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We study the problem of reconstructing convex polygons and convex polyhedra given
the number of visible edges and visible faces in some orthogonal projections. In 2D, we
find necessary and sufficient conditions for the existence of a feasible polygon of size N
and give an algorithm to construct one, if it exists. When N is not known, we give an
algorithm to find the maximum and minimum size of a feasible polygon. In 3D, when
the directions are covered by a single plane we show that a feasible polyhedron can be
constructed from a feasible polygon. We also give an algorithm to construct a feasible
polyhedron when the directions are covered by two planes. Finally, we show that the
problem becomes NP-hard when the directions are covered by three or more planes.

Keywords: Polygon and polyhedra reconstruction; orthogonal projection; edge-colored
planar graph; independent set; NP-hardness.

1. Introduction

Reconstructing polyhedra from projection information is an important field of re-
search due to its applications in geometric modeling, computer vision, geometric
tomography, and computer graphics. There are various sources of information from
which polyhedra could be reconstructed, such as triangulations, line drawings, sil-
houettes, area/volume/shape of shadows, shading, texture, and reflection of light,

*A preliminary version appeared in Proc. FSTTCS 2007, LNCS 5431, Springer, 2007, pp. 400-411.
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fResearch done while the author was a PhD student at the University of Waterloo, Canada.
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among others. Observe that in general a polyhedron may not be uniquely deter-
mined by the projection information.

Marlin and Toussaint 17 studied the problem of reconstructing convex polyhedra
from triangulations of the shadow boundary. Given a convex polygon and its two
distinct triangulations 7} and Tb, they gave an O(n?)-time algorithm for deciding
whether a polyhedron exists for which the two opposite projections from the z-axis
are 17 and 75, and constructing a polyhedron where possible. When 77 and T5 are
isomorphic, Bereg 2 showed that the polyhedron can always be reconstructed. See
Demaine and Erickson ¢ for a collection of similar problems on reconstruction of
polyhedra.

The problem of reconstructing polyhedra has been studied under specific appli-
cation scenarios, where various types of projection information may be available.
Among those, line drawings 15:16:19,20,23,24,27.28 516 10ogsibly the most common. Line
drawings may be obtained from images, from geometric drawings of the designers 24
or may be freehand drawings '426. The reconstruction algorithms differ for a single
and multiple drawings. For multiple drawings there are two common approaches
based on the representation of the polyhedra that are to be constructed: construc-
tive solid geometry and boundary representation. Both approaches are used in en-
gineering and product design such as designing complex mechanical parts and in
CAD 1227, Comparatively, it is more difficult to reconstruct a polyhedron from a
single drawing 2427,

Reconstructing a polyhedron given the area and shape of projections has been
considered in geometric tomography &. A related but more application oriented area

10,11 “wwhere 2D and 3D objects are reconstructed

of research is discrete tomography
from sectioning information such as the area of a plane section of the objects.
Medical CAT scanning is an important application of discrete tomography where
an image of the human body is reconstructed from X-ray information. The X-ray
image gives the projection and thickness of different parts of an object.

Instead of whole projections, sometimes only silhouettes are used to reconstruct
polyhedra 451318 In volume intersection, which is a well-known technique in com-

4,5,13

puter vision, the only information available is a set of silhouettes , sometimes

even with unknown view points %°.

1.1. Our results

Most reconstruction algorithms are based on fairly complex information such as
triangulations, line drawings, silhouettes, and geometric measures of the projections,
along with some non-geometric surface information such as shading, texture, and
reflection of light. In contrast, we consider a very different and very limited type
of information: we consider the number of visible edges for (2D) polygons and the
number of visible faces for (3D) polyhedra in some orthogonal projections. Here
we study reconstructing convex polygons and convex polyhedra from orthogonal
projections only.
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We only consider non-degenerate orthogonal projections where the view direc-
tions are not parallel to the edges (faces) of the polygon (polyhedron). A direction-
integer pair, or simply a d-n pair, {(d,n) consists of a direction vector d and a positive
integer n, and expresses how many edges (faces) should be seen from the direction.
A d-n set R is a set of d-n pairs where no two directions are the same or opposite
to each other. (We assume this because we will ultimately generate and then use
the d-n pairs for all opposite directions too. See also Section 2.) A convex polygon
(polyhedron) P is feasible for R if, for each d-n pair {(d,n) in R, d is not parallel
to edges (faces) of P and the number of visible edges (faces) from d is n. For a d-n
set, a feasible polygon may or may not exist or it may exist for more than one size
(i.e., number of edges) (see Fig. 1.)

di,4 dy,4 N —
<dz’i Fa </1 > <d2fi </1 > A, N 5>l/<dz,5>
: . . S ) <dK+1,N— 15)
[ T (d1,15)
(do, 3) A (do, 3) (drc42, N — 5/<d0,5>
@ (b)

Fig. 1. (a) A d-n set with two feasible polygons of different size. (b) A proper d-n set containing
these directions cannot have a feasible polygon. Also see Section 3, Page 5.

In this paper, we consider the problem of given a d-n set R and an integer IV,
create a feasible polygon (polyhedron) of size N for R. We first give necessary and
sufficient conditions for a feasible polygon to exist, which also gives an algorithm
to construct the polygon, if it exists. With K directions, our algorithm runs in
O(K + N) time if R is ordered by direction vector, and in O(K log K + N) time
otherwise. For unknown N, the above characterization gives an O(K +vlogv)-time
algorithm to find the maximum and minimum size of a feasible polygon, where
1 <wv < K is some parameter explained in detail later.

In 3D, we consider cases by the minimum number of planes that cover the
directions, where “covering” means each direction lies in at least one plane. For
directions covered by one plane, 2D results are easily transferred. For two planes,
we give an algorithm to construct a feasible polyhedron, whenever it exists, except
for one particular case. Finally, for three or more planes, we prove that testing the
existence of a feasible polyhedron is NP-hard. (Throughout the paper we assume
that the model of computation is the real RAM.)

For non-convex polygons and polyhedra, it is not straight-forward to formulate
the reconstruction problem studied in this paper. This is because the definition
of visible edges and faces are not straightforward as they may be partially visible
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or may not be visible at all. This also makes it impossible to relate the size of a
feasible non-convex polygon/polyhedron to the visible edge/face counts from the
given directions. The second author ? studied reconstructing non-convex polygons
in a special case where a partially visible edge is considered as invisible, the size of
the polygon is not given, and each direction sees at least a certain number of edges.

Similar situation happens for perspective projections too, where simply con-
structing convex feasible polygons is not enough, because the feasibility of a convex
polygon depends upon its position and size too ?. More clearly, for orthogonal pro-
jections a feasible convex polygon is invariant to translation and scaling. But that
is not true for perspective projections, since the visibility of a polygon from a view
point differs if the size of the polygon is scaled up or down and if the polygon is
translated. The second author ? also studied the reconstruction of a convex polygon
from perspective projections when the view point are in convex position and showed
that it is always possible to construct a feasible polygon for this case.

Our reason for avoiding degenerate projections is that when an edge or a face of
a convex polygon/polyhedron becomes parallel to a view direction, its visibility is
not clearly defined, i.e., it can be counted as either visible or invisible, which makes
it difficult to define the problem in terms of a given d-n set.

1.2. Impact

Our algorithm to test the feasibility of reconstruction can be useful as a preliminary
step in applications in which other types of information is available and can be used
for reconstruction purposes—the user can decide quickly the existence of possible
resulting polyhedra before starting a rigorous reconstruction process.

Although from the applications point of view the problem of reconstructing poly-
hedra is more common than that of reconstructing polygons, surprisingly, the latter
are themselves very rich and their solution techniques will serve as a foundation for
solving the former.

2. Preliminaries

Recall that the input to our problem is a d-n set R, and, sometimes, the size N of
the convex polygon/polyhedron to be reconstructed. Observe that we have N > 3
in 2D and N > 4 in 3D, and N must be strictly larger than any integer of a d-n
pair since at least one edge/face is visible from the opposite direction of any view
direction. We assume this throughout.

Although our problems are defined in terms of a d-n set R having K d-n pairs,
we will use a proper d-n set S which has 2K d-n pairs and is derived from R and N
as follows: For each d-n pair (d,n) in R, S has both (d,n) and (d’, N —n), where d’
is opposite to d. The d-n pairs (d,n) and (d’, N —n) in S are called opposite to each
other. Clearly, a convex polygon (polyhedron) P with N edges (faces) is feasible for
R if and only if it is feasible for S.
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When the directions of S lie in one plane, S is represented as S = {{dp, no),
(d1,n1), ..., {dog—1,n2K—1)}, where the d-n pairs are ordered by the counter-
clockwise ordering of the directions. From now on indices of the terms related to S
are taken modulo 2K.

3. Reconstructing polygons

We first study the 2D case. Let P be a feasible polygon of size N for S and consider
the sets of visible edges of P from the directions of S. We shall perform a complete
circular rotation of the view direction around P and count how the visibility of the
edges change. During this rotation, while moving from direction d; to d;y1, some
edges of P may become newly visible, i.e., become visible from invisible, and/or
newly wnvisible to d;11. From n; and n;4; alone, it cannot be said exactly how
many edges become newly visible or invisible to d;;;. However, it is possible to
lower bound these quantities. Observe that if an edge e becomes newly visible when
going from d; to d;41, then it becomes newly invisible when going from d;yx to
d;+ k1. This implies that over the complete rotation, although the change in the
visibility of each edge happens twice, the total change in the visibility of all edges
can be counted by only considering their change from invisible to visible. (This
use of opposite directions is the main motivation for considering S instead of R.)
Moreover, e is newly visible for exactly one direction of S.

We now state the characterization formally. For each 4, define §; = max{0,n;11—
n;}. We call 0; the i-th view difference. Note that for any 4, at least one of §; and ;4 i
is zero. There must be at least §; edges that become newly visible while moving from
d; to d;41. Therefore, if a feasible polygon for S exists, then D := Z?fo_l 0; < N.

This can be used to show that some d-n sets do not permit a solution. For
example, for any S having the three consecutive d-n pairs (do, 5),(d1, 15),{d2,5)
of Fig. 1(b), we have dg = 10, 1 = 0, dx = 0, and dx4+1 = 10. But we also have
ng = N—ng=N-5, and Zfi;l 0; > Zfi;l(ni_‘_l*ni) =ng—ng=(N-5)—-5=
N —10. Since §; > 0 for any i, we have D = Z?ﬁ;l 0; =09+ 01+ Zfi;l 0; + 0K +
Sra1 + 30150 > 1040+ (N —10)+0+10+ 3751, ; > N +10. Therefore,
there is no feasible polygon for any N. Our main result here is that this argument
works for all infeasible d-n sets, i.e., that this necessary condition is also sufficient.
In particular, our first main result is the following theorem.

Theorem 1. Given a proper d-n set S with all directions in one plane, and an inte-
ger N, a feasible convex polygon P of size N exists if and only if D := foofl 6; <
N.

Before we prove this theorem, we will give an important lemma that will be used
in the proof as well as in the rest of the paper.
Lemma 1. For any i, N — D = 2(n; — Z;ﬁfgl d;).

Proof. We first observe that n; 1—n; = 0;—9;4x, since 0; = max{0,n;41 — n;}
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and 04 ¢ = max{0,n; 41—+ i } = max{0, (N—n;11)—(N-n;)} = max{0,n;—
njy1}. Applying this K times gives n,yx—n; = Z;g(_l d; — Z;jﬁ;l 9. Us-

ing n;yx = N—n; and subtracting D = Z?fo_l d;, this becomes N—2n;,—D =
-2 Z;Jj_}:}; '8, as desired. |

We now prove Theorem 1.

Proof of Theorem 1. The idea is as follows. For each view direction d;, choose
0; edges, if §; > 0, such that they are newly visible for d;;+1. The remaining N — D
edges are chosen in parallel pairs so that one becomes visible exactly when the other
becomes invisible. Then by Lemma 1, d; sees n; edges.

Now we come to the exact details. To avoid constructing an unbounded polygon
we have to be careful in how to chose edges. To simplify the description, we will
not choose edges directly, and instead choose a normal point for each edge on a
circle ¢ centered at the origin o. The normal point of an edge e of P is the point of
¢ that uniquely represents the outward normal vector of e, i.e., the intersection of
the outward normal vector of e, when translated to the origin, and c. From these
normal points, we can then reconstruct a polygon by computing the intersection of
their tangent half-planes in O(N) time if they are ordered.

For any direction d;, denote by h; the visible half circle of d;, i.e., the (closed)
half circle of ¢ that is visible from d;. Clearly, an edge e is visible from d; if and
only if e’s normal point is strictly within h;. Moreover, a polygon defined by normal
points is bounded if and only if not all normal points are within a single open half
circle.

The circular arc 6; = h;11\h; is called the i-th d-arc (“d” for difference). Normal
points in 6; correspond to edges that are newly visible to d;;;. Normal points will
never be placed on the boundary of #;, and hence we will not distinguish as to
whether 6; is open or closed. Observe that 6; and 60;,x are the reflection of each
other with respect to the origin and are called opposite to each other. Since d; and
d;+x are opposite directions, we have U;:JFK 0; = h; for all i. (See also Fig. 2(a)).

Now place §; arbitrary normal points strictly within each 6;. If N = D, then
we have no more normal points left. If D < N, then by Lemma 1, N — D is even.
Select N — D — 2 additional normal points in antipodal pairs arbitrarily (but not on
end-points of any 6;). The last two normal points p; and ps are placed within two
opposite d-arcs, but chosen carefully as follows such that no half circle contains all
normal points. Let p be one among the already selected normal points and let 6 be
the d-arc containing p. Place p; somewhere between p and the boundary of 6 that
is clockwise next to p. Let € be the (circular) distance of p; from p. Let p’ be the
antipodal point of p. Place py at the clockwise distance of £/2 from p’. Clearly, p;
and po are within 6 and its opposite d-arc respectively. See Fig. 2(b). Moreover, no
half circle can contain all of p, p; and ps.

Recall that h; = U;gfle ;. The number of normal points strictly within h; is
hence Z;:ff;; ! 0 + %(N — D), because d-arc 6; initially gets 6; normal points and
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Fig. 2. (a) d-arcs and visible half circles. Two opposite d-arcs are in bold. h; = U;iff;l 0;. (b)
Selecting the last two normal points when D < N.

then exactly half of the additional N — D points are placed within the half circle
h;. By Lemma 1, therefore, h; contains n; normal points as desired.

All that remains to show is that no half circle contains all normal points. This
was already guaranteed if D < N, since the last two normal points p; and ps were
chosen carefully. If N = D, then each d-arc 6; gets exactly d; normal points. Any
open half circle h contains K — 1 consecutive d-arcs, and let them be {6,}, for
j=1i+1,i4+2,...,i+ K —1. We claim that at least one of these d-arcs has positive

view difference. Suppose not. Then Z;Z{;l 0; = 0. But remember that at least
one of §; and d;+x is 0, say §; = 0. So, we have Z;:(_léj = 0. That means,

Nivk = Y ori '0;+ 4(N = D) =0+0 =0, which by Lemma 1 means n; = N.

This is a contradiction to our assumption on the input that N > n; for any d-n
pair (d;, n;). 0

The above proof is algorithmic (constructive), and it is straightforward how to
implement it. For the running time, if the d-arcs are not ordered then we need to
sort them in O(K log K) time. Then, during the selection of normal points within
the d-arcs, we can also maintain their ordering in a total of O(N) time. Finally, we
can construct P from these ordered normal points in O(N) time. So the total time
required is O(N+K) if S is ordered, and O(N + K log K) otherwise. We summarize:

Theorem 2. Given a d-n set R of size K with all directions in one plane, and
given an integer N, a feasible convexr polygon P with N edges can be computed,
whenever it exists, in O(N + K) time if R is ordered, or in O(N + K log K) time
otherwise.

3.1. Mazximum and minimum size convex polygon

Using Theorem 1, we can also find out whether there exists a feasible polygon for a
given d-n set R if N is unknown. In fact, we find both the maximum and minimum
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size of a feasible polygon. Observe that if R contains two opposite d-n pairs, then
the sum of the two corresponding integers would give the value of N. Hence, once
again it is assumed that no opposite d-n pair appears in R.

Our algorithm is as follows. We compute as before a proper d-n set S(IN) from
R, but this time the d-n pairs of S(N) will be functions of N—for each pair (d,n) in
R, the opposite pair (d’, N —n) in S(N) contains the unknown N. Then we compute
0;(N) and D(N), which also become functions of N. Recall from Theorem 1 that
a feasible polygon exists if and only if D(N) < N. Also remember that §;(N) =
max{0,n;+1 — n;}. For each ¢;, replacing n;, by N — n;; i if n; is derived and n;41
by N — n;1 k41 if nj41 is derived yields d; to be one of the following four in terms

of N:
e §;(N)=max{0,n;41 —n;}, or
e 5;(N) =max{0,n;+x — Nit K41}, OF
e §;(N) =max{0, N — (njyx+1 +ni)}, or
e §;(N) =max{0,n;41 + i1 x — N}

So, 6;(N) is either constant or increasing/decreasing with slope 1. Moreover, §;
is increasing/decreasing if and only if d;;x is decreasing/increasing, and the two
meet (with 6;(N) = 0) at a place well-defined in terms of n; and n;1. We call such
a meeting place a valley. Hence the function D(N), which is the sum of all §;(N),
is convex and piecewise linear. Also see Fig. 3. So D(N) = N has at most two
solutions, and any N between them is feasible as long as N > 3 and N > max;{n;}.
(Observe that since some 0;’s keep increasing with the increase of N, D(IV) can be
bigger than N. This is in contrast with Theorem 1 where N has no upper bound
for fixed 0’s.) The algorithm to compute this range of N will need, other than
computing D(N), to sort the valleys. So the algorithm takes O(K + vlogv) time,
where v is the number of valleys. Of course v € O(K), but v could be as small as
one if all directions in R are spanned within a half-plane.

AAVAW N

avalley

Fig. 3. §; and D(N) against unknown N.
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Theorem 3. Given an ordered d-n set R of size K with all directions in one plane,
the mazximum and minimum size of a feasible convex polygon can be computed in
O(K +wvlogv) time, where the number of valleys v is at most K and can be as small
as one. If R is not ordered, then the algorithm takes O(K log K) time.

4. Reconstructing polyhedra

Similar to 2D, in order to construct a feasible polyhedron P in 3D, we will compute
the proper d-n set S from the given d-n set R and instead of choosing faces directly
we will choose them implicitly by choosing normal points of the faces on the surface
of an origin-centered sphere s. (The definition of the normal point of a face is
analogous to that of an edge in 2D.) Then given such normal points, we can compute
a polyhedron from them by computing the intersection of their tangent half-spaces
in O(Nlog N) time 72!,

A face f is visible from a direction d; if and only if its normal point is strictly
within the visible hemisphere h; of d;. Moreover, P is bounded if and only if not all
normal points intersect a single open hemisphere.

4.1. Dairections covered by a single plane

If all directions are in one plane, a solution to the 2D case implies an open cylinder
in 3D which can easily be converted to a solution to the 3D case. The other direction
is slightly less trivial; the following theorem gives a precise proof.

Theorem 4. Given an ordered proper d-n set S of size 2K, where all the directions
lie in one plane w, and given N > 4, there exists a feasible convex polyhedron P
of size N for S if and only if there exists a feasible polygon P’ of size N for S,
interpreted as 2D directions within w. Moreover, constructing both P from P’ and
P’ from P require O(N log N) time.

Before giving the proof, we need to introduce some notation, which will be used
in later sections as well. Given a proper d-n set S with directions in one plane and
ordered counter-clockwise, define the ith d-lune to be 0; = hi1\h;. See Fig. 4(a).
As in 2D, h; = U;Efgl 6;. All d-lunes of & have two common antipodal points
which are called the poles of S.

Proof. Let ¢ be the great circle of s corresponding to the plane w. Assume first
that the polygon P’ exists. Each edge of P’ then corresponds to a normal point in
c. At this stage if we create a polyhedron P with these normal points, then it would
be a cylinder with two ends unbounded. To make it bounded, we move two of these
normal points towards the two poles of S, respectively, but within their respective
d-lunes. This still remains a solution to the d-n set S. See Fig. 4(b). Finally, we
construct P by taking for each normal point the tangent plane at it, taking the
halfspace of the plane that contains s, and then computing the intersection of these
halfspaces. This takes O(N log N) time 721
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Great circle of h;y;
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Fig. 4. (a) d-lunes. (b) P from p. (c) p from P.

Now assume a polyhedron P for the 3D problem exists. Each face of P then
corresponds to a normal point on s. Move each of these points onto ¢ along the
great circle through the point and the poles, using the shorter arc. See Fig. 4(c).
If two points overlap on ¢, then slightly move one of them on ¢ but within their
respective d-lunes. Now we have N distinct normal points within a plane. We find
their ordering along ¢ by sorting them in O(N log N) time. Then we construct the
convex polygon from these ordered normal points in O(N) time. O

4.2. Directions covered by two planes

Now we consider the case when all view directions are covered by two planes 7
and 7. The d-n set S hence gets split into two d-n sets S and g, depending on
which plane each direction belongs to. (One pair of opposite directions can belong
to both planes.) We assume that for each of S and S the d-n pairs are numbered
counter-clockwise (within their planes). This then also defines d-lunes 6; and 5] and
view differences 8; and &; as before. All indices are taken modulo 2K := |S| and
2K = |S]. We set D = 577" 8; and D = 375" §; as before. Moreover, since a
feasible polyhedron is also feasible for each of the two planes, by Theorem 4 and
Theorem 1 we can assume that D, D < N and that Lemma 1 holds for both planes.

We assume the numbering is such that dy = glvo if the two sets S and S have a
common direction. So, the great circle of hy and Eﬁ passes through the poles of S
and S. (See Fig. 5(a).) On the other hand, if S and S have no common direction
then the two poles of S (resp. <S~') are strictly within two opposite d-lunes 50 and
5? of S (resp. fy and 0 of S). (See Fig. 5(b).) Intersecting the two sets of lunes
splits the sphere s into a grid-like structure, except near the poles if S and S have
no direction in common.

Let 04, = 6, N 51,; this is a spherical polygon called d-polygon, and the union of
the d-polygons covers the sphere s. If A, 3 is the number of normal points that will
be finally assigned to 6, p, then the following must hold:
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Fig. 5. (a) (i) Two planes of S with common directions, and (ii) arrangement of the d-lunes for
such S. (b) Two opposite views of the sphere s (the back view is rotated to front and is drawn in
the right) showing the arrangement of d-lunes if S and S have no direction in common.

Zj Ai,j > gz forall 0 <i < 2?,

o 3, A >0 forall 0< j < 2K,
. z;;zl,ﬁ S Ay = forall 0< i < QFN,
ok i Aie = for all 0 < j < 2K,

where the unspecified sums run over all indices for which A, ; exists, i.e., the two
respective d-lunes intersect. (Observe that the inequality in the first two conditions
is possible, because the view difference § of a d-lune 6 can be much smaller than
the number of normal points that 6 can finally have in it.) Satisfying these four
conditions will be called the wvalid assignment problem. It is quite similar to the
Edmond’s transportation problem studied in many linear programming textbooks,
see for example Bazaraa et.al. !, and it is not difficult to develop an algorithm to
find a valid assignment if one exists.

But before that we need some more preliminaries: A crucial ingredient for finding
a valid assignment is to use a matriz assignment problem defined as follows: Let M
be a matrix of m rows and n columns. Let Ry,...,R,, and Ci,...,C, be non-
negative integers with >3i%, R; <377, Cj. R; (similarly C;) indicates the ith row
sum, i.e., the sum of the elements of the ith row, (similarly the jth column sum)
of M. We want to assign the entries (M; ;)1<i<m,1<j<n With non-negative integers
such that 377, M;; = R; and >3i%, M;; < C;. With a simple greedy-algorithm
we can show the following:

Lemma 2. Any matriz assignment problem has a solution, and we can find the
positive integers of such a solution in O(m + n) time.

Proof. The following pseudo code can do the job.
Procedure matrixFilling([Ry, ..., Rm, C1,...,Cr])
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Input: Non-negative R;’s and C;’s with 3" R; < >0, Cj.
Output: A matrix M; ; with Z;’:l M;;=R;and Y i~ M,;; <Cj.
// Assume M, ; is initialized to all-zero.
if m > 0 and n > 0 then
set My, = min{R,,, Cy, }
if M, ,, = R, then
matrixFilling([R1, ..., Rm—1], [C1,...,Cn1,Cn — Ry)
else
matrixFilling([Ry, ..., Rm—1, Rm — Cp], [C1,...,Cn-1])
end if
end if

Clearly, in every iteration one row or column is removed, so the run-time (apart
from initializing M; ;) is O(m + n) and there are at most m + n non-zero matrix
entries.

