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Abstract. We study the problem of constructing convex polygons and convex
polyhedra given the number of visible edges and visible faces from some or-
thogonal projections. In 2D, we find necessary and sufficient conditions for the
existence of a feasible polygon of size N and give an algorithm to construct one,
if it exists. When N is not known, we give an algorithm to find the maximum
and minimum size of a feasible polygon. In 3D, when the directions span a sin-
gle plane we show that a feasible polyhedron can be constructed from a feasible
polygon. We also give an algorithm to construct a feasible polyhedron when the
directions are covered by two planes. Finally, we show that the problem becomes
NP-complete for three or more planes.

1 Introduction

Reconstructing polyhedra from projection information is an important field of research
due to its applications in geometric modeling, computer vision, geometric tomography,
and computer graphics. The nature of reconstruction problems and the techniques to
solve them depend upon the types of information given, such as line drawings, silhou-
ettes, and area/volume/shape of shadows, among others.

The computational geometry community has studied the problem of reconstructing
convex polyhedra from triangulations of the shadow boundary. Marlin and Toussaint
[16] gave an O(n2) algorithm for deciding whether such a polyhedron exists and con-
structing a polyhedron where possible. In another variation of this problem, where the
triangulations are isomorphic to two opposite projections from the z-axis, Bereg [2]
showed that the polyhedron can always be reconstructed. See [6] for a collection of
similar problems on reconstruction of polyhedra.

Reconstructing polyhedra has also been studied from the point of view of applica-
tions, and various types of projection information have been considered. Among them
line drawings [14, 15, 18–21, 24, 25] are possibly the most common. Line drawings may
be obtained from images, from geometric drawings from the designers [21, Chapter 1],
or may be freehand drawings [13, 23]. The reconstruction algorithms differ for a single
and multiple drawings. For multiple drawings there are two common approaches based



on the representation of the polyhedra to be reconstructed: constructive solid geome-
try and boundary representation. Both approaches are used in engineering and product
design such as designing complex mechanical parts and in CAD [10, 24]. It is more
difficult to construct a polyhedron from a single drawing [21, 24].

Reconstruction from the area and shape of projections has been considered in ge-
ometric tomography [8]. Usually convex objects are reconstructed here. A related but
more application oriented field is computerized tomography, where 3D objects are re-
constructed from sectioning information such as the area of a plane section of the ob-
jects. Medical CAT scanning is an important application of computerized tomography
where an image of the human body is reconstructed from X-ray information [8]. The
information achieved through X-rays gives the lengths, widths, volumes and shapes of
different parts of an object, which are similar to area and shape of projections.

Instead of whole projections, sometimes only silhouettes are used to reconstruct
polyhedra [4, 5, 12, 17]. In volume intersection, which is a well-known technique in
computer vision, the only information available is a set of silhouettes [4, 5, 12], some-
times even with unknown view points [4, 5].

Our results Most reconstruction algorithms are based on fairly complex information
such as triangulations, line drawings, silhouettes, and geometric measures of the pro-
jections, along with some non-geometric surface information such as shading, texture,
and reflection of light. In contrast, we consider a very different and very limited type
of information, which is also robust: we consider number of visible edges for polygons
and number of visible faces for polyhedra in some orthogonal projections. Here we
study reconstructing convex polygons and polyhedra from orthogonal projections only;
see [9] for results on perspective projections and non-convex polygons and polyhedra.

We only consider non-degenerate orthogonal projections where the view directions
are not parallel to the edges (faces) of the polygon (polyhedron). A direction-integer
pair, or simply a d-i pair, 〈d, n〉 consists of a direction vector d and a positive integer
n, and expresses how edges (faces) should be seen from the direction. A d-i set R
is a set of d-i pairs where no two directions are the same or opposite to each other.
(We assume this because we will ultimately generate and then use the d-i pairs for all
opposite directions too. See Page 3.) A convex polygon (polyhedron) P is feasible for
R if, for each d-i pair 〈d, n〉 in R, d is not parallel to the edges (faces) of P and the
number of visible edges (faces) from d is n. For a d-i set, a feasible polygon may or
may not exist or it may exist for more than one possible number of edges (see Figure 1.)

(a) (b)

〈d2, 4〉
〈d1, 4〉

〈d2, 4〉〈d2, 5〉

〈d1, 15〉

〈d0, 5〉

〈d1, 4〉

〈d0, 3〉 〈d0, 3〉

Fig. 1. (a) A d-i set with no feasible polygon. (b) Example of feasible polygons of different size.



In this paper, we consider the problem of given a d-i set R and an integer N , create
a feasible polygon (or polyhedron) of size N for R. Clearly, we must have N ≥ 3 or 4,
respectively, and N > maxi{ni}, and we assume this throughout.

We first give necessary and sufficient conditions for a feasible polygon to exist,
which also gives an algorithm to construct the polygon, if it exists. With K directions,
our algorithm runs in O(K + N) time if R is ordered, and in O(K log K + N)-time
otherwise. For unknown N , above characterization gives an O(K + v log v)-time algo-
rithm to find the maximum and minimum size of a feasible polygon where 1 ≤ v < N .

In 3D, we consider cases by the minimum number of planes that cover the direc-
tions, where “covering” means each direction lies in at least one plane. For one plane,
2D results are easily transferred. For two planes, we give an algorithm to construct a
feasible polyhedron, whenever it exists, except for one special case. Finally, for three
or more planes, we prove that the existence of a feasible polyhedron is NP-complete.

Although from the applications point of view the problem of reconstructing poly-
hedra is more common than that of reconstructing polygons, surprisingly, the latter are
themselves very rich and their solution techniques will serve as foundation for solving
the former. Our algorithm to test feasibility of reconstruction can be useful as a prelim-
inary step in applications in which other types of information are used, in addition, for
reconstruction purposes—the user can decide quickly the existence of possible resulting
polyhedra before starting a rigorous reconstruction process.

Preliminaries We defined our problems in terms of a d-i set R, but to solve it we will
use a proper d-i set S which has 2K d-i pairs and is derived from R and N as follows:
For each d-i pair 〈d, n〉 in R, S has both 〈d, n〉 and 〈d ′, N − n〉, where d′ is opposite
to d, and S has no other d-i pair. The d-i pairs 〈d, n〉 and 〈d ′, N − n〉 in S are called
opposite to each other. We omit the (straightforward) proof of the following lemma.

Lemma 1. A convex polygon (polyhedron) P with N edges is feasible for R if and only
if it is feasible for S.

When directions of S lie in one plane, S is represented as S = {〈d0, n0〉, 〈d1, n1〉,
. . ., 〈d2K−1, n2K−1〉}, where the d-i pairs are ordered counter-clockwise by directions,
and from now on indices of the terms related to S are taken modulo 2K .

2 Reconstructing polygons

Let P be a feasible polygon of size N for S. Consider the sets of visible edges of P
from the directions of S. When we move from a direction d i to di+1, there may be
some edges of P that become newly visible and/or newly invisible to d i+1. From ni

and ni+1 alone, it cannot be said exactly how many edges become newly visible or
invisible to di+1. However, it is possible to lower bound these quantities. Observe that
if an edge e becomes newly visible when going from d i to di+1, then it becomes newly
invisible when going from di+K to di+K+1. This implies that although the change in
the visibility of each edge happens twice, the total change in the visibility for all edges
can be counted by only considering their change from invisible to visible. (This use of



opposite directions is the main motivation to consider the proper d-i set S instead of the
d-i set R.) Moreover, e is newly visible for exactly one direction of S.

We now state the characterization formally. For each i, define δ i = max{0, ni+1−
ni}. We call δi the i-th view difference. There must be at least δi edges that become
newly visible while moving from di to di+1. Therefore if a polygon exists, then D :=∑2K−1

i=0 δi ≤ N . Our main result here is that this necessary condition is also sufficient.

Theorem 1. Given a proper d-i set S and an integer N , a feasible polygon P of size
N exists if and only if D ≤ N .

Proof. The proof starts with the following crucial lemma.

Lemma 2. For any i, ni −
∑i−1

j=i+K δj = 1
2 (N − D).

Proof. We have nj+1−nj = δj−δj+K , since δj+K = max{0, nj+K+1−nj+K} =
max{0, (N−nj+1)−(N−nj)} = max{0, nj−nj+1}. Using this for K times gives
ni+K−ni =

∑i+K−1
j=i δj −

∑i−1
j=i+K δj . Using ni+K = N−ni and subtracting D =∑2K−1

j=0 δj , this becomes N−2ni−D = −2
∑i−1

j=i+K δj as desired. ��

In particular this shows that N−D is even. The idea for the proof is now as follows.
For each view direction di, choose δi edges, if δi > 0, such that they are newly visible
for di+1. The remaining N −D edges are chosen in antipodal pairs so that one becomes
visible exactly when the other becomes invisible. To avoid constructing an unbounded
polygon we have to be careful in how to chose edges.

Placing the normal-points Instead of choosing edges directly, we will choose a normal-
point for each edge on a circle c centered at the origin o. Let P be an arbitrary convex
polygon. The normal-point of an edge e of P is the intersection of c with the outward
normal of e, translated to the origin. Conversely, any set of points on c can be converted
to a polygon by computing the intersection of the tangent lines at those points.

To explain how the normal-points can be placed for each direction, we need some
more notations. For any direction di, denote by hi the visible half-circle of di, i.e., the
(closed) half-circle of c that is visible from di. Clearly e is visible from di if and only if
its normal-point is strictly within hi. Moreover, a polygon defined by normal-points is
bounded if and only if not all normal-points are within a single open half-circle.

The arc θi = hi+1\hi is called the i-th d-arc (“d” for difference). Normal-points
in θi correspond to edges that are newly visible to d i+1. Normal-points will never be
placed on the boundary of θ i, and hence we will not distinguish as to whether θ i is open
or closed. Observe that θi and θi+K are the reflections of each other with respect to the
origin and are called opposite to each other. (See Figure 2(a)). Since d i and di+K are
opposite directions, we have

⋃i−1
j=i−K θj = hi for all i. (See also Figure 2(b)).

Now place δi arbitrary normal-points strictly within each θ i. If D < N , then by
Lemma 2, N − D is even. Select N − D − 2 additional normal-points in antipodal
pairs arbitrarily (but not on end-points of any θ i) and the remaining two normal-points
p1 and p2 as follows. Let p be one among N − 2 already selected normal-points. Let
p′ be the opposite of p. Select p1 at clockwise ε (circular) distance apart from p and p2

at clockwise ε/2 distance apart from p′. ε is small enough so that p1 and p2 are within
two opposite d-arcs. See Figure 2(c).
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Fig. 2. (a) Visible half-circles, and d-arcs; two opposite d-arcs are in bold. (b) hi =
Si−1

j=i−K θj .
(c) Selecting the last two normal-points when D < N . (d) δi and D(N) against unknown N .

Correctness Two things need to be proven: (1) Each d i sees ni normal-points, and (2)
the polygon is bounded, i.e., every open half-circle gets at least one normal-point. The
first holds since each pair among the N − D normal-points chosen last goes into two
opposite d-arcs. So of each pair exactly one is strictly within h i. Since hi =

⋃i−1
j=i−K θj ,

the number of normal-points that are strictly within h i is
∑i−1

j=i−K δj+ 1
2 (N−D), which

by Lemma 2 is ni. To see (2), consider two cases. If D < N , then p1 and p2 were chosen
such that the minimum circular distance between any two of p, p 1 and p2 is less than a
half-circle, and (2) holds. If N = D, then each d-arc θ i gets exactly δi normal-points.
Any open half-circle h intersects K − 1 d-arcs fully, and we claim that δ j > 0 for one
of them. For if not, then using min{δi, δi+K} = 0 and adding the adjacent d-arc which
achieves 0, we get K consecutive d-arcs without normal-points. Say

∑i+K−1
j=i δi = 0,

then ni+K =
∑i+K−1

j=i δi + 1
2 (N − D) = 0 + 0 = 0, a contradiction. ��

Corollary 1. P exists if and only if each θi gets at least δi normal-points.

The above proof is algorithmic, and it is straightforward how to implement it in
O(N + K) time if S is ordered, and in O(N + K log K) otherwise. We summarize,

Theorem 2. Given a d-i set R of size K and given an integer N , a feasible polygon
P with N edges can be computed, whenever it exists, in O(N + K) time when R is
ordered, or in O(N + K log K) time otherwise.

Maximum and minimum polygon Using Theorem 1, we can also find out whether there
exists a feasible polygon for a given d-i set R even if N is unknown. In fact, we find
both the maximum and minimum size of a feasible polygon. Observe that if R contains
two opposite d-i pairs, then the sum of the two integers would give the value of N .
Hence, once again it is assumed that no opposite d-i pair appears in R.

The overall idea is as follows. We compute as before a proper d-i set S(N) from R,
but this time the d-i pairs of S(N) will be functions of N—for each pair 〈d, n〉 in R,
the opposite pair 〈d′, N −n〉 in S contains the unknown N . We call 〈d, n〉 original and
〈d′, N −n〉 derived. Then we compute δi(N) and D(N), which also become functions
of N . Recall from Theorem 1 that a feasible polygon exists if and only if D(N) ≤ N .

Analyzing cases, one can observe that the function δ i(N) is either a constant or a V-
shape with slopes ±1 for which the tip (with δi(N) = 0) occurs at a place well-defined
in terms of ni, ni+1 and whether di and di+1 are original and derived respectively. (See



[9] for detail.) Hence the function D(N), which is the sum of these, is convex and
piecewise linear. See also Figure 2(d). So D(N) = N has at most two solutions, and
any N between them is feasible as long as N ≥ 3 and N ≤ maxi{ni}. The algorithm
to compute this range of N takes O(K + v log v) time, where v is the number original
d-i pairs in S(N) whose corresponding next d-i pairs are derived. Of course v ∈ O(K),
but v could be as small as one if all directions in R are spanned within a half-plane.

Theorem 3. Given an ordered d-i set R of size K , the maximum and minimum size of
a feasible polygon can be computed in O(K + v log v) time, where v is the number of
original d-i pairs in S(N) whose corresponding next d-i pairs are derived. If R is not
ordered, then the algorithms takes O(K log K) time.

Corollary 2. For any value of N between its maximum and minimum, there exists a
feasible polygon of size N .

3 Reconstructing polyhedra

Similar to 2D, in order to construct a feasible polyhedron P we will compute the proper
d-i set S from the given d-i set R and instead of choosing faces directly we will choose
them implicitly by choosing normal-points of the faces on the surface of an origin-
centered sphere s. Then given such normal-points, we can compute a polyhedron from
them by computing the intersection of their tangent half-planes in O(N log N) time [7].

A face f is visible from a direction di if and only if its normal-point is strictly
within the visible hemisphere hi of di. Moreover P is bounded if and only if not all
normal-points intersects a single open hemisphere.

3.1 Directions covered by a single plane

It is natural to interpret S as input to the 2D case. In fact we show that feasibility of the
3D problem is equivalent to that of 2D, and all results from 2D then transfer.

We need some notations first, which will be used both here and in the next section.
Given a proper d-i set S with directions in one plane, we define θ i = hi+1\hi and call
it i-th d-lune of S. See Figure 3(a). All d-lunes of S have two common antipodal points
which are called poles of S. As in 2D, hi =

⋃i−1
j=i−K θj .

(b) (c)(a) (d)

Great−circle

(i) (ii)

for h0 and h
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hi+1

θi
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o

s

c

s

c

Fig. 3. (a) Visible half-sphere and d-lune. (b) P from p. (c) p from P . (d) (i) Two planes of S
with common directions, and (ii) arrangement of the d-lunes for such S .



Theorem 4. Given an ordered proper d-i set S of size 2K , where all the directions lie
in one plane, and given N ≥ 4, there exists a feasible polyhedron P for S of size N if
and only if there exists a feasible polygon p for S of size N . Moreover, the time required
to construct P from p is O(N log N) and p from P is O(N).

Proof (Sketch only). Let c be the great circle of s corresponding to the plane of direc-
tions π. Assume first that p exists and we want to construct P . Consider the normal-
points of the edges of p on s; all of them are on c. If we create a polyhedron P with
them, then it would be a cylinder with two ends unbounded. To make it bounded, we
need to incline two of its faces slightly in “opposite” directions. This can be done by
moving two normal-points towards the two poles of S, respectively, but within their
respective d-lunes. See Figure 3(b).

Now we show how to construct p if P exists. Find the normal-points of the faces
of P . Move each of them onto c along the great-circle through the point and the poles,
using the shorter arc. See Figure 3(c). If points overlap after the movement, then move
them slightly but within their respective d-lunes and keeping them on c. Now all normal-
points are within a plane, and we can construct a polygon from them in O(N) time. ��

Corollary 3. Given an ordered proper d-i set S of size 2K , where the directions lie in
one plane, (i) given N , the necessary and sufficient conditions for the existence of a
feasible polyhedron P of size N is D ≤ N , and (ii) with unknown N , the maximum
and minimum size of P can be found by the same algorithm for a feasible polygon.

3.2 Directions covered by two planes

For a feasible polyhedron to exist, it is of course necessary that it exists for each plane
of directions separately. But a little exercise will show that this is not sufficient. We give
here an algorithm that constructs a feasible polyhedron, whenever it exists, except for
the case when directions may see less than four faces and for each plane of directions
the sum of the view differences is N , for which we show why our algorithm fails.

Let S and S̃ be the two subsets of S based on the two planes of directions respec-
tively. (The markings¯and˜corresponds to S and S̃ , respectively). The size of S and S̃
are 2K and 2K̃ and any indices related to S and S̃ will be taken modulo 2K and 2K̃,
respectively. The d-lunes of S intersects those of S̃ and thus divides s into spherical
polygons called d-polygons; we denote θa,b = θa ∩ θ̃b. Note that S and S̃ can share
either two opposite directions or none. See Figure 3(d)(i).

Our algorithm has two phases: finding a valid assignment and then finding a valid
selection. A valid assignment assigns N normal-points to the d-polygons such that for
each d-i pair 〈d, n〉 in S or S̃, the number of normal-points assigned to d-polygons in the
visible hemisphere of d is n. Note that there may be more than one valid assignment.
A valid assignment does not give positions for the normal-points, which may decide
whether P is bounded or not. So if the feasible polyhedron is allowed to be unbounded,
then the existence of a valid assignment is necessary and also sufficient for the existence
of a feasible polyhedron. For a bounded one, the actual positions of the normal-points
are important, and for that we need a valid selection—which is to select the normal-
points within their respective d-polygons (as assigned by a valid assignment) such that
not all normal-points intersect a single hemisphere.



Finding a valid assignment Note that the arrangement of the d-polygons resembles
cells of a matrix (see also Figure 3(d)(ii)). Finding a valid assignment hence resembles
assigning numbers to matrix positions such that row-sums and column-sums satisfy
conditions. This has been studied a lot under the name of transportation problem [1,
11]. We will need the following result, whose easy proof we omit:

Lemma 3. Let R1, . . . , Rm and C1, . . . , Cn be non-negative integers with
∑m

i=1 Ri ≤∑n
j=1 Cj . Then there exist non-negative integers (Mi,j)1≤i≤m,1≤j≤n such that

∑n
j=1 Mi,j =

Ri and
∑m

i=1 Mi,j ≤ Cj . Moreover, we can find the positive integers among them in
O(m + n) time.

We have two cases: either the two planes have common view direction or not. In the
former case there always exists a valid assignment and we will find one. In the latter case
we will find a valid assignment whenever it exists. In both cases, we will also create two
opposite d-polygons with at least one normal-points each if max{D, D̃} < N , which
will be needed for the valid selection process. The following lemma summerizes the
selection process and its proof is nothing but to adapt Lemma 3 several times.

Lemma 4. Given S and S̃, if they have common directions, then it is always possible
in O(K + K̃) time to find a valid assignment. If S and S̃ do not have any common
directions, then it is possible to find a valid assignment, whenever it exists, in O(K+ K̃)
time. Moreover, in both cases if max{D, D̃} < N , the resulting valid assignment gives
two opposite d-polygons which are positive.

Finding a valid selection Again we have cases: (i) max{D, D̃} < N and (ii) all
directions see at least four faces. In both cases it is always possible to find a valid
selection. If some direction sees less than four faces and if max{D, D̃} = N , then
there exists a polyhedron that has valid assignment but no valid selection and we do
not know the complexity of testing whether a valid selection exists, but we show an
example in Page 9 for that.

Lemma 5. If max{D, D̃} < N , then we can find a valid selection in O(N) time.

Now consider the case when max{D, D̃} = N , and each direction sees at least
four faces. This case is significantly more complicated. The overall idea is based on the
following lemma, which we state without proof:

Lemma 6. Consider any three great circles of s that do not intersect in a common pair
of antipodal points. These three great circles divide s into eight octants. For each octant
consider an arbitrary point that is strictly within it. Then these eight points cannot
intersect a hemisphere of s.

We choose these three great circles as follows. One is the great-circle g ∗ that con-
tains the four poles. Then for each S and S̃, we pick another great-circle g and g̃ through
the respective poles. The main obstacle here is to choose them such that each octant in
fact is allowed to have a normal-point in it, even with changing the valid assignment to
another one. In particular, we must choose g such that the four lunes defined by g ∗ and
g contain at least two normal-points each (and similarly for g̃.)



Lemma 7. Given a proper d-i set S of size 2K , where the directions are in one plane,
ni ≥ 4 for any 〈di, ni〉, and D = N . Then for any great circle g∗ passing through the
poles, we can find in O(K) time another great circle g also passing through the poles
such that the four lunes created by g∗ and g contain at least two normal-points each,
after a suitably distribution of normal-points in the d-lunes intersected by g ∗ and g.

Lemma 8. Given S and S̃, where n ≥ 4 for any d-i pair 〈d, n〉 in S or S̃ , and given
a valid assignment for S, a valid selection, possibly with a different valid assignment,
can be found in O(N + K + K̃) time

The following theorem summarizes the results, where the term O(N log N) in the
time complexity comes from the intersection of the half-spaces defined by the planes
passing tangents to the normal-points.

Theorem 5. Given a proper d-i set S and an integer N ≥ 4, where the directions of
S are covered by two planes. We can construct a feasible polyhedron P , if it exists, in
O(N log N + |S|) time, in each of the following cases: (i) max{D, D̃} < N , or (ii)
n ≥ 4 for each d-i pair 〈d, n〉 in S.

Corollary 4. If the feasible polyhedron is allowed to be unbounded, a feasible polyhe-
dron can always be constructed, when it exists, in O(N log N + |S|) time by finding a
valid assignment only.

Insufficiency of a valid assignment Our example is in Figure 4. Consider the proper
d-i set S ′ of (a). It has twelve d-i pairs and N = 4. The only positive view differences
are δ0 = 1, δ4 = 1, and δ8 = 2. So D = N , and by Corollary 3 there always exists a
feasible polyhedron for S ′. The key property of S ′ is that the positive d-lunes are very
“thin” Moreover, the circular distance between consecutive directions can be adjusted to
increase/decrease the circular distance among the positive d-lunes. For example, (b) and
(c) show the positive d-lunes for two different versions S and S̃ of S ′. Now, consider

s s

δ8 = 2
eδ8 = 2

eδ0 = 1δ0 = 1

δ4 = 1
eδ4 = 1

2

1

1

1

ss

(b) (c)

1

2

〈d7, 1〉

〈d9, 3〉
〈d8, 1〉

〈d5, 2〉 〈d6, 2〉

〈d11, 2〉
〈d10, 3〉

(a)

〈d4, 1〉
〈d3, 1〉
〈d2, 3〉
〈d1, 3〉

〈d0, 2〉

Fig. 4. Example Insufficiency of a valid assignment

the proper d-i set S = S ∪ S̃ . There are only two possible valid assignments for the
d-polygons of S which are shown in (c). But in either case all three positive d-polygons
are strictly within a single hemisphere (shaded area).



4 NP-hardness for arbitrary directions

We will prove that the problem of finding a valid assignment, which is necessary for
two or more planes, is NP-complete for three planes.

Theorem 6. Given a proper d-i set S of size 2K with three panes of directions, it is
NP-complete to decide the existence of a feasible polyhedron for S.

Proof (Sketch only). We will reduce, three consecutive reductions, the problem of find-
ing an independent set (IS) of size k, for an arbitrary k, in a 2-edge connected cubic
planar graph G, which is proven to be NP-complete in [3]. An independent set I of G
is a set of vertices s.t. no two vertices of I are connected by an edge. See Figure 5.

First reduction We convert G to another planar graph GH by replacing each of its edge
by a chain of size three. Now, finding an IS I of size k in G is equivalent to finding an
IS IH of size k + m in GH , where m is the number of edges in G. Given I , I H is the
vertices of I plus one degree-two vertex from each chain. Conversely, given I H , if it
contains both the degree-three vertices of some chain, then it is possible to change I H

to replace one degree-three vertex with a degree-two vertex of the same chain. Then the
set of degree-three vertices in IH gives I . Since for each chain, at most one degree-two
vertex is in IH , I has size at least k.

Second reduction Given GH , we create a set L of lines in three directions. First we
draw GH using three directions as follows. We place all degree three vertices GH in a
horizontal line. Since G is a 2-edge connected cubic planar graph, it is 3-edge colorable
(by four color theorem [22].) For each color, use a distinct pair of direction to draw
the corresponding chains of GH such that no three vertices of GH are collinear. Now,
extend all the edges of GH to lines and for each degree-two vertex add an extra line in
the third direction. Adjust one direction, if necessary, such that no three lines intersect a
single point except at the vertices of GH . That ends the construction of L. Observe that
this construction takes polynomial time. The only time consuming operation is to find a
suitable place for the drawing of a subsequent chain, for which we can always maintain
a place far enough from the “so-far-completed” construction of L. Observe also that the
number of lines in each direction is the same.
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Fig. 5. Reductions for NP-completeness.

