every word (relevant or not)
appearing in the page or even every pattern together with the position in which
they can be found in the corpus.

Definition 2. The set of positions where a term can be located in the corpus is
called the postings set.

Typically, a user query is a collection of terms such as (algorithm, index,
internet) which is interpreted as the set of documents containing all three
terms. In other words, the answer to the query above is the intersection of the
postings sets corresponding to each of the three terms.

Currently there are three main approaches to text indexing. The most ex-
tensively studied, from a theoretical perspective, is the String Matching Problem
(SMP). In this problem the corpus is a single linear string of text. If there is more
than one source document they are simply concatenated sequentially with some
suitable markings to form one long string. For example, let the corpus consist of
two documents as shown in Figure 2.

ot e

<d Notes
12 6 567

I</doc><doc>
789101 2 3 4

N
56789201234

o n
[{e]
w
(=]
[y
N A

oc >
345

Fig.2: Corpus with two documents. The numbers below denote the position of
each letter in the text

The user queries for an arbitrary pattern, such as “otes”. The corresponding
output to the query is the position of all occurences of the pattern in the text.
For example “otes” appears twice in the string above, with the first occurrence
in position 7 and the second in position 25. The location is usually represented
as a byte offset from the beginning of the corpus.

Another approach to search engines is the Inverted Word Indez. In this case
we only index words (or tokens) but not arbitrary patterns. Currently most, if
not all, commercial web search engines use an inverted word index approach in
their indices.

The third approach is the document based approach. As described above
queries do not depend on the particular location of a word in a document, but
only care about the presence or absence of the word in a given document. Indeed
many search engines support this model only. Surprisingly, although widely used,
this approach had not been formalized until recently.

3.1 The String Matching Problem

Suffiz trees Traditionally algorithms supporting this type of queries use algo-
rithms based on suffix trees. Suffix trees can be built in linear time using the
algorithm of Esko Ukkonen [15]. In terms of space the straightforward implemen-
tation consumes nlgn bits of space. This is so as every tree edge is represented
by a pointer of lg n bits long plus the position of the pattern in the text itself,
stored in the leaves, also takes lgn bits. He et al. showed that the internal nodes
can be implemented more succinctly using only a total of O(n) space [9]. How-
ever the cost of the pointers to the text at the leaves remains the same for a
total cost of O(nlgn).

For the case of the web n is in the order of trillions of bytes (2°) and hence
lgn ~~ 40. This means that a suffix based solution might require substantially
more space than the original corpus size. Reducing this requirement is an active
area of research and somewhat more efficient representations are known.

Burrows- Wheeler Transform The Burrows-Wheeler transform can be used for
more space efficient indexing techniques. The algorithm for searching for a pat-
tern P using the BWT takes time O(|P|logn + occ) and is as follows.

In terms of text indexing, to date the biggest challenge has been to devise
a search structure that supports searches for a keyword or pattern P on a text
of n bits long in time | P| (i.e. proportional the length of the pattern P) while
using an index of size n (bit probe model). To place this in context, we know
that searching can be done using O(1) space, aside from the text, at the cost of
search time O(n) where n is the length of the text. This is the case for grep-like
algorithms such as Knuth-Morris-Pratt. Such an algorithm of course would be
impracticable for the web, hence the preference for SMP-like solutions that have
O(|P|) search time, or a close approximation, at the expense of ©(nlogn) space
usage.

The state of the art in indexing techniques is very close to achieving the
dual objective of linear time i.e. O(|P|) and linear space index structures. The
classic suffix tree structure supports searches in | P| time but requires an index of
size nlogn. In contrast the recently developed compressed suffix arrays support
searches in time O(|P|/logn + log® n) using O(n) bits in the unit cost RAM
model [8,12,5].

3.2 Inverted word index

In this case we collect a set of words which are indexed using a standard index
structure such as a sorted array, B-tree, or skip list. When the user queries for a

word we search in the B-tree using the word as a key. This leads to an external
leaf of the B-tree which points to the posting lists of the word, if present in the
text.

In practice, an English text results in an index of size around 20% of the
original size using naive methods, and as little as 5-10% using some advanced
compressing mechanisms.

3.3 Document Index

Another algorithmic challenge of interest is to devise data structures and algo-
rithms tailored to an heterogeneous, document-based collection of documents
such as the World Wide Web [13,4]. Most of the classic indexing schemes pre-
sume a model in which the user is searching for the specific location of a pattern
in a contiguous text string. In contrast, search engine users give a collection of
query terms (around three or so on average) and are searching for the subset of
documents that contain some or all of the terms, ranked by some relevance met-
ric. Observe that in this setting the input is a set of strings or documents each
with a unique ID and there is no inherent order between different documents.
The operations required in the abstract data type (ADT) are

— list(p) Report all documents containing the pattern p.

— mineg (p) Report all documents containing at least & occurrences of the pat-
tern p, for a fixed, predetermined k.

— repeats,(p) Report all documents containing at least two occurrences of the
pattern p at less than k positions away, for a fixed predetermined k.