To see the correctness, assume first that m = 1 and n = 1. Then min{R,,,, C,,} =
R,, by > R; < 2?21 Cj, and so the matrix with single entry M,,, = R,
satisfies the condition, and our algorithm computes exactly that. Now if m > 1
or n > 1, then M,,, = min{R,,,C,} satisfies the sum for the row/column that
is removed for the recursive call. Moreover, all integers passed into the recursive
call are non-negative, and the row-sum is no more than the column-sum since we
removed M, , from both sums. So by induction the recursively obtained solution
satisfies the conditions for all other rows/columns. O

We now turn to finding a valid assignment. In 2D, we had a simple condition
(Theorem 1) that was necessary and sufficient for this. We have not been able to
find a similar condition for 3D when the directions are in two planes. Obviously,
a necessary condition is that within each plane the d-n set can be realized, but as
the following example will show, this is not always sufficient. Consider a proper d-n
set {(do, 1), (dy,2), (da,99), (d3,98)} with two copies as S and S having their two
planes perpendicular to each other as shown in Fig. 6(a) and (b) respectively. For
both of them, we have g = 1, 61 = 97, 6o = 0 and 63 = 0. With N = 100, since
3 d; < 100, both S and S have a feasible polyhedron. However, all together, their
two planes are so arranged that 6, and 51 are opposite to each other. Since each
of these two disjoint d-lunes must get at least 97 normal points, there is no valid
assignment.

We now develop an algorithm to find a valid assignment if one exists. We can
even add extra conditions that will be useful later:

Lemma 3. We can~ﬁnd a valid assignment, if one ewists, in O(K + I?) time.
Moreover, if max{D, D} < N, then Ay > 0 and Az >0.

Proof. We have two cases:

Two planes have a pair of common directions. In this case a valid assignment
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(b) (c)

Fig. 6. (a) S. (b) S. (¢) S = SUS has no valid assignment.

always exists and we will find one such valid assignment. Recall that the great
circle of hy and Eﬁ divides the d-polygons into two K x K “matrices”—one in ho
and the other one in hg (see Fig. 5(a)(ii)). After possible renaming, assume that
D = min{D, 15} Assign normal points to thg d-polygons of hy by using Lemma 2

with the rows of M having row-sums 6o + %(D —D), 61, ..., 0%_, and the columns
having column-sums JNO, e gf(—l' Similarly, assign normal points to the d-polygons
of hz with the rows of M having row-sums 3z + 4 (D — D), 3, ,, .- ., 0y, and

the columns having column-sums ¢z, .. Finally, if D < N, then assign

. L byr .
(N — D) normal points to each of 6y o and 0% -
i+2K—1 7
l=i+K '€
either fy or Oz, the total number of normal points in h; is Z;;zf%l 0 + %(D _

D) + 4(N - D), which by Lemma 1 is ;. Similarly, for ﬁj the total number of

For the correctness of the above algorithm, since h; = ; and h; includes

normal points is Z?ijfle 8+ L(N — D) = 71;. So, the assignment is valid and if
max{D, 5} < N, then the two opposite d-polygons g o and 03 & have at least one
normal point each. Finally, using Lemma 2 twice takes O(K + K ) time.

Two planes have no common direction. Let W, and W, be the two sets of
d-lunes that are in between 6, and 5? and let X; and X5 be the sum of the view
differences of the d-lunes of W, and W respectively. More formally,

K—1 2K—1
Wi={01,....0% },Wa= {5?“, vl 1 X0 = Z &;, and Xo = Z 5

i=1 i=K+1
Similarly,

K-1 2K -1
Wi ={01,....05_ },Wo={0g 1.0z} X1 =) 0, and Xo= Y §

Jj=1 j=K+1

W.l.o.g assume that all d-lunes of W (similarly Wg) intersect all d-lunes of Wl
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(a)

Fig. 7. (a) W17W27Y1 and YQ. (b) AWH,WQ,X1 and XQ. (C) W1 le and YQ ﬂjzg.

(respectively W>), which form two (K — 1) x (K — 1)-matrices of d-polygons (see
Fig. 7). We assign the normal points by the following four steps:

e We place as many normal points as possible, namely min{yl,)}l} and
min{yg,)?g}, into these two matrices by using Lemma 2 twice. The re-
maining normal points must all be within 6, 50, gf, ] 7%, which yields lower
bounds (and hence necessary conditions) onto dg, 50,5?, 5~f< These condi-
tions turn out to be sufficient as well, and we find the assignment by using
Lemma 2 twice more by the next two steps.

e Put as many normal points as possible, namely max{yl,)zl} —
min{ X, )?1} + max{Xo, )?2} — min{ X, )?2}, in the remaining d-polygons
except for 6y, 5?’0, 50, 7 0?7 7 (the four d-polygons incident to both
poles).

e Put the remaining normal points, namely max{ﬁ,f)} — max{yl,)?l} —
max{ X, XQ} into these four polygons

Until now the d-lunes of Wl,WQ,Wl and W2 get an exact total of
X1, Xo, X1 and X2 normal points, respectively, with each d-lune d; in W
or Wy (similarly, each d-lune d; in W, or Wg) getting 6; (similarly, 0;)
normal points. The d-lunes dy and d get 8 and 07 normal pomts W.lo.g
if we assume that D < D, then the d lunes do and dK get 0o + L 1D - D)
and (5K +3(D - D)Nnormal points.

e Finally, if max{D, D} < N, then we assign (N — D) normal points to
each of 0y and 0+ TR which by Lemma 1 implies that 6y ¢ and HK 7 are
positive.

To see the validity of the assignment, the total number of normal points in h;
is ZHK '3, + 3(N — D), which by Lemma 1 is ;. For h;, the total number of

normal points is ZHK Lo, + 1(D - D)+ (N — D), which by Lemma 1 is 7;.

Using Lemma 2 four times takes O(K + K) time, and as mentioned in the first step
above, checking whether Lemma 2 can be applied for 6, 90, 9 and 6 ~ 7% can be done
in constant time. O
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The valid assignment by the above lemma yields how many normal points should
be placed in each d-polygon, but not the actual locations. To find their actual loca-
tion, we need to solve what we call the valid selection problem: Assign normal points
such that no hemisphere contains all normal points. (If one hemisphere contains all
normal points, then the resulting polyhedron is unbounded. If this is allowed, then
the existence of a valid assignment is necessary and also sufficient for the existence
of a feasible polyhedron.)

4.2.1. Insufficiency of a valid assignment

Before we study how to find a valid selection, we first show that this is a non-
trivial problem, by describing an instance which has a valid assignment, but no
valid selection. Consider the 2D proper d-n set S’ of Fig. 8(a). It has twelve d-n
pairs with only positive view differences 69 = 2, 4, = 1, and dg = 1. We use N = 4,
so N = D. A key property of 8’ is that this defines very “thin” d-lunes. Moreover,
the directions can be adjusted such that the gap between these thin d-lunes are
increased or decreased. With such flexibility, we use S’ twice as S and S in two
different planes as shown in Fig. 8(b) and take S = S U S. There are only two
possible valid assignments for S which are shown in Fig. 8(c). But in either case all
positive d-polygons are strictly within a single hemisphere. So, no valid selection
exists.

4.2.2. Finding a valid selection

Despite this negative example, we can find a valid selection in two cases:
(i) max{D,D} < N, and (ii) D = N = D and all directions see at least four
faces. Note that neither case covers the above example.

In the first case, by Lemma 3 we can find a valid assignment where 6y o contains
a normal point, say x3, and 9?’;( contains a normal point, say x4. Let x1, x2 be two
other normal points. These four normal points exist by N > 4. W.l.o.g we assume
that x1, x2 and x5 are all within one hemisphere; they then span a spherical triangle
t, which intersects 6y . See also Fig. 9(a). The antipodal triangle ¢’ to ¢, i.e., the
reflection of ¢t about the origin o, hence intersects 0?, 7
that it is strictly inside ¢’ N 9?, 7z This will ensure that no hemisphere contains all
of x1, 9,3, 24.

and we can move x4 SO

Now consider the case when D = N = D and each direction sees at least four
faces. This case is significantly more complicated. In fact, we are not able to find a
valid selection for any given assignment, but we can find a valid selection if we are
allowed to change the given assignment slightly.

We first define octants of the sphere by choosing three great circles as follows.
The first one is the great circle g* that contains the four poles of S and S. The
second great circle g is obtained by rotating a great circle, starting at ¢g*, through
the poles of S until the four lunes defined by ¢* and g contain at least two normal
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<d47 2>

<d57 3>

<d67 3> —
d77

<d8a
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M \ du,

<d9a 2>

Fig. 8. An example of insufficiency of a valid assignment. (a) A 2D d-n set S’. (b) Two copies S
and S of 8’ in two different planes in 3D. In S, all directions are in zz-plane and from the positive
z-axis, the directions do, d1,d4, ds,ds and dg are roughly 80°,80° 4 ¢, 250°, 250° 4 €, 330°, 330° 4 €
away, respectively, for some small value of e. Other directions in S are opposite to these directions.
In g, the direction plane is rotated around the positive z-axis roughly by 45° towards the positive
z-axis, and the directions d4 and ds are adjusted so that they are now roughly 200° and 200° + €
away from the positive z-axis, respectively. (¢) Only two possible valid assignments for S , and for
both of them all three positive d-polygons are strictly within a hemisphere of s (shown shaded).

points each. That this is possible is non-trivial and the following lemma shows how
to do that.

Lemma 4. Given a proper d-n set S of size 2K, where the directions are in one
plane, n; > 4 for any (d;,n;), and D = N. Then for any great circle g* passing
through the poles of S, we can find in O(K) time another great circle g also passing
through the poles of S such that the four lunes created by g* and g contain at least
two normal points each, after a suitable distribution of normal points in the d-lunes
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Fig. 9. (a) Arranging normal points to avoid an empty half-sphere. (b) Four lunes created by g*
and g (shown as broken lines). (c) Shifting normal points within octants.

intersected by g* and g.

Proof. We have two cases based on the position of g*. If g* is the great circle of
a visible hemisphere of S, then w.l.o.g we assume that g* is the great circle of hy
(and hg41). Otherwise, w.l.o.g we assume that g* properly intersects 0y and .
We initialize g to be the great circle of hy. Note that ¢ is the first great circle, in
counter-clockwise direction from g¢g*, that is the boundary of a visible hemisphere.
Then we rotate g counter-clockwise until the lunes satisfy the conditions. To be
precise, let m be minimal such that er;l 0; > 2 and Zg}fil d; > 2, and choose g
to be strictly inside 0,, (and 6,1 k). See also Fig. 9(b) for the later case.

We claim that the four lunes of ¢g* and ¢ contain at least 2 normal points
each, provided we suitably redistribute normal points in g, 0,,, 0k and 6,,,+ k. Since
N = D, there is only one valid assignment: each 6; contains exactly §; normal points.
Also, we know that min{d;, d;+x } = 0 for any . We may therefore (after renaming,
if needed) assume that 0,,+x = 0. On the other hand, we must have ¢,, > 0 and
Z?:ll 6; < 1 by minimality of m. Now we consider the four lunes of g* and g, which
we describe by the d-lunes that they strictly contain:

e The lune containing Opi1,...,0m+x—1: This lune contains at least
Z:’l}ﬁ;l d; normal points, which is at least 2 by the choice of m and
Om+x = 0.

e The lune containing #1,...,60,,_1: This lune contains at least 2 normal
points by the choice of m and if we include all normal points from 6,,.
However, since some normal points from 6, may be needed elsewhere, we
will only use 2 — 221_11 d; normal points from 6,,, for it, which gives exactly
2 normal points for this lune.

e The lune containing 6,,,+x+1,- .-, 025 —1: Note that no normal points from
fp have been used for the previous lunes, so we will include all of them
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(if any) here. Hence the number of normal points is fon;i K1 0itdo =

S i 0= 0y 8 = =12 3, since 5716y < 1 S0 L g 6 =
by Lemma 1 and D = N, and n,, > 4.

e The lune containing 0,,41,...,0k_1: Note that no normal points from 6
have been used for the previous lunes, so we will include all of them (if
any) here. Also, this lune gets d,, — (2 — Z:.':l ;) normal points from 6,,.
So the number of normal points is Zfi:nlﬂ 0; + 0K + 0, + E:’:ll §; —2=
S8 —2=mny —2> 2 since i, 8 = n; by Lemma 1 and D = N,
and n; > 4.

Clearly, the minimal m satisfying the condition, and the point distribution, can
be found in O(K) time. O

We use the above lemma twice, once for S and once for S, with g* in both cases
as the great circle passing through the poles of S and S. Let the two great circles
that come out of the lemma be § and g respectively.