Now the problem of finding an IS I H of size k in GH becomes equivalent to the
following problem: given L, find a set of points T such that (a) each line of L intersects



exactly one point of T , (b) each point of T intersects either one or three lines of L, and
(c) the number of points in T that intersect three lines is k. The proof is as follow. Given
IH of size k, pick the points that correspond to the vertices of I H and put them into
T . Since no two vertices of IH intersect a single line of L, the vertices of IH intersect
exactly k lines from each direction. For each of the remaining lines (who does not have
any point picked up yet) pick an arbitrary point that does not intersect any other line
and put it into T . That’s all in T . Clearly each line has exactly one point in T and the
number of tri-valent points in T is k. On the other hand, given T , set I H to be the set
of vertices of GH that correspond to the tri-valent points of T . Since each line of L
intersects exactly one point of T , IH is an independent set GH , and since the number
of tri-valent vertices in T is k, the size of IH is k.

Third reduction We create a set C of |L|+1 great-circles by two simultaneous mapping
of L onto two opposite hemispheres of s—take |L| great-circles corresponding to the
lines of L and take one more great-circle g corresponding to the plane of L. Great-
circles corresponding to the parallel lines in one direction intersect in two distinct poles.
g passes through all six poles, and now T is to be selected from one hemisphere of s.

Next we find a proper d-i set S and the integer N from C. Remember that the number
of lines in L in each direction, and so the number of great-circles except g for each pair
of poles, is the same. Let this number be k ′. We set N = 6k′ − 4k (k is the number of
trivalent vertices, except the poles, in C). We now create the directions of S. For each
great-circle c of C, we create two great-circles very close in two sides of c. For each
of the newly created great-circles and for g, we create a pair of opposite directions in
S so that their visible hemispheres are those defined by this great-circle. Observe that
in S the total number of directions created is 4k ′ + 6, the directions are covered by
three planes, and the two directions due to g are common to each plane. Moreover, the
d-lunes of S are of two types: thin d-lunes due to the close direction pairs and non-thin
d-lunes due to the other pairs. Thin d-lunes are further categorized as boundary or non-
boundary if they are due to g or not. We now assign the integers of S. Assume that h g

and h′
g are the two hemispheres of g. Set each of the two integers associated with the

two directions due to g as 1
2N = 3k′ − 2k. The remaining integers are such that all

non-thin d-lunes have view difference zero, all non-boundary thin d-lunes have view
difference one, and the boundary thin d-lunes have view difference such that the sum
of the view differences of all d-lunes in hg is 3k′ − 2k. This assignment will imply that
the sum of the view differences of all d-lunes in h ′

g is also 3k′ − 2k.
Now, given T , we will only show that each non-boundary thin d-lunes get one

points and as whole hg gets 3k′−2k normal-points, which will imply that the number of
normal-points in the boundary thin d-lunes are equal to their respective view difference.
Let t be an arbitrary point of T . If t is trivalent, then it corresponds to a d-polygon,
which is the intersection of three thin d-lunes of S and which we call 3-critical, and
put one normal-point in it. When t belongs to only one semi-circle c, put one normal-
point in the d-polygon which belongs to the d-lune corresponding to c and also belongs
to the boundary thin d-lunes of other two sets of directions. Since each semi-circle in
hg intersects exactly one point of T , the number of points in each non-boundary thin
d-lune is exactly one, which is equal to its view difference. Moreover, the total number



of normal-points in hg is thrice the number of non-boundary thin d-lunes in each group
minus the twice the number of trivalent vertices, which is 3k ′ − 2k.

On the other hand, assume that we have a valid assignment. So h g has 3k′ − 2k
normal-points. From our construction, each d-polygon can have at most one normal-
point since it is one way or the other belongs to a non-boundary thin d-lune which has
view difference one. Now for d-polygon that has a normal-point, pick the corresponding
intersection point or an arbitrary point from the corresponding semi-circle of C. Observe
that only the d-polygons that are 3-critical or belong to boundary thin d-lunes can have
a normal-point, since any other d-polygon is a subset of a non-thin d-lune of another
set of directions that has view difference zero and since from our construction the sum
of all view differences of that set of directions is 3k ′ − 2k. It implies that T has no
bi-valent point. Moreover, since for each set of directions the boundary thin d-lunes
have a total view difference of 2(k ′ − k), the remaining 3k ′ − 2k − 2(k′ − k) = k′

normal-points must be in k ′ 3-critical d-polygons. But a 3-critical d-polygon can have
exactly one normal-point. So the number of tri-valent point in T is k ′.

The problem is in NP Given S and a valid assignment for S, for each direction of S,
we check whether the number of normal-points in its visible hemisphere is equal to the
corresponding integer or not. This takes no more than O(K + N) time.
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Appendix

Proof of Lemma 3 The following pseudocode will assign the elements of M .

for i = 1 . . .m, let ti = Ri

for j = 1 . . . n, let uj = Cj

let j = 1
for i = 1 . . .m

while ti > 0
Mi,j = min{ti, uj}
ti = ti − Mi,j

uj = uj − Mi,j

if uj = 0, then j = j + 1

Consider the justification now.
∑m

i=1 Ri ≤
∑n

j=1 Cj implies that for any i, Ri ≤∑n
j=1 Cj . Since Ri intersects all columns, its elements can be assigned a maximum

value of
∑n

j=1 Cj in total. So from the algorithm, the elements of the first row of M
are assigned a total value of R1. After assigning the first row the elements of second
row can be assigned a total of

∑n
j=1 Cj − R1, which is at least R2. So the elements of

the second row are assigned a total value of R2. In this way for all i, the elements of
i-th row get a total value of Ri. Therefore the sum of all elements of M is

∑m
i=1 Ri.

For the columns of M , for all j we keep track of the total value assigned to the j-th
column by checking uj to be zero. Therefore the j-th column is assigned a total value
of no more than the initial value of uj , which is Cj .

Finally, we increment j only if uj = 0. Since
∑m

i=1 Ri ≤
∑n

j=1 Cj , uj becomes
zero at most n times before the assignment is complete, so during the assignment the
value of j does not exceed n.

If the outputs are only the elements that have been assigned and all other elements
are zero, then the time complexity is clearly O(m + n). �

Proof of Lemma 4 [Sketch only] Two planes have a pair of common directions.
Assume the opposite d-i pairs 〈d0, n0〉 and 〈dK , nK〉 of S are also in S̃. So the great
circle of h0 and hK passes through the poles of S and S̃. This great circle also divides
the d-polygons into two K × K̃ “matrices”—one is h0 and the other one is hK . (See
Figure 3(d)(ii)).

After possible renaming assume that D = min{D, D̃}. Assign D̃ normal-points to
the d-polygons of h0 by using Lemma 3 with the rows of M having sum δ 0+ 1

2 (D̃−D),
δ1, . . ., δK−1 and the columns having sum δ̃0, . . ., δ̃

eK−1. Similarly, assign a total value

of D̃ to the d-polygons of hK with the rows of M having sum δK + 1
2 (D̃ −D), δK+1,

. . ., δ2K−1 and the columns having sum δ̃
eK , . . ., δ̃2 eK−1. Finally, if D̃ < N , then

increase both Δ0,0 and ΔK, eK (which are opposite to each other) by 1
2 (N − D̃).

Since hi =
⋃i−1

l=i+K
θl and hi includes either θ0 or θK , the total number of normal-

points in hi is
∑i−1

l=i+K
δl + 1

2 (D̃ − D) + 1
2 (N − D̃), which by Lemma 2 is ni. Sim-

ilarly, for h̃j the total number of normal-points is ñj . So the assignment is valid and if



max{D, D̃} < N , then the two opposite d-polygons θ0,0 and θK, eK have at least one

normal-point. Finally, using Lemma 3 twice takes O(K + K̃) time.

Two planes have no common direction. Two poles of S (resp. S̃) are strictly within
two opposite d-lunes, say θ̃0 and θ̃K (resp. θ0 and θ

eK), of S̃ (resp. S). Observe that both

θ0 and θK (both θ̃0 and θ̃
eK) intersect all d-lunes of S̃ (S). (See Figure 6(a).)
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Fig. 6. (a) Lemma ??, (b) Lemma 5, (c) Lemma 7, (d) Lemma 8: (i) Four octants o1, o2, o3 and
o4, and (ii) Claim 4.

Consider all the d-polygons that are not within θ 0, θ̃0, θK , θ̃
eK . These form two (K−

1) × (K̃ − 1)-matrices. We place as many normal points as possible within these d-
polygons; one can express exactly how many that is, and find them with Lemma 3. The
remaining normal-points must all be within θ0, θ̃0, θK , θ̃

eK , which yields lower bounds

(and hence necessary conditions) onto δ 0, δ̃0, δK , δ̃
eK . These conditions turn out to be

sufficient as well, and we find the assignment using Lemma 3 twice more: we first
put as many normal-points as possible in the remaining d-polygons except θ 0,0, θK,0,

θ̃0, eK , θK, eK (the four d-polygons incident to both poles), and finally put the remaining
normal-points into these four polygons. In the process, the two opposite d-polygons
θ0,0 and θK, eK obtain all “extra” normal-points, which in particular means that they are

both positive if max{D, D̃} < N . ��

Proof of Lemma 5 From Lemma 4 we can compute a valid assignment such that two
opposite d-polygons θ0,0 and θK, eK have at least one normal-point each. Choose all
normal-points arbitrarily according to the valid assignment, except one from θ 0,0 and
another one θK, eK , which are chosen as follows. Let x1 and x2 be two of the already
chosen N −2 normal-points. If x1 and x2 are antipodal, then move one of them slightly
within its respective d-polygon. Now consider a hemisphere h that contains x 1 and x2

strictly within it; this exists since x1 and x2 are not antipodal. For rest of the proof please
refer to Figure 6(b). At least one of θ0,0 and θK, eK intersects h, say r = θ0,0 ∩ h �= ∅.
Choose the second last normal-point x3 �= x1, x2 strictly within r such that x1, x2, x3

do not lie on a great circle. Consider the spherical triangle defined by the three segments
x1x2, x2x3 and x3x1, which intersects r, say in area t. Let the opposite of t be t ′, which
is a subset of θK, eK . Choose as last normal-point an arbitrary point x4 strictly within t′.



Note that any hemisphere h′′ that contains x1, x2, x3 strictly within also contains t, so
t′ (and hence x4) is strictly outside h′′. So no hemisphere can contain all points x1, x2,
x3 and x4.

From Lemma 3 we know the list of positive d-polygons. So the time for the selection
is O(N). ��

Proof of Lemma 7 Let g0 be the first great-circle, in counter-clockwise direction after
g∗, that is the boundary of a visible hemisphere (so either g 0 = g∗, or g∗ is strictly
inside θ0.) We initialize g to be g0, and then rotate it counter-clockwise until the lunes
satisfy the conditions. To be precise, let m be minimal such that

∑m
i=1 δi ≥ 2 and∑m+K

i=K+1 δi ≥ 2, and choose g to be strictly inside θm (and θm+K). See also Fig-
ure 6(c).

We claim that the four lunes of g∗ and g contain at least 2 normal points each, at
least if we distribute normal-points in θ0, θm, θK and θm+K suitably. By N = D, there
is only one valid assignment: each θi contains exactly δi normal-points. Also, we know
min{δi, δi+K} = 0 for any i. We may therefore (after renaming, if needed) assume that
δm+K = 0. On the other hand, we must have δm > 0 and

∑m−1
i=1 δi ≤ 1 by minimality

of m. Now we consider the four lunes of G∗ and g, which we describe by the d-lunes
that they strictly contain:

– The lune containing θK+1, . . . , θm+K−1: This lune contains at least
∑m+K−1

i=1 δi

normal-points, which is at least 2 by choice of m and δm+K = 0.
– The lune containing θ1, . . . , θm−1: This lune contains at least 2 normal-points by

choice of m if we include all normal-points from θm. However, since some normal-
points from θm may be needed elsewhere, we will only use 2 −

∑m−1
i=1 δi normal-

points from θm for it, which gives exactly 2 normal-points for this lune.
– The lune containing θm+K+1, . . . , θ2K−1: Note that no normal-points from θ0 have

been used for the previous lune, so we will include all of them (if any) here. Hence
the number of normal-points is

∑2K−1
i=m+K−1δi+δ0 =

∑m−1
i=m+K−1δi −

∑m−1
i=1 δi ≥

nm − 1 ≥ 3, since
∑m−1

i=1 δi ≤ 1,
∑m−1

i=m+K−1 δi = nm by Lemma 2 and D = N ,
and nm ≥ 4.

– The lune containing θm+1, . . . , θK−1: Note that no normal-points from θK have
been used for the first lune, so we will include all of them (if any) here. Also, this
lune gets δm − (2 −

∑m−1
i=1 δi) normal-points from θm. So the number of normal-

points is
∑K−1

i=m+1 δi+δK +δm +
∑m−1

i=1 δi−2 = n1−2 ≥ 2, since
∑K

i=1 δi = n1

by Lemma 2 and D = N , and n1 ≥ 4.

Clearly the minimal m satisfying the condition, and the point distribution, can be
found in O(K) time. ��

Proof of Lemma 8 Choose g∗ to be the great circle through the four poles, and g and
g̃ by applying Lemma 7 to S and S̃, respectively. Now we need to find at least one
normal-point in each octant of these three great-circles. We will only show how to
select normal-points from one hemisphere of g ∗, the other hemisphere case is similar.
Any normal-point will avoid the boundary of the d-polygons.

Let o1, o2, o3 and o4 be the four octants of a hemisphere of g ∗, and assume that
o1 and o2 are in one hemisphere of g and o2 and o3 are in one hemisphere of g̃. (See



Figure 6(d)(i)). Each two consecutive octants together (i.e., o 1 ∪ o2, o2 ∪ o3, o3 ∪ o4

and o4 ∪ o1) contain at least two normal-points by choice of g and g̃. Unfortunately,
this does not imply that each octant contains a normal-point, but if this is not the case,
then we can modify the valid assignment to achieve it. We call an octant empty if in the
given valid assignment all of its d-polygon are empty.

Claim. If there are empty octants, then we can change the valid assignment to another
one without empty octants.

Proof. Assume that o1 is empty. Then o2 and o4 contain at least two normal points each.
So let θa,b and θc,d be d-polygons in o2 and o4 that contains at least one normal-point
each. Recall that θa,b = θa ∩ θ̃b and θc,d = θc ∩ θ̃d. (See Figure 6(d)(i)). Observe that
the intersection of θc and θ̃b, which is the d-polygon θc,b, intersects o1. Similarly, the
d-polygon θa,d, intersect o3. Now change the valid assignment by moving one normal-
point from each of θa,b and θc,d to θa,d and θc,b respectively. See Figure 6(d)(ii). Then
the normal-points in any d-lune has not been changed, and we still have a valid assign-
ment. Also, o1 and o3 have gained one normal-point each, and o2 and o4 have lost one
each. Since o2 and o4 had at least two normal-points before, now no octant is empty.

��

So the valid selection is done as follows: Change the valid assignment, if needed,
to avoid empty octants. Then assign coordinates to normal-points arbitrarily as long as
each is strictly within its assigned d-polygon. This gives a valid selection by Lemma 6.
It is not hard to see that this selection can be found in O(N +K+ K̃) time, since during
the construction of the valid assignment we can get a list of the (at most N ) d-polygons
that contain a normal-point, and all other steps require at most scanning this list and
doing O(K + K̃) work to change the valid assignment. ��


