
Simple, E�cient and Robust Strategies to Traverse Streets�Alejandro L�opez-Ortizy Sven SchuiererzAbstractWe present a family of strategies for the problem ofsearching in an unknown street for a target of un-known location. We show that a robot using a strat-egy from this family follows a path that is at most� + 1 times longer than the shortest possible path.Although this ratio is worse than the ratio of thebest previously known strategy, which achieves a de-tour of at most 2p2 � 2:8284 times the length ofa shortest path, the simplicity of the analysis is in-teresting in its own. We use this new strategy aspart of a hybrid method to obtain an equally sim-ple strategy of slightly more complex analysis with acompetitive ratio of 12p�2 + 4� + 8 � 2:75844. The�+ 1-competitive strategy is very similar in spirit tothe �rst published strategy of which the best analysisis very involved and gives a bound of � 4:44. Moreimportantly, we show that the �+1 strategy is robustunder small navigational errors.1 IntroductionOne of the main problems in robotics is to �nd apath from the current location of the robot to a givengoal of unknown location, particularly in those caseswhere the robot has only a partial knowledge of itssurroundings.In this paper we assume that the robot isequipped with a vision system that provides a vis-ibility map of its local environment. Based on thisinformation the robot has to �nd a path to a visu-ally identi�able given goal that is located somewhere�This research is partially supported by the DFG-Project"Diskrete Probleme", No. Ot 64/8-1.yDepartment of Computer Science, University of Waterloo,Waterloo, Ontario CANADA N2L 3G1,e-mail: alopez-o@neumann.UWaterloo.cazDepartment of Computer Science, University of WesternOntario, London, Ont., Canada N6A 5B7, and Institut f�ur In-formatik, Universit�atFreiburg, Am Flughafen 17, D-79110 Freiburg, FRG, e-mail:schuiere@informatik.uni-freiburg.de

within the scene. The search of the robot can beviewed as an on-line problem in which the amountof information available to the robot increases as itdiscovers its surroundings in its travels. A naturalmeasure of the quality of a search strategy is to usethe framework of competitive analysis as introducedby Sleator and Tarjan [12]. A search strategy is calledc-competitive if the path traveled by the robot to �ndthe goal is a most c times longer than a shortest path.The parameter c is called the competitive ratio of thestrategy.Since there is no strategy with a competitive ratioof o(n) for scenes with arbitrary obstacles having atotal of n vertices [2], the on-line search problem hasbeen studied previously in various contexts where thegeometry of the obstacles is restricted [1, 2, 3, 4, 10,11].Klein introduced the notion of a street which al-lowed for the �rst time a search strategy with a con-stant competitive ratio [7]. In a street, the startingpoints s and the goal g are located on the boundary ofthe polygon and the two polygonal chains from s to gare mutually weakly visible. Klein presents a strategyfor searching in streets and gives an upper bound onits competitive ratio of 1+3=2� (� 5:71). The analy-sis was recently improved to �=2 + p1 + �2=4 (�4:44) by Icking [6]. Though Klein's strategy per-forms well in practice|he reports that no examplehad been found for which his strategy performs worsethan 1:8|the strategy and its analysis are both quiteinvolved and no better competitive ratio could beshown until, recently, Kleinberg presented a new ap-proach.In this paper we present a � + 1 (� 4:14) anal-ysis of a strategy similar to Klein's. This analysisis signi�cantly simpler than other published work[7, 9]. It also has the advantage that the strategyproposed is robust under small navigational errors.The simplicity of the strategy and analysis pointsnaturally to possible improvements in the strategy.To illustrate this we present a hybrid method which1



uses the � + 1-competitive strategy and results in a12p�2 + 4� + 8 � 2:75844 that betters the best pre-viously known of 2p2-competitive ratio [8].The rest of this paper is organized as follows. Inthe next section we introduce some notation and def-initions. Then the family of strategies is described inSection 3, and in Section 4 we present its analysis.In the next to last section we present and analyzethe hybrid strategy and then we conclude with someobservations and directions of further research.2 De�nitions and AssumptionsWe consider a simple polygon P in the plane with nvertices and a robot inside P which is located at astart point s on the boundary of P . The robot hasto �nd a path from s to the goal t. The search ofthe robot is aided by simple vision (i.e. we assumethat the robot knows the visibility polygon of its cur-rent location). Furthermore, the robot retains all theinformation seen so far (in memory) and knows itsstarting and current position. We are, in particu-lar, concerned with a special class of polygons calledstreets �rst introduced by Klein [7].De�nition 2.1 [7] Let P be a simple polygon withtwo distinguished vertices, s and t, and let L andR denote the clockwise and counterclockwise, resp.,oriented boundary chains leading from s to t. If Land R are mutually weakly visible, i.e. if each pointof L sees at least one point of R and vice versa, then(P; s; t) is called a street.We denote the L2-distance between two points p1 andp2 by d(p1; p2) and the L2-norm of a point p by kpk.De�nition 2.2 Let P be a street with start point sand goal t. If p is a point of P , then the visibilitypolygon of p is the set of all points in P that areseen by p. It is denoted by V (p).De�nition 2.3 A window of V (p) is an edge of V (p)that does not belong to the boundary of P (see Fig-ure 1).A window w splits P into a number of subpolygonsP1; : : : ; Pk one of which contains V (p). We denote theunion of the subpolygons that do not contain V (p)by Pw.All windows are collinear with p. The end point ofa window w that is closer to p is called the entrance
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Figure 1: The the visibility polygon V (p) of p withwindows w1; : : : ; w5.point of w. We assume that a window w has theorientation of the ray from p to the entrance point ofw. We say a window w is a left window if the partPw of P that does not contain V (p) is locally to theleft of w w.r.t. the given orientation of w. A rightwindow is de�ned similarly.De�nition 2.4 Two windows w1 and w2 are clock-wise consecutive if the clockwise oriented polygonalchain of V (p) between w1 and w2 does not contain awindow di�erent from w1 and w2. Counterclockwiseconsecutive is de�ned analogously.3 A Family of StrategiesAs observed by Kleinberg the shortest path P from sto t consists of a number of line segments that touchre
ex vertices of P . The general strategy we followis to start at a re
ex vertex v of P that belongs to Pand to identify another re
ex vertex v0 of P that iscloser to t by traveling further on. If the robot hasidenti�ed v0, then it moves to it and starts the searchanew. A move from one re
ex vertex of P on P toanother closer to t is called a step.If the robot has traveled along the path P , thenwe assume that the robot knows the part of P thatcan be seen from P , i.e. the robot maintains thepolygon V (P) = Sp2P V (p). We say a window w ofV (p) is a true window w.r.t. P if it is also a windowof V (P).In the following we present the relevant resultsabout true windows from [9].2



p� ` p+pFigure 2: The subsegment of target points.Lemma 3.1 If w is a right (left) window of V (p)and the boundary of Pw belongs to L (R), then w isnot a true window.Lemma 3.2 All windows that belong to L (R) areclockwise (counterclockwise) consecutive in V (p).True windows are called consecutive if there is notrue window that is between them. An immediatecorollary of Lemmas 3.1 and 3.2 is that true left andtrue right windows are consecutive.Corollary 3.3 If w0 is the window that is inter-sected by P the �rst time, then all true left (right)windows are clockwise (counterclockwise) consecutivefrom w0 in V (p).Because of Corollary 3.3 there is a clockwise-mosttrue left entrance point from w0 which we denote byp+ and a counterclockwise-most true right entrancepoint of V (p) which we denote by p� provided thatV (p) contains both true left and right windows. Thepoint p+ is called the left extreme entrance point andp� the right extreme entrance point of V (p). As ob-served by Klein, it is only when V (p) contains bothtrue left and right windows when the optimal strategyis unclear. Thus, our strategy mimics Klein's strat-egy for the cases without two true windows [7, 9].Namely, the cases are:Case 1. The goal t is visible to the robot. Therobot moves to t on a straight line.Case 2. There is no true left (right) window.The robot moves to p� (p+).Case 3. The points p, p+, and p� are collinear.The robot moves along the line pp+ to the closer pointof p+ and p�.

In the case of two true windows, the robot hasto determine the trajectory to follow. As proposedby Klein, the robot selects a target point ti in theline p+i p�i . The robot moves then in a straight linetowards ti until either of the entrance points haschanged or the goal has been identi�ed and reached.There are several possible criteria to select ti. Kleinstudied the case where ti balances the current ab-solute detour, as compared to the possible optimaltrajectory, which is either the line joining the chainof left points p�i or joining the right points p+i , de-pending on the actual location of the goal. Di�erentcriteria may be used to select the target point ti. Inparticular, this leads to the main family of stategies:Strategy Walk-in-Circles. Let ` be the subseg-ment of p�i p+i which consists of the points t such thatd(p�i ; t) � d(p�i ; pi) and d(p+i ; t) � d(p+i ; pi) (see Fig-ure 2). The algorithm chooses a point ti in the targetsegment ` and moves in a straight line towards it. If anew window appears, the robot recomputes ` accord-ing to the updated points p+i+1 and p�i+1, and the newposition pi+1, until the goal is found. (see Figure 3).4 AnalysisWe consider the case where the goal turns out to beon the right side. This is without loss of generalitysince the local target selection strategy is invariantunder re
ections.The length of the trajectory traversed by therobot is determined by the sum of the length of allsegments pipi+1, i.e. Pn�1i=0 d(pi; pi+1), where n is thenumber of extreme entrance points seen by the robotin a step. Note that p0 = s and p+n =t. The lengthof each of these segments can be bounded by usingthe triangle inequality; viz. with notation as in Fig-ure 3, we have that d(pi; pi+1) � d(pi; q) + d(q; pi+1),where q is the point determined by the intersection ofthe line pi+1p+i and the circle centered at p+i passingthrough pi.In turn the length of d(pi; q) is bounded by thelength of the circular arc piq. Let �i = 6 qp+i pi mea-sured in radians. The length of the circular arc piq isgiven by �i � d(pi; p+i ). Thus,Xi d(pi; pi+1) � Xi (d(pi; q) + d(q; pi+1))� Xi ��i � d(pi; p+i ) + d(q; pi+1)� ;3



p�i = p�i+1 tiq pi+1pi p+i p+i+1
Figure 3: A single step in the strategy.and the competitive ratio is determined byPi d(pi; pi+1)Opt � Pi �i � d(pi; p+i ) +Pi d(q; pi+1)Opt ;where Opt is the length of the optimal walk from thestarting point to the goal. Note that, if the �naltarget is on the right chain as assumed, then Opt =d(p0; p+0 ) +Pn�1i=0 d(p+i ; pi+1).The following two lemmas allows us to simplifythe expression above. These lemmas follow quite nat-urally from the diagrams, and we provide a formalproof only for completeness.Lemma 4.1 Let Di denote the length of the opti-mal walk from point pi to the �nal target p+n . ThenDi+1 = Di � d(q; pi+1).Proof: If the target is located on the right side,the optimum trajectory from any given point is tomove on a straight line to the uppermost visiblepoint on the right chain, and follow the chain ofpoints p+i p+i+1 from then onwards. From point pi,the length of the optimum trajectory is then Di =d(pi; p+i ) + Pn�1j=i d(p+j ; p+j+1), and after moving topi+1 is Di+1 = d(pi+1; p+i ) + Pn�1j=i d(p+j ; p+j+1) =d(pi; p+i ) � d(q; pi+1) + Pn�1j=i d(p+j ; p+j+1) = Di �d(q; pi+1) as required, since q is located on the cir-cle centered at p+ and passing through pi. 2At the starting position the distance D0 is pre-cisely the length of the right chain walk d(p0; p+0 ) +Pn�1i=0 d(p+i ; p+i+1), and at the end of the walk therobot �nds itself at a zero distance from the tar-get point (i.e. the robot is at the target point).

Then the sum of the actual gains overall must bePi d(q; pi+1) =Pi d(p+i ; p+i+1). ThusPi d(pi; pi+1)Opt � Pi �i � d(pi; p+i ) +Pi d(q; pi+1)Opt= Pi �i � d(pi; p+i )Opt + 1:The term Pi �i � d(pi; p+i ) can be seen as aweighted sum, where the �is are the weights. Let� = Pi �i, and let k be such that pk is the point inthe robot's trajectory such that d(pk; p+k ) � d(pi; p+i ).In other words, pk denotes the largest term in theunweighted sum. Then we have Pi �i � d(pi; p+i ) �Pi �i � d(pk; p+k ) = � � d(pk; p+k ).Lemma 4.2 The distance d(pk; p+k ) is no larger thanthe length of the polygonal chain Opt = d(p0; p+0 ) +Pn�1i=0 d(p+i ; p+i+1).We actually prove a stronger result, namely thatd(pi; p+i ) � d(p0; p+0 ) +Pi�1j=0 d(p+j ; p+j+1).Proof: By induction on the number of steps i.When i = 0, the two terms are equal and thus the in-equality holds. For i+1, we have that d(pi+1; p+i+1) =d(p+i ; p+i+1)+d(pi; p+i )�d(pi+1; q) (see Figure 3); andby induction hypothesis, d(pi+1; p+i+1) � d(p+i ; p+i+1)+d(p0; p+0 )+Pi�1j=0 d(p+j ; p+j+1)�d(pi+1; q) � d(p0; p+0 )+Pij=0 d(p+j ; p+j+1). 2This impliesPi d(pi; pi+1)Opt � � � d(pk; p+k )Opt + 1 � � + 1:Lastly, as it was noted by Klein (see proof oflemma 2.7 in [7]), if the angle 6 p�i pip+i ever exceeds� then at the point where the angle was � {or pos-sibly even before{ there must have been no true leftwindow. In this case, the robot moves to the currentp+ with competitive ratio bounded by � + 1.As a consequence, the trajectory can be analyzedin two parts. First, until the robot moves to the pointp+ as a \temporal target", and second, the search af-terwards, in which we start anew from a point on theright chain onwards towards the goal. The robot thenrecurses in the second search, and the total compet-itive ratio is bounded by the maximum of the com-petitive ratio on both parts.Notice that 6 p�i+1pi+1p+i+1 � 6 p�i pip+i + �i, andthus � � 6 p�n pnp+n � 6 p�0 p0p+0 +Pi �i � �. From4



which follows that the competitive ratio for each partof the algorithm is, at worst,Pi d(pi; pi+1)Opt � � + 1:Theorem 4.3 A robot moving traveling under thestrategyWalk-in-Circles has a �+1 competitive ratio.As the target in each step is selected from the in-terval ` this provides a margin of navigational errorfor the robot. That is, the strategy is robust undersmall constant bias of compass heading. The tol-erance of the strategy is proportional to the aspectratio of the smallest vs largest edges encountered andthe smallest distinguished angle between left or rightextreme entrance points.5 A Hybrid MethodFrom the analysis above is clear that the competi-tive ratio of strategy Walk-in-Circles is directly de-pendent on the total \turn" angle �. As it waspointed out, � is smaller than � minus the initialangle 6 p�0 p0p+0 . This implies that, if the initial angleis large, the strategy gives a better competitive ratio.In this section we consider a hybrid method, inwhich a strategy similar to that proposed by Klein-berg [8] is followed for initial angles 6 p�0 p0p+0 smallerthan �=2 and the strategy of Section 3 is used forangles larger than �=2.Hybrid Strategy.Cases 1-3 are as in Section 3.Case 4 If 6 p�0 p0p+0 � �=2 then the robot moveson the line perpendicular to p�0 p+0 . As the robotadvances it updates the vertices p�i and p+i as thewindows seen change. When either of 6 p�i p p0 or6 p+i p p0 = �=2, where p is the current position of therobot, it switches to strategyWalk-in-Circles, with pas starting point.Case 5 If 6 p�0 p0p+0 � �=2 then the robot usesstrategy Walk-in-Circles.From the discussion in Section 4, it follows thatcases 1-3 and 5 have a competitive ratio of at most�=2 + 1. Case 4 requires a more careful analysis.If, as in the previous section, we assume that thegoal lies on the right side, then the optimal trajectoryis given by d(p0; p+0 ) +Pi d(p+i ; p+i+1). Let j be theindex of the re
ex vertex in which the robot switchedstrategies. Notice that 6 p+j p0p�j is now bigger equalto �=2.

p�j p+jp+0pp�0 p0Figure 4: A hybrid strategy.Lemma 5.1 The distance traversed by the robot upto the point where it switches strategy is bounded byd(p0; p) � qd(p0; p�j )2 � d(p; p�j )2 on either side.Proof: For the vertex forming the right angle,the lemma follows trivially from the Theorem ofPythagoras. On the opposing vertex, say as in Fig-ure 4, the law of the cosines states d(p0; p+j )2 =d(p0; p)2+ d(p; p+j )2� 2 d(p0; p) d(p; p+j ) cos( 6 p0pp+j );which implies d(p0; p+j )2 � d(p0; p)2 + d(p; p+j )2 as6 p0pp+j � �=2, from which the lemma follows. 2As the robot applies strategy Walk-in-Circles asif p was the starting point, we have that the lengthof the distance traversed by it from p onwards isbounded by (�=2+ 1) �d(p; p+j ) +Pn�1i=j d(p+i ; p+i+1)�.Thus the competitive ratio is given by R=Opt where,R = qd(p0; p+j )2 � d(p; p+j )2 +(�=2+ 1)�d(p; p+j ) + n�1Xi=j d(p+i ; p+i+1)�Opt = d(p0; p+0 ) + n�1Xi=0 d(p+i ; p+i+1):Let Opt0 = d(p0; p+j ) + Pn�1i=j d(p+i ; p+i+1). SinceOpt � Opt0 then R=Opt � R=Opt0. Without lossof generality, we can assume that d(p0; p+j ) = 1. IfR=Opt0 � (�=2 + 1 + k) for some k � 0, then R �(�=2 + 1+ k)Opt0, which impliesq1� d(p; p+j )2 + (�=2 + 1) d(p; p+j )� (�=2 + 1 + k) + k n�1Xi=j d(p+i ; p+i+1):5



Since k �Pn�1i=j d(p+i ; p+i+1) can be arbitrarily small,for the expression above to be satis�ed we need�=2 + 1�q1� d(p; p+j )2 � (�=2 + 1) d(p; p+j ) � �k.Let f(x) = �=2 + 1 � p1� x2 � (�=2 + 1) x. Thisfunction has an absolute minimum in the domainof interest at xmin = (� + 2)=p�2 + 4� + 8 withf(xmin) = �=2 + 1 � 12p�2 + 4� + 8. From whichthe fact that k � 12p�2 + 4� + 8 � �=2 � 1 follows.Since the competitive ratio R=Opt is bounded by�=2 + 1 + k, we have the following theorem.Theorem 5.2 A robot using the Hybrid Strategyhas a 12p�2 + 4� + 8 competitive ratio.The value 12p�2 + 4� + 8 is approximately2:758::.6 Conclusions and Open ProblemsWe introduced and analyzed the �rst family of strate-gies for the street navigation problem. Because ofthis approach, the resulting algorithm is more robustunder navigational error. It remains to be shown if itis possible for a robot to traverse a scene with a pre-determined maximal navigational error per unit tra-versed at a predetermined competitive ratio. We alsointroduced a hybrid strategy which has a better com-petitive ratio than either of the original two strategiesthat de�ne it. As the hybrid strategy shows, the �+1analysis not tight for small initial angles. In principle,it may be possible to improve on the � + 1 ratio byanalyzing the Walk-in-Circles strategy di�erently foreach case. AS well, the best lower bound known fortraversing streets is p2. The gap between this lowerbound and the best upper bound is still signi�cant,and remains to be improved7 AcknowledgementWe would like to thank Prabahakar Ragde for hisvaluable comments on an earlier version of this paper.References[1] R. Baeza-Yates, J. Culberson and G. Rawlins.\Searching in the plane", Information and Com-putation, Vol. 106, (1993), pp. 234-252.
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