Now we have eight octants defined by three great circles g*,g and g. A fairly
straightforward proof shows that if each octant contains a normal point, then no
hemisphere can be empty. However, our given valid assignment need not have a
normal point in all octants. But, since the great circles were chosen such that each
lune has at least two normal points, we can change the valid assignment to a different
valid assignment by shifting points from octants having two normal points to empty
octants. The following lemma shows how to do that. See also Fig. 9(c).

Lemma 5. If there are empty octants, then we can change the valid assignment to
another one without empty octants.

Proof. Let 01, 03, 03 and o4 be the four octants of a hemisphere of ¢g*, and assume
that o7 and o9 are in one hemisphere of g and oo and o3 are in one hemisphere of
g. (See Fig. 9(c)(i)). Each two consecutive octants together (i.e., 01 U 0z, 02 U 03,
03 U o4, and o4 U 01) contain at least two normal points by the choice of § and g.
Assume that o; is empty. Then o, and o4 contain at least two normal points
each. So let 8,;, and 6.4 be d-polygons in oy and o4 that contains at least one
normal point each. Recall that 6, = 0, N §b and 0. q = 6.N gd. Observe that the
d-polygon 0., intersects o;. Similarly, the d-polygon 6, 4 intersects o3. Now change
the valid assignment by moving one normal point from each of 8, and 6. 4 to 6,4
and 6. respectively. See Fig. 9(c)(ii). Then the number of normal points in any
d-lune has not been changed, and we still have a valid assignment. Also, 0; and o3
now have one normal point each, and 05 and o4 have lost one each. Since o and o4
had at least two normal points before, now no octant is empty. O

After doing so, we can choose arbitrary normal points within the d-polygons
and obtain a valid selection.
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None of our steps is computationally expensive, and the time complexity is
dominated by the time to compute the intersection of the tangent half-planes of the
computed normal points. In summary, we obtain:

Theorem 5. Given a proper d-n set S and an integer N > 4, where the directions
of § are covered by two planes. We can construct a feasible convex polyhedron P, if it
exists, in O(N log N+|S|) time, in each of the following cases: (i) max{D, D} < N,
or (ii) D= N =D and n > 4 for each d-n pair (d,n) in S.

5. NP-hardness for arbitrary directions

Theorem 6. Given a proper d-n set S of size 2K with three planes of directions,
it is NP-hard to decide the existence of a feasible convex polyhedron for S.

Proof. We will prove that when the directions span three planes, it is NP-hard to
find a set of points such that the hemisphere of every view direction of a d-n set
contains exactly the prescribed number of points. Note that finding such a set of
points is a necessary step in reconstructing a feasible convex polyhedron.

To prove that the problem of finding such a set of points is NP-hard, we apply
a reduction from the problem of testing whether a 2-edge connected cubic planar
graph G has an independent set of size k, which is NP-hard . An independent set
I of G is a set of vertices such that no two vertices of I are connected by an edge.

Since G is a 2-edge connected cubic planar graph, it is 3-edge colorable. More-
over, the 3-edge coloring can be found in polynomial time: Compute a 4-vertex
coloring of the dual graph 22 and convert it into a 3-edge coloring of G with stan-
dard techniques 2°.

We draw G as follows: First place all vertices in a vertical line. Let £ be the set
of all lines of slope im/3, i = 0, 1,2, through the set of vertices of G. We place the
vertices in such a way that no three lines of £ intersect at one point, except at a
vertex. Note that such placement of vertices can be done easily in polynomial time.
Next draw each edge e of color j with 3 segments: one segment of slope jn/3 at
each end and one segment of slope (j 4 1)7/3 connecting them. Add to £ three new
lines (of slope im/3, ¢ = 0,1, 2) through each of the two bends of e. We choose the
segment lengths such that these newly added lines through the bends do not cross
an intersection point of the existing lines of £. This can always be done by drawing
the middle segment sufficiently far out, and suitable lengths can be computed in
polynomial time. See Fig. 10.

Now we have a (not necessarily planar) drawing of G and a system of lines £
with three slopes such that any trivalent point (a point that belongs to three lines
of L) corresponds to a vertex of G or a bend of an edge of G and that no other
three lines of £ cross in one point. Since G is cubic and 3-edge-colored, one easily

verifies that there are n + m lines in each direction in £, where n and m are the

3

number of vertices and edges of G. Also m = 2n, so |L] = 2n.
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Fig. 10. (a) A 2-edge connected cubic planar graph G with its 3-edge coloring, and creating £ from
G. For simplicity, only three edges of G (shown as bold) are converted to £. (b) Projecting lines
onto a sphere. (¢) Then converting them to thin d-lunes. The boundary thin d-lunes are shown
bold. (d) Arrangements of the d-lunes, partially shown in one hemisphere for clarity’s sake; the
d-polygon of a degree-3 vertex of G is shown shaded. The three copies of 05,414 i intersect, since
this is the reflection of the intersection of the three copies of 05,41, which we mark by Nfs,41 in
the figure.
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We will eventually project £ onto the sphere and then create a d-n set such that
any solution to it can be converted to a set of points of £ with certain properties.
This will be helpful, since there is a correspondence between independent sets of G
and points placed on L as follows:

Lemma 6. G has an independent set of size k if and only if there exists a set T of
9
2
point of T intersects either one or three (but not two) lines of L.

n — 2k points such that each line of L intersects exactly one point of T and each

Proof. Given an independent set I of size k of G, we construct 7 by the following
three steps:

(1) Add the point of every vertex of G in I. This adds k trivalent points.

(2) For every edge (v, w) of G, at least one endpoint (say v) is not in I. Add
the point of the bend that is adjacent to v. This adds m = %n trivalent
points.

(3) By the construction, no line of £ is intersected twice by the points chosen
into 7 thus far by the above two steps. For every line in £ not intersected
by a point of 7, add one more point that intersects this line only. Since 3k
and Jn lines are already intersected by a point of 7 in steps (1) and (2),
respectively, and since |£| = %n, this third step adds %n — 3k — %n =
3n — 3k points.

Therefore, the total number of points added into 7 by the above three steps is
k+ %n +3n — 3k = %n — 2k and the other properties are easily verified.

For the other direction, assume that we are given such a point set 7, and assume
it contains ¢ trivalent points. Then |£| — 3¢ = £2n — 3/ lines are covered by points
that are on one line only, so |7| = L¥n — 2¢, which with |7| = $n — 2k implies
(= %n + k. Let H be the graph obtained from G by subdividing each edge twice
at its two bends. Each of the ¢ = %n + k trivalent points belongs to a vertex or a
bend of G, hence a vertex of H. These trivalent vertices are an independent set I’
of H, since every line of £ contains only one point of 7 implying that every edge
of H intersects only one vertex of I’. I’ contains at most one bend per edge (v, w)
of G, and if both v and w are in I’, then neither bend of edge (v,w) is in I’. So
by removing one vertex per edge of G we can convert I’ into an independent set of
size k in G. O

Now we create an instance of our reconstruction problem, i.e., a proper d-n set
S and N, from the set £ as follows. (Also see Fig. 10.) First do a stereographic
projection, i.e., consider £ as lines in an xy-plane, place a sphere s outside this
plane, and map each line [ of £ to the great circle defined by the intersection of s
with the plane through the center of s and [. All lines of the same slope hence get
mapped to great circles with common poles, and the three pole-sets for the three
directions all lie in one xy-plane, which for ease of description we assume to be the
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(z = 0)-plane. Note that the arrangement of line appears twice on the sphere, once
on each side of the (z = 0)-plane.

We now set up the directions of & such that each great circle of a line gets
replaced by a pair of opposite lunes through the same poles. We call these thin
lunes non-boundary thin lunes. These lunes are thin enough such that there is no
common intersection of more than 3 of them. We also replace the great circle of
the (z = 0)-plane by 12 lunes as follows. For each pair of poles, each half circle
between them gets replaced by two adjacent thin lunes, divided at the (z = 0)-
plane. Moreover, the four lunes for each pair of poles are in two opposites pairs. We
call these thin lunes boundary thin lunes.

Now we set up N and the integers of the d-n sets of S. We do this in such a way
that the following four conditions hold:

e The sum of view differences is exactly N, so the total view difference is
exactly the number of normal points in any solution.

The next three conditions are for the half-space above the (z = 0)-plane.

e The non-boundary thin lunes replacing lines all have view-difference 1.
Hence any assignment of normal points will have to assign exactly one
point to this line.

e The spaces between thin lunes all have view-difference 0. Hence we can only
place normal points at the intersection of three thin lunes, which correspond
to trivalent points, or at the thin lunes replacing the (z = 0)-plane.

e The total number of points in this half-space is %n — 2k.

An instance of our reconstruction problem satisfying the above condition will imply
a set of points with properties as in Lemma 6, and hence will yield an independent
set of size k in G.

We now explain how exactly to choose the integers for the d-n sets in S and the
integer N. Remember that, for each slope of £, we get one plane of directions in S,
and thus we have three planes of directions in S. We find the integers for d-n sets
in one plane only; they are the same for the other two planes.

First we see how many d-n pairs do we have in a particular plane of S. Let g be
the great circle that corresponds to the (z = 0)-plane. Recall that each slope of £
has %n lines, which give 5n + 4 thin lunes. Moreover, every pair of “adjacent” thin
lunes has a thick lune, i.e., a non-thin lune, between them, except for the pair of
thin lunes that divides at g. Thus we have 5n+2 thick lunes, giving a total of 10n+6
lunes. It implies that we have a total K = 5n + 3 pairs of opposite directions in a
plane of S, which we denote as follows. Consider the lunes above the (z = 0)-plane.
We assume that dj is the direction that corresponds to g, dy is the direction that
creates a thin lune near g, ds; and dg; 1 (for 1 < i < %n) are the directions that
create the thin lune for the ith line, and dg, 42 is the direction for the other thin
lune near g. The remaining directions are the opposite of these directions. Also see
Fig. 10(b, c).
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We now assign the corresponding integers as follows: ng = 1, ny = 1, ng; = 4,
noiv1 =1+ 1 (for 1 <i < %n), Nnt2 = %n and ng = N5pi3 = %n — 2k. Since dgy
and dg are opposite, N = ng+ng = %nf 2k +1. All other opposite view directions
have integers as computed, i.e., ngy;, = N —n;, fori=1,... , K — 1.

Note that g = 61 = 0. For 1 <3 < gn, d2; = 1 and dg9;411 = 0, as desired.
Ssnt2 = (3 —2k) — Sn = 2n — 2k. On the other side of the (z = 0)-plane, all §;’s are
0, with the sole exception of 05,14k, which is nsp+04x — Nsnr1+4x = (IV — gn) -
(N — 3n —1) = 1. Hence the sum of all view-differences is 2n+2n —2k+1= N
as desired.

Clearly, this satisfies all conditions, and so a solution to the problem of finding a
set of points such that the hemisphere of every view direction of a d-n set contains
exactly the prescribed number of points implies an independent set of size k in G.

Conversely, if we have an independent set of size k, then we can find by Lemma 6
a set of %n—Qk’ points to cover all lines with single or trivalent points. Note that for a
particular plane of directions, the non-boundary thin lunes intersect boundary thin
lunes 6y and 65,12 of the other two planes. Moreover, we can assume a numbering
such that the three boundary thin lunes 6, from three planes intersect and similarly,
the three boundary thin lunes 65,2 intersect. Also see Fig. 10(d).

Now, for each trivalent point, place a normal point in the d-polygon of the
intersection of the three corresponding non-boundary thin lunes. For each single
point, place a normal point such that it intersects the non-boundary thin lune of
this line and the two boundary lunes 05,12 for the other two directions of lines.
This places 2n — 2k points into each of the 65,2 as desired, and we hence obtain
%n — 2k normal points above the (z = 0)-plane. We must place one more normal
point below the (z = 0)-plane, and in such a way that it intersects the three copies
of 5,414 k. This is possible because 05,14+ x is a thick lune and quite close to g;
hence the three copies of it (in three different directions) intersect. See Fig. 10(d).

This shows that our instance has a solution if and only if G has an independent

set of size k, and hence proves the NP-hardness. 0

6. Conclusion

In this paper we have studied the problem of constructing convex polygons and
convex polyhedra given the number of visible edges and visible faces in some or-
thogonal projections. In 2D, we have given necessary and sufficient conditions for
the existence of a feasible polygon of a given size and have given an algorithm to
construct one, if it exists. When the polygon size is unknown, we have given an
algorithm to find the maximum and minimum size of a feasible polygon. In 3D,
when the directions span a single plane we have shown that a feasible polyhedron
can be constructed from a feasible polygon and vice versa. We have also given an
algorithm to construct a feasible polyhedron when the directions are covered by
two planes. Finally, we have shown that the problem becomes NP-hard when the
directions are covered by three or more planes.
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