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1 OverviewFirst we present the problem of reasoning in impossible worlds, and explain its rele-vance and applicability in the real world. Then we determine the model under whichthe intelligent agent operates. The problem is then recast in this model. In x4 wepresent a general overview of literature on impossible worlds reasoning or conterfac-tuals. Then, with this knowledge at hand we de�ne the notion of independence anddegrees of independence from which the concept of a measure of dependency followsnaturally. We compare this measure with the standard probability of conditionalsand Lewis' triviality theorems.2 IntroductionReasoning about the real world allows an intelligent agent to emit judgments, makedecisions and act [FHV89]. Further, an intelligent agent must be able to reasonover imaginary worlds in order to weight the consequences of an event that hasn'thappened yet, but that may occur in the future.However the usefulness of the ability to reason in an imaginary impossible (asopposed to imaginary, but possible) world is not immediate. How would the abilityto reason over a world that is known not to exist may bene�t an intelligent agent?The following situations exemplify the advantages of such a capability in a variety ofsituations:� Experience.- In real life, learning through experience represents mostly theconcept of making a decision at some point in time and afterwards realizingthat there was or was not a better option to be taken at that very moment. Re-evaluating those decisions using the current world information which has been



irrevocably modi�ed by reality requires non-standard reasoning capabilities.� Gedankenexperiment.- Scientists in general, and physicists in particular, per-form thought experiments or imaginary, impossible experiments whose outcomeis of special interest [Ko78]. E.g., suppose a spacecraft travels at the speed oflight, then would the passenger of such vehicle stand still in time?� Historical Backtracking.- In order to evaluate the impact of an speci�c eventin time, it is sometimes useful to consider what would have happened if the eventin question had not occurred. E.g. assume that Yamamoto had not been killedin the Paci�c, would the allied forces then have won the war all the same?� Supposition.- On occasion it is of interest to consider a situation known to becounter to the currently known facts, such as if Chris were to be the Presidentof the company, the company will go bankrupt. In this case, we know for a factthat Chris is not the president of the company, but still we wish to assume thatshe is and consider the consequences.1Reasoning over impossible worlds is by no means trivial. A major challenge of sucha task is to avoid the undesirable situation where once something non-real has assumedto be true then anything can be assumed to be true. As an example, to assume thata spaceship is traveling at the speed of light should not imply the forfeiture of anyother physical law or principle beyond those required for that speci�c spacecraft to 
yat light speed. Moreover, the independence relation is not symmetric, as exempli�edby the fact that, while the shape of the continents must not change in the agent'sknowledge base (KB) upon any assumption on Hitler's victory, assuming that the1See for example [CH76] and related papers in Counterfactuals.



United Kingdom were not an insular nation would improve Hitler's victory odds inthe KB.For these purposes Chisholm and Stalnaker [Chi46,St68] introduced the so-calledRamsey test which states:First, hypothetically make the minimal revision of your stock of beliefsrequired to assume the antecedent. Then, evaluate the acceptability ofthe consequent on the basis of this revised body of beliefs.Stalnaker argues that the condition of minimality is not strictly required. Regardless,once the set of beliefs (i.e. the knowledge base) has been properly modi�ed, the truthvalue of any statement can be recomputed by the agent, and inferences can be madefrom it as well.3 Probabilistic Reasoning (PR)3.1 Philosophical interpretation of PRIn any probabilistic reasoning model, the agent's degree of belief in any particularinstance is represented as a probabilistic value, and as it becomes more cognizant ofthe surrounding world such degree of belief may change.Moreover, updates to the knowledge base fall into two categories, depending uponthe interpretation of the probabilistic model. Namely, whether the a priori probabilityof an assumption being true is still considered correct or not after the deterministicoutcome of the experiment.This can be better understood using an example: suppose that the probabilityof the Blue Jays winning the pennant has been estimated at 1=2 but afterwards the



pennant is won by the Red Soxs. Does that mean that the correct probability of theBlue Jays winning was zero?, or we assume that the probability we assumed is correctand just reality chooses randomly between di�erent possibilities?, or perhaps, whilewe wish to preserve a probabilistic interpretation of the events, the agent may see it�t to update the initial probability estimate, in the light of the subsequent defeat,and then posterior victories in the World Series?Furthermore, is the probability value of a given statement the expression of theagent's lack of knowledge {and thus of certainty{ on the subject or it is representinga truly random phenomena?At the heart of this matter lies a philosophical question about the interpretationof random phenomena: Are random phenomena truly unpredictable (say a coin toss),or if given enough information, would the agent be able to predict the outcome of theevent (e.g. given the initial position, speed, direction of the coin, etc.)?Since such a question is beyond the scope of this work, we deal only with thosecases where probabilities represent the agent's degree of uncertainty or ignoranceabout an speci�c event and not a truly random phenomenon. 23.2 The PR model and impossible worldsThe Impossible World Problem is of special interest when the agent uses the Prob-abilistic Reasoning Model PR [Bac89]. In general terms, and agent operating underthe PR model reasons in a set of worlds with a probability distribution associated onsuch set. That is to say, the set of \true" facts vary from world to world. Each worldhas a probability value assigned to it, which can be interpreted as the probabilitythat all the facts in such world are true in the \real" world.2This is equivalent to trying to guess the outcome of a coin toss which has already been tossed,but that happens to be out of sight.



This distribution induces naturally a probability measure over all boolean for-mul�, i.e. the probability that a boolean formula is true equals the sum of theprobability of the worlds where the boolean formula is true.A precise de�nition of an impossible world varies from one reasoning model toanother. In the accessibility model [HM85] an impossible world is any inaccessibleworld. In the PR model inaccessible worlds are represented as worlds of null proba-bility. This particular fact leads us to the following de�nitions:De�nition 1 We de�ne the following world structure which we use to interpret theformulas of the language of propositional probabilities.M = hO;S; #; �iWhere:1. O is a set of individuals representing objects of the domain described by thelogic.2. S is a set of states for possible worlds.3. # is a function that associates an interpretation of the language with each world.For every s 2 S, #(s) is an interpretation that assigns to every object predi-cate/function symbol a relation of the right arity over O.4. � is a discrete probability function on S.De�nition 2 The truth value assigned to a formula is determined by the followingthree parameters: the model M , the current world s, and the variable assignmentfunction �.



De�nition 3 A world s satis�es a formula � if (M;s; �) j= �.In the PR model the probability of a given world represents the chances of sucha world being a model of the real world. Therefore if a world has probability zero, itcannot possibly be the real word. More formally,De�nition 4 Given an intelligent agent acting over M = hO;S; #; �i, a world s 2 Sis said to be impossible with respect to the model M if �(s) = 0.Now if a certain assumption is not true in any of the possible models of the realworld, then such assumption cannot be part of reality and therefore is imaginary.Again, more formally,De�nition 5 Given an intelligent agent acting over M = hO;S; #; �i, an imaginaryassumption � is a formula such that all the worlds that satisfy it are impossible.An impossible world is well de�ned since � is a discrete probability function. If �is a continuous distribution function then �(s) = 0;8s 2 S and the de�nition does notgeneralize to more complex models of probabilistic reasoning. A reasonable extensionwould be to de�ne impossible worlds in terms of imaginary assumptions.De�nition 6 (Continuous Case) An assumption � is imaginary if the set of worldsthat satisfy it has measure 0, i.e., �(fs 2 Sj(M;s; �) j= �g) = 0.De�nition 7 (Continuous Case) A world is impossible if it satis�es an imaginaryassumption.



To simplify the notation, we de�ne prob(�) = �(fs 2 Sj(M;s; �) j= �g) and wewrite cert(�) when prob(�) = 1. Notice that if � is an imaginary assumption thenprob(�) = 0, and cert(:�).As an example, we have that Hitler won the war is an imaginary assumption,since, as it is known to the agent that Hitler lost the war, the assertion cert(:won(Hitler))is part of the agent's knowledge base, implying prob(won(Hitler)) = 0 which is pre-cisely the de�nition of an imaginary assumption.With this, we have succeeded in formalizing the concept of impossible worldsand imaginary assumptions. Now, it is necessary to extend the intelligent agent'scapabilities for it to work in an imaginary world. In the next section we shall studythis problem.4 Projecting reality into impossible worldsReasoning over impossible worlds shares some of the aspects and problems of non-monotonic reasoning (see for example [TG81]), since once an imaginary assumption ismade, some of the facts previously known to be true, are no longer so. Therefore thetruth value of some assertions needs to be changed, but the choice of which assertionsto change is, in general, not unique. This problem has been studied by philosophers[Chi46,Go47,Le73,St68,St70], and some key properties of impossible world reasoninghave been identi�ed.As explained in x2, for the agent's reasoning to be useful, it is imperative to makethe updated KB re
ect the real world. This key observation is known as the Ramseytest: First, hypothetically make the minimal revision of your stock of beliefsrequired to assume the antecedent. Then, evaluate the acceptability of



the consequent on the basis of this revised body of beliefsStill, Ramsey test does not su�ce to identify all revisions. First, because theconcept of \minimal revision" is never formally de�ned, and, secondly, because attimes two revisions can be both minimal but one and only one can be true in orderto achieve consistency. This con
ict was �rst observed by Goodman [Go47] and it isillustrated by the following two statements, called counteridenticals:If I were Julius Caesar, I wouldn't be alive in the twentieth century,andIf Julius Caesar were I, he would be alive in the twentieth century.Here, once the antecedent is assumed to be true, the KB needs to be correctedto solve the incompatibility between the facts Julius Caesar is dead and I amalive. But there is no immediate way of deciding whether I should live or die, andin the real world, the \correct" truth value is dependent on the speci�c purposes forconsidering such a false assumption.Regardless of the method used to discriminate among di�erent assumptions thatare incompatible, once the decision is made, it can be expressed as a relation in theKB. So it is clear that a method for updating the KB must be developed.In the next section, we further study the interrelationship of assumptions by meansof the concept of independence; this will provides us with the basis for representingrelations between impossible assumptions.



5 Independence5.1 De�nition of independenceAs it was noted in x2 and x4, reasoning under an imaginary assumption should modifyonly those statements that must be modi�ed for the reasoning to be consistent. Moreformally, probabilities of independent events should remain the same under unrealassumptions.The di�erent degrees of independence between assertions are3:� Absolute Independence. Assertions are absolutely independent if knowingthe truth value of any of them gives no information about the truth value of theothers. There is absolute independence between the facts Tweety is a birdand John has cancer.� Asymmetrical Independence. Assertions are asymmetrically independent ifknowing the truth of one of them gives no information about the truth valueof the others. There exists a one side dependence between Norbert went outhiking and It was a warm day, since Norbert only hikes on warm days, butthe day would have been warm independently of the fact that Norbert did nothike.� Asymmetrical Dependence. Analogously, assertions are asymmetrically de-pendent if the truth value of one of them determines the truth value of all ofthem.� Absolute Dependence. Assertions are absolutely dependent if the truth valueof any of them determines the truth value of all others.3For a philosophical discussion about degrees of independence, the reader is referred to [San89].



� Weak Dependence. Two assertions are weakly dependent if they are notabsolutely or asymmetrically dependent or independent. There can be degreesof weak dependence.The concept of probabilistic logic independence resembles parallel notions of in-dependence in probability theory. Asymmetrical independence in probability theoryis denoted by prob(�j�) = �, asymmetrical dependence by � ! �, and absolutedependence by � � �. These de�nitions do not carry over properly to the domainof impossible worlds. Thus we propose an alternative scheme which matches theprobabilistic dependence in worlds of non-null probability.To express the intuitive notions of in/inter/dependence in the framework of areasoning model is by no means trivial. Let us explore some approaches.5.2 Expressing independenceIn Axiomatic Theory, a concept � is absolutely independent if the theories having �and :� are both logically sound. There are several examples of this notion of inde-pendence in mathematics, e.g. the Continuum Hypothesis. Nevertheless this criterionof independence cannot be easily applied to the PR model since its knowledge baseis not axiomatic and not axiomatizable in general4.Also as it has been pointed out by several authors (e.g. [Fu89]), material impli-cation of standard logic (p ) q � :p ^ q) does not capture our intuitions about4An axiomatization of a knowledge base would imply a hierarchy in the knowledge base, wheresome assertions are axioms and some are \theorems" of those axioms. This hierarchy, apart frombeing arti�cial, assumes that it is possible to reduce the real world to a set of independent axioms andlogical consequences of them. Fact is, most things that are known to be true are so simply becausethey happened to occur and no amount of reasoning would imply with certainty their occurrence(e.g. the Blue Jays are champions because they won, and not as a result of a logic implication).



what implication is. But even if it did, an intuitive implication represents absolutedependence, which is not the negation of absolute independence but its contraposi-tion. Therefore even extended implication concepts as strong implication [FHV90] orrelevance logic implication [RR72] do not model the concept of absolute independence.For the case of the PR model we have somehow better approximations to a sat-isfactory de�nition of absolute independence. Two assertions � and � are absolutelyindependent if prob(�j�) = prob(�) andprob(�j�) = prob(�) or equivalently � and �are independent (probabilistic independence) ifprob(� ^ �) = prob(�) � prob(�)Similarly, � is independent of � if prob(�j�) = prob(�). Note that prob(�j�) isunde�ned when prob(�) = 0. In other words, for imaginary assumptions the PRmodel cannot describe the concepts of absolute and asymmetrical independence.Nevertheless, in most cases this notion of independence corresponds to our in-tuition of independence, save for the special cases when prob(�) = 0 or prob(�) =prob(�) = 1. In this cases, the de�nition above results in degeneracies5.As an example we have that ifcert(Blue Jays Won); cert(Cold war ended); cert(Gorbachev was president)are assertions of the reasoning model M , then by the probability de�nition the factBlue Jays lost is absolutely independent of the fact Blue Jays won ! sinceprob(Blue Jays lostjBlue Jays won) = prob(Blue Jays lost) = 0:5This phenomena resembles the main problem of material implication: p ) q does not followsour intuition on implication when either p is false in all worlds (a contradiction) or p and q are truein all worlds (tautologies).



Similarly the end of the cold war is {under this de�nition{ absolutely independentof Gorbachev having been president sinceprob(Cold war endedjGorbachev was president) = cert(Cold war ended);which contradicts our everyday notion of independence.In the next section we present some other problems arising from the expression oflogical dependence as probabilities.5.3 Conditional probabilities in philosophyThe notion of conditional probabilities has been thoroughly studied within philos-ophy of logic circles. Stalnaker, Lewis and Adams have noted key consequences ofdenoting probabilities of conditionals as conditional probabilities. Scholar research onprobabilistic reasoning with conditionals must heed to results obtained in philosophy.It is because of this that we present a summary of philosophical results relevant tothe impossible worlds reasoning problem.In this subsection we present some of the most relevant work in the area andwhich, in particular, trace paths that can and cannot be traversed without raisinglocal inconsistencies.Among the problems thus identi�ed are the so called Triviality Results [Le76],viz., it is not possible to represent a closed, logic conditional dependence between anassumption (imaginary or not) and an assertion with conditional probabilities. Weinclude a proof of this fact to give some insight into the peculiarities of dependence.De�nition 8 Let �; � denote the (conditional) dependence relation "� is true,then would � =) � be true?". I.e. � ; � denotes the subset of cases when theimplication � =) � is true and � is true.



De�nition 9 (St70) Stalnaker's Hypothesis.- Probability of conditionals areconditional probabilities. Formally prob(�; �) = prob(�j�).De�nition 10 An operator � such that P (A � B) = P (BjA), is closed under con-ditionalization if P (A�BjC) = P (BjAC) for all A;B;C.Theorem 1 (Le76) If ; is closed under conditionalization for a family of probabil-ities then Stalnaker's Hypothesis is false.Proof. See [Le76], where it is shown that if we identify logic and probabilisticdependence, the model is either inconsistent or all probabilities are 0 or 1; thus makingthe probabilistic model trivial.Therefore, any model of probabilistic expression of dependence cannot be closedunder logic conditionalization unless the model is trivial.5.4 Extensions to the probabilistic modelFrom the discussion above it follows that a dependence relation that follows ourintuitive notion of independence cannot be readily de�ned.With this in mind, we �rst extend the de�nition of probability measure to proba-bilities conditioned on imaginary assumptions. This will allow the agent to reason inimpossible worlds even in those cases in which dependence remains unde�ned.Some authors leave conditional probabilities unde�ned when the condition eventhas probability zero [Fe50], while others prefer to assign a zero-one probability func-tion to impossible conditions [It78]. In general, assigning any probability distributionto impossible conditional probabilities preserves the validity of most probability the-orems. Therefore we have the following de�nition:



A�A PA(�) - A�FP(BjA)HHHHHHHHHHHHHHj ??F �A - PA(B)PB(�) PB(A) [0; 1]Figure 1: The Extended Conditional Probability PDe�nition 11 Let (
;A; P ) be a probability space, (i.e. 
 is the set of events, A isthe �-algebra of measurable sets, and P is the Probability measure) and let A and Bbe elements of A, where A 6= ;. If P (A) > 0, the conditional probability of B underA is de�ned to be equal to P (A \ B)=P (A) and is denoted by P (BjA) or by PA(B).If P (A) = 0, we de�ne the extended conditional probability by P(BjA) = PA(B) =PB(A), where P : A�A �! A�F �! [0; 1], and P : A�A �! F � A �! [0; 1]with F being a set of probability measures (see �gure 1).Under this de�nition PA is a probability function which measures the degree ofcertainty of a given proposition under the assumption that A is true. Similarly PBis the probability distribution of our changing belief in B as the current set of worldschanges.As with standard conditional probabilities, independence between assertions canreadily be de�ned using extended conditional probabilities.De�nition 12 Let A, B be any two events. Then A is independent of B if P(AjB) =P (A).



This extended de�nition of conditional probability has the same advantages anddisadvantages of the original conditional probability with the exception that it appliesto imaginary worlds as well. This fact allows to discriminate pathological cases suchas prob(Blue Jays lostjBlue Jays won) = prob(Blue Jays lost) = 0:In this example, the defeat of the Blue Jays remains independent from their victorybut their victory is now totally dependent on their defeat, which before was unde�ned.That is, Prob(Blue Jays wonjBlue Jays lost) := 0 6= prob(Blue Jays won) = 1;where Prob is the extended probability operator.Under this conditions, an intelligent agent now satis�es the conditions of Ramsey'stest and can properly update and reason over its KB.6 Dependence de�nedIt is possible to de�ne probabilistic dependence as the multiplier that modi�es thedegree of belief on an assertion. We de�ne the dependence relationship as relative tothe probability of the implicant.De�nition 13 The unnormalized dependence between the truth value of two asser-tions � and � with respect to the extended probability operator prob is given bydep0(�; �) = prob(�j�)=prob(�), for � such that prob(�) > 0. The assertions areindependent if dep0(�j�) = 1.The dep0 function is clearly not a probability measure since it takes values on theinterval (0;1). For this we de�ne the normalized dependence function.De�nition 14 The normalized dependence or dependence between two assertions �and � is given by dep(�; �) = [dep0(�; �)� 1]=dep0(�; �): Two assertions are indepen-dent if dep(�; �) = 0



Notice then that a negative dependence value implies that � is less likely to be true if� is true, while a positive dependence value signi�es that � is more likely to be trueif � were to be true.Notice that dep is not a monotone function, and so it follows that it is not subad-ditive measure (neither is dep0 for that matter).The dep function is rigid (in the sense of [Ba90]) since prob is rigid, this is quitenatural since the dependence between two assertions represents the measure of theveracity of an assertion in the set of all the worlds where another is known to be true.With this de�nition of dependence we can adjust the modi�ed reality within im-possible worlds. Thus, given an impossible assumption �, the agent modi�es itsknowledge depending upon the value of dep(�; �); for each � in the logic model.7 Reasoning on impossible worldsAt this point, the model of the impossible world is structurally the same as the modelof the real world, so the reasoning mechanisms used by the agent over the KB ofthe possible worlds can be applied in the KB of the impossible world model. Thischaracteristic is of high relevance, since the agent should reason under the same logicmodel in either an impossible or a real world.Once deductions are obtained, the agent still needs to transfer its experience backto the real world KB. Experience can be used to actualize the probabilistic values ofassertions. And since the world is non-monotonic, impossible worlds can become pos-sible, e.g. the agent can be certain about Freedom of Expression, but a new era ofMcCarthism will imply a modi�cation to the assertion prob(Freedom of Expression) =1. Indeed, it can be argued that non-monotonic and impossible world reasoning arevery highly correlated, and that unless certainties are immutable under the non-



monotonic model, then impossible world constructions and dependencies are needed.Among all the reasoning models which have been proposed in the literature, someof them are so general that they cannot be used on today's computers in real time,and others are computationally feasible but too weak to appropriately model reality.Current research is intent on closing the gap between these two approaches. It hasbeen shown that an accessibility relation and a belief operator are required whentrying to use �rst order logic to model the world. The PR model has all this expres-siveness, and, if the probability function is extended, reasoning on impossible worldsbecomes possible.As material for further exploration, we could consider the representation of logicalimpossibility using the extended probability function. So, for sentences which arelogically impossible, such as � � � ^ :� we could have prob(�j�) = 0, contrasted tounreal assumptions that are logically possible for which we have prob(�j�) = 1.8 AcknowledgementsI would like to thank Fahiem Bacchus, for bringing this problem to my attention andfor unvaluable comments on an earlier version of this work.Bibliography[Ba90] F. Bacchus. Representing and reasoning with probabilistic knowledge. TheMIT press, Cambridge, 1990.[Chi46] R.M. Chisholm. The Contrary-to-Fact Conditional. Mind, Vol. 55, 1946,pp.289-307.
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