S. Muthukrishnan gives algorithms for this problem [13]. A related prob-
lem consists of searching a large collection of documents that has been suitably
tagged using XML. In such a setting the query language is extended to include
predicates on the tags themselves, such as the XPath query language. There
have been papers that study algorithms specifically tailored to XPath queries

[6]-

4 Ranking

Aside from the algorithmic challenges in indexing and query processing, there
are ranking and classification problems that are, to a certain extent, unique
to web content. Web publishing is not centrally managed; as a result, content
is of varied quality and, as noted above, duplicates of popular documents are
common. At the same time, and in contrast to other heterogeneous collections,
content is crossed-linked by means of links (). In practice it has
been observed that this structure can be exploited to derive information on the
relevance, quality, and even content, of a document. To give a trivial example,
the number of incoming links to a page is a reflection of the popularity of the
topic as well as the quality of the document. In other words, all other things
being equal, the higher the quality/usefulness of the document, the more links

it has. In practice this is not a very effective method to determine document
relevance as popularity of the topic seems to occlude relevance. For example, a
very popular page that mentions an obscure term in passing will have more links
that an authorative page defining and discussing the term.

In 1998, Jon Kleinberg at IBM, and independently Larry Page et al. at Stan-
ford, discovered a way to distinguish links due to popularity from those reflecting
quality [11, 14]. Links are initially given equal weights and considered as votes of
confidence on other web sites. After this is done the links from each web site are
re-weighted to reflect the confidence ranking computed above and the process
is repeated. In principle this process could go on forever, never converging as
sites transfer weights between them. A key observation was to consider first the
induced subgraph of the result set from the web graph, and then interpret the
adjacency matrix A of that subgraph as a linear transformation. Then one can
show that the re-weighting process in fact converges to the eigenvalues of the
matrix A7 A. The eigenvalues rank the pages by relative relevance, as perceived
by their peers. This presumes that when a web site links to another there is, to a
large degree, an implicit endorsement of the quality of the content. If this is the
case often enough, the eigenvalue computation will produce an efficient ranking
of the web pages based purely on structural information.

It is difficult to overestimate the importance of this result. Traditionally,
many, if not most, systems for ranking results were based on natural language
processing. Unfortunately, natural language processing has turned out to be
a very difficult problem, thus making such ranking algorithms impractical. In
contrast, the eigenvalue methods used by Page’s ranking and Kleinberg’s HITS
(hubs and authorities) do not require any understanding of the text and apply
equally to pages written in any language, so long as they are HTML tagged and
mutually hyperlinked.

A drawback of the hub and authorities method is that the amount of com-
putation required at query time is impractically high. An open problem is to
find an alternate method to compute the same or a similar ranking in a more
efficient manner.

Interestingly the same eigenvalue computation can be used to categorize the
pages by topic as well as perform other content-based analysis [7]. This subfield
has come to be known as spectral analysis of the web graph. [1] show that under
a reasonable probabilistic model for the web graph, spectral analysis is robust
under random noise scenarios.

5 Conclusions

In this survey we presented an overview of the main aspects of web information
retrieval, namely crawling, indexing and ranking.

References

1. Yossi Azar, Amos Fiat, Anna R. Karlin, Frank McSherry, and Jared Saia. Spectral
Analysis of Data. In Proceedings of ACM Symposium on Theory of Computing

10.

11.

12.

13.

14.

15.

(STOC), 2001, pp. 6 19-626.

. Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins and Janet Wiener. Graph structure in
the Web, Proceedings of the 9th international World Wide Web Conference, 2000,
pp- 309-320.

. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S.R. Kumar, P. Raghavan, S.

Rajagopalan, and A. Tomkins. Mining the link structure of the World Wide Web.
IEEFE Computer, August 199 9.

. Erik D. Demaine, Alejandro Lépez-Ortiz, and J. Tan Munro. Adaptive set inter-

sections, unions, and differences. In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA) 2000, pp. 743-752.

. Erik D. Demaine, and Alejandro Lépez-Ortiz. A linear lower bound on index size

for text retrieval. Journal of Algorithms, Vol. 48, no. 1, pp. 2-15, 2003.

. Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees

with level-ancestor queries. In Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, (SODA) 2004, pp. 1-10.

. D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from link

topology. In Proceedings of the ACM Conference on Hypertext and Hypermedia,
1998, pp. 225-234.

. Roberto Grossi, and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees

with applications to text indexing and string matching. In Proceedings of ACM
Symposium on Theory of Computing (STOC), 1999, pp. 3 97-406.

. Meng He, J. Ian Munro and S. Srinivasa Rao. A Categorization Theorem on Suffix

Arrays with Applications to Space-efficient Text Indexes. To appear in proceedings
of ACM-SIAM Symposium on the Discrete Algorithms, (SODA), 2005.

Monika R. Henzinger. Algorithmic Challenges in Web Search Engines. Internet
Mathematics, vol. 1, no. 1, 2004, pp. 115-126.

J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA), 1998, pp. 668-677.
U. Manber, and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, vol. 22, no. 5, 1993, pp. 935-948.

S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Pro-
ceedings of ACM-STAM Symposium on Discrete Algorithms, (SODA) 2002.
Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical Report, Department of
Computer Science, Stanford University, 1999-66.

Esko Ukkonen. On-Line Construction of Suffix Trees. Algorithmica v.14 n.3,
pp-249-260, 1995.

