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aAbstra
t. Consider the problem of pla
ing re
e
tors in a 2-D environ-ment in su
h a way that a robot equipped with a basi
 laser 
an alwaysdetermine its 
urrent lo
ation. The robot is allowed to swivel at its 
ur-rent lo
ation, using the laser to dete
t at what angles some re
e
torsare visible, but no distan
e information is obtained. A polygonal map ofthe environment and re
e
tors is available to the robot. We show thatthere is always a pla
ement of re
e
tors that allows the robot to lo
alizeitself from any point in the environment, and that su
h a re
e
tor pla
e-ment 
an be 
omputed in polynomial time on a real RAM. This resultimproves over previous te
hniques whi
h have up to a quadrati
 numberof ambiguous points at whi
h the robot 
annot determine its lo
ation [1,9℄. Further, we show that the problem of optimal re
e
tor pla
ement isequivalent to an art-gallery problem within a 
onstant fa
tor.1 Introdu
tionProblem: Robot lo
alization. For a mobile robot to plan its motion, it re-quires both knowledge of its surrounding environment and a

urate informationof its 
urrent lo
ation in this environment. However, the robot's motion is im-pre
ise from su
h e�e
ts as fri
tion, unevenness of the terrain, and inertia, so therobot's lo
ation be
omes un
ertain. Consequently, robots often perform 
orre
-tive measurements that allow them to rehome their 
urrent position (e.g. [5, 3, 8,4℄). Thus the problem of robot lo
alization arises: determine the 
urrent lo
ationof the robot in its surrounding environment. The basi
 approa
h to lo
alizationis for the robot to sense its immediate surroundings, and then mat
h this lo
alimage against an internal model or map of the entire environment. Commonsensing devi
es in
lude vision, radar, sonar, and ladar (laser radar).Highly detailed information about the environment 
an be obtained only atthe expense of a 
omplex vision system, as well as 
olle
tion and pro
essing timefor the data gathered. An eÆ
ient low-
ost method of lo
alization would thusallow more a

urate motion 
ontrol for the robot. This paper investigates robotlo
alization with parti
ularly 
heap and limited vision systems.Model: Re
e
ting Landmarks. Typi
ally robots use landmarks to identifytheir position [8, 3℄. These landmarks 
an either be naturally present (su
h as awall or door) or be arti�
ially introdu
ed (magneti
 markers, re
e
tors, bea
ons).In this paper we follow the model of Sugihara [9℄, using mutually indistinguish-able re
e
tive markers (re
e
tors) that provide angular measurements. This
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Fig. 1. The robot R knows only the 
y
li
sequen
e of angles between visible re
e
tors(drawn as 
ir
les), here pla
ed along theboundary of the polygon. The visibility re-gion is shaded.


an be realized in a simple and in-expensive form by pla
ing re
e
tivestrips or mirrored 
ylinders in se-le
ted positions in the environment.The robot shines a laser in a 360-degree s
an and re
ords the angu-lar magnitude of those dire
tionsat whi
h a re
e
tion was dete
ted.The result is a star of rays thatthe robot must mat
h against itsgiven data. What makes this prob-lem diÆ
ult is that the robot doesnot know the distan
e at whi
h there
e
tion o

urred, nor whi
h re
e
-tor 
aused the re
e
tion, and nordoes the robot know of a preferreddire
tion or \true north."Conne
tion to Art Galleries.Sugihara [9℄ observed that there
e
tor-pla
ement problem is ageneralization of an art-gallery prob-lem. In the 
lassi
 art-gallery problem, the goal is to 
hoose �xed lo
ations forguards (points) su
h that every point in the environment is visible from at leastone guard; equivalently, at least one guard is visible from every point. If wethink of re
e
tive strips as guards, 
ertainly the robot needs to see at least onere
e
tive strip at all times. Thus any solution to the re
e
tor-pla
ement problemis also a solution to the art-gallery problem. We establish a 
onne
tion in thereverse dire
tion.Previous Work: Ambiguities. Sugihara [9℄ showed that it is possible to markthe environment in su
h a way that the robot 
an lo
alize itself from all buta �nite number of ambiguous points [9℄. Pairs of ambiguous points have theproperty that the angle readings are the same from either point in the pair,and hen
e if the robot is pla
ed at either point, it 
annot determine at whi
h ofthe two points it is lo
ated. Avis and Imai [1℄ proved that the total number ofdegenerate positions for n re
e
tors, k of whi
h are visible from the robot, is inthe worst 
ase �(n2=k) [1℄. Hen
e, by pla
ing k = O(n2) re
e
tors the numberof ambiguous points 
an be redu
ed to at most a 
onstant number.More re
ently, Gonz�alez-Banos and Latombe [5℄ 
onsidered the related prob-lem of �nding a minimum set of identi�ably distin
t re
e
tors in a given polygonsubje
t to in
iden
e and range 
onstraints. They propose a randomized algo-rithm whi
h returns, with high probability, a set of guards whi
h is a smallnon-
onstant fa
tor away from the minimum number of guards required. Thein
iden
e and range 
onstraints model real-life limitations of re
e
tor resolutionand sensing devi
es. However, in either appli
ation, ambiguities are never fullyresolved, so the robot 
annot be guaranteed to be able to lo
alize itself.



Our Results. In this paper, we show that any polygon 
an be unambiguouslymarked using at most ten re
e
tive strips per guard using a parti
ular instan
e ofthe well-studied family of art-gallery problems. Next, we show that at least fourre
e
tors per guard are needed in the worst 
ase. Lastly, we study 
hanges in the
omplexity of the lo
alization task when we 
onsider more powerful lo
alizationprimitives, su
h as a 
ompass (true north) or a 3-D environment with or withouta preferred \up" position.2 Marking A Single Wall
R

B

AFig. 2. Two re
e
torsA;B on a line, andthe 
res
ent of pointsR with �xed angle\ARB.
A simple but important subproblem is when there areno obsta
les, and the robot R 
an be pla
ed anywherein the plane ex
ept on top of one of the re
e
tors. Inthis 
ontext, we show that two re
e
tors limit the robot'sposition to a one-dimensional 
urve, and three re
e
torslimit the robot's position to a �nite number of points.For two re
e
tors A;B, the robot's laser s
an measurestwo angles, \ARB and 2� � \ARB. From elementarygeometry it follows that the lo
us of points forming a�xed angle with two points is an ar
 of a 
ir
le passingthrough those points together with the re
e
tion of thatar
 through the line joining the two points. See Figure 2.Lemma 1. [6℄ Given two distin
t points A and B on a 
ir
le, the interior angle\ARB is the same for all R on either of the open ar
s 
onne
ting A and B[Eu
lid's Proposition III.21℄. Furthermore, if C is the 
enter of the 
ir
le, then\ARB = 12\ACB for R on the longer ar
 and \ARB = �� 12\ACB for R onthe shorter ar
 [Eu
lid's Proposition III.33℄.There are two 
ir
les with 
enter C and C 0 su
h that \AC 0B = \ACB = �for any 0 < � � �, and these 
ir
les are re
e
tions of ea
h other through AB.Thus, the longer ar
s of these 
ir
les 
orrespond to angles � satisfying 0 < � ��=2, and the shorter ar
s 
orrespond to angles � satisfying �=2 � � < �. Hen
e,there are pre
isely two ar
s 
orresponding to ea
h angle �. Together these ar
sare 
alled the �-
res
ent of A and B.Lemma 2. Given an angle 0 < � < �, the �-
res
ent of points A and B ispre
isely the lo
us of points R satisfying \ARB = �.For this lemma to hold for � = 0 and � as well, there are two additionalspe
ial 
ases, 
orresponding to the points along the line AB whi
h we have sofar ignored. The points R stri
tly between A and B satisfy \ARB = �, andthe other points R (ex
ept A and B) satisfy \ARB = 0. Thus, we de�ne the�-
res
ent of A and B to be the open line segment between A and B, and the0-
res
ent to be the line AB minus the 
losed line segment between A and B.In parti
ular, two re
e
tors 
ertainly do not suÆ
e to uniquely determinethe position of the robot: they leave every point in the plane ambiguous by anun
ountably in�nite amount.



We now turn to the 
ase of three re
e
tors A;B;C in an arbitrary position inthe plane. At �rst it might seem that three angles suÆ
e to uniquely determinea position. Indeed, this would be the 
ase if the robot knew the 
orresponden
ebetween re
e
tors and re
e
tion angles. Be
ause this information is not known,however, we 
an 
y
li
ly shift this 
orresponden
e, 
ompute the 
orresponding
res
ents, and take their interse
tion, as shown in Figure 3.
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Fig. 3. Positions R and R0 
annot be dis-tinguished be
ause the labels of A;B;C areunknown and hen
e 
an be shifted. Thinlines show the half-
res
ents, medium linesshow the lines of sight, and thi
k lines showthe triangle.

More pre
isely, in this �gure, wepro
eed as follows from the triangleABC and the point R 
hosen arbi-trarily. We draw the 
ir
ular ar
 withaperture \ARB subtending AC. Werepeat this pro
edure with \BRCsubtending AB. These two 
ir
ularar
s interse
t at R0. It follows then by
onstru
tion that \ARC = \BR0C,\ARB = \AR0C, and \BRC =\AR0B, and hen
e R and R0 
annotbe distinguished. Therefore, threere
e
tors in general position do notuniquely determine the position of therobot. However, three re
e
tors do re-stri
t the position to one of a �nitenumber of lo
ations, at most for ea
h
y
li
 shift of the angles. The diÆ-
ulty is to make this number of possible positions equal to exa
tly one.3 Lo
alization in PolygonsWe now fo
us on the 
ase in whi
h robot motion is limited to a polygon, possiblywith polygonal holes. Re
e
tors are pla
ed on the walls, this means that therobot 
annot 
ollide with the re
e
tor and that it must be on the same side ofthe wall as the re
e
tor. Three re
e
tors along a 
ommon wall will always beseen in the same order so the results of the previous se
tion apply and threere
e
tors suÆ
e for a 
onvex polygon.For non
onvex polygons, we 
onvert a parti
ular type of art-gallery guardpla
ement into a 
olle
tion of re
e
tors by expanding ea
h guard into a tight
luster of re
e
tors. For this to work, we 
onsider a slight variation on the art-gallery problem. A wall guard is a positive-length (short) interval along an edgeof the polygon. A wall-guard pla
ement must satisfy that every point in thepolygon 
an see an entire wall guard (strong visibility), and the goal of theart-gallery problem is to minimize the number of wall guards. It is easy to showthat the worst-
ase bounds for wall guards are similar to standard vertex guards:�(n) guards suÆ
e and are sometimes ne
essary to guard an n-vertex polygon.The main diÆ
ulty with obsta
les is that (most likely) not all of the re
e
tors arevisible from a given point. Thus a major 
hallenge is to identify whi
h re
e
torsare those seen. Su
h an en
oding s
heme will be the fo
us of this se
tion. On
ewe have su
h a s
heme, and we 
an identify three visible re
e
tors on a 
ommon



wall, then we 
an appeal to the previous se
tion to determine the robot's positionrelative to the re
e
tors. As a result, the entire re
e
tor-pla
ement problem willredu
e to the art-gallery problem outlined above.So we turn to the problem of en
oding information in the re
e
tors so thatthe robot 
an tell whi
h re
e
tors it 
an see. We make use of the 
ross ratioas suggested by Sugihara [9℄. This fundamental 
on
ept in proje
tive geometryallows us to store a number|represented by four 
ollinear points (re
e
tors)|that is readable from any point not 
ollinear with the four points.3.1 The Cross Ratio of a Pen
ilLet A, B, C, and D be four 
ollinear points; a, b, 
 and d denote four 
on
urrentlines and let O be the point of 
on
urren
y. We denote by a
 the angle betweenlines a and 
.De�nition 1. The 
ross ratio fABCDg of four 
ollinear points A;B;C;D isde�ned as the quotient ACCB ÆADDB where the magnitude of a segment is dire
ted,i.e. AC = �CA. The 
ross ratio of a pen
il of lines is de�ned as sin a
sin 
b Æ sin adsin db :The 
ross ratio of four lines is denoted by fab
dg. Given four points A, B, C,D and a point O, we denote by OfABCDg the 
ross ratio of the pen
il de�nedby the lines OA, OB, OC and OD.Theorem 1 ([7℄). Let ab
d be a pen
il of lines passing through vertex O, andlet L be a line transversal of the pen
il not passing through O. Let A be the pointof interse
tion of L and a, and analogously de�ne points B, C, and D. Thenfab
dg = fABCDg. Conversely, let A, B, C, and D be four 
ollinear points,and O be a point o� the line ABCD. Then fABCDg = OfABCDg.In other words, the 
ross ratio of four 
ollinear points is the same whenviewed from any vantage point o� the line.We 
an use this prin
iple to label walls in su
h a way that the label 
an beread from any robot position O. More pre
isely, let G1; : : : ; Gk denote the set ofwall guards. Then we pla
e four (
ollinear) re
e
tors along wall guard Gi so thatthose four points have integral 
ross ratio i. Thus, from any robot position O,the wall guarding guarantees that we see at least one integral 
ross ratio, andthis 
ross ratio identi�es the wall, in prin
iple permitting lo
alization.Unfortunately, this approa
h does not suÆ
e, be
ause we do not know whi
hof the visible re
e
tors form 
ollinear quadruples from a 
ommon wall guard. Forexample, 
onsider a situation in whi
h the robot sees �ve re
e
tors,A;B;C;D;X ;the �rst four re
e
tors A;B;C;D 
orrespond to a single wall guard; and the lastre
e
tor X 
orresponds to another guard whose quadruple of re
e
tors is par-tially o

luded. Moreover, the robot happens to be positioned in su
h a waythat both OfABCDg and OfBCDXg are integers in f1; : : : ; kg. In this 
ase,the robot 
annot in general distinguish whi
h of the two sequen
es 
orrespondsto a guard and whi
h is spurious.Indeed, this s
enario is but one of several possible ambiguous 
on�gurations.To solve these problems, we use additional re
e
tors and more 
areful pla
ementsof guard re
e
tors to ensure that these ambiguities are fully resolved.



3.2 The Cross Ratio of Non
ollinear PointsThe following theorems from proje
tive geometry [10℄ will help in the task ofdisambiguating a given set of angular measurements. First we need to 
hara
-terize those points from whi
h a given non
ollinear quadruple forms an integer
ross ratio in f1; : : : ; kg:Theorem 2 (Steiner's Theorem [2, 10℄). Given four points A;B;C;D, notall 
ollinear, and given a 
ross ratio r, the lo
us Cr of points O su
h that the 
rossratio OfABCDg equals r|Cr(ABCD) = fO j OfABCDg = rg|is a 
oni

urve. Conversely �ve points in the plane, not ne
essarily in general position,de�ne a unique 
oni
 passing through them.The 
oni
 may be an ellipse, 
ir
le, parabola, hyperbola, or the degenerate 
asesof a point, a line, or two lines. Consider now four re
e
tors, three of whi
h are
ollinear. The following two lemmas des
ribe the robot lo
ations O from whi
hthe four re
e
tors would appear to belong to a 
ommon wall guard.Lemma 3. Given three 
ollinear points and 
ross ratio r, there is a fourth pointon the line (in
luding the proje
tive point at in�nity) realizing 
ross ratio r.Proof. We 
onsider the four points to lie along the (proje
tive) real line with C atthe origin. Without loss of generality, let dist(AC) = 1. De�ne b = dist(BC) andsimilarly d = dist(BD) whi
h implies dist(AD) = 1 + b+ d. Hen
e ACCB ÆADDB =1�b . 1+b+d�d = db (1+b+d) = 
: Solving for d we have d = b 
 (1 + b)=(1� b 
). 2Given an edge e of the polygon and three points X;Y; Z 2 e, let IXY Z be theset of points on e realizing an integer ratio, i.e. IXY Z = fW 2 e j fXYZWg 2 Zg :If, from a point Q, four re
e
tors not all 
ollinear form a pen
il with an integer
ross ratio, then this quadruple is 
alled a spurious quadruple from Q. If thelo
ation of Q is 
lear from the 
ontext, then we simply refer to the quadrupleas spurious. In general, given four points A;B;C;D, not all 
ollinear, we denoteby CZ(ABCD) the lo
us of points that make the quadruple A;B;C;D spurious.More formally, CZ(ABCD) = Sk2ZCk(ABCD):Lemma 4. Given three 
ollinear points A, B, C, a point E not on the line, anda 
ross ratio r, the lo
us of points O su
h that OfABCEg = r is a line.Proof. Given the three 
ollinear points A, B, C, let D be the point along thatline su
h that fABCDg = r as per Lemma 3. Then given a point O along theline DE we have that OfABCEg = OfABCDg = r. 2From Steiner's Theorem it follows that CZ(ABCD) is 
omposed of 
oni
sthrough the points A;B;C;D.Claim 1. Given an integer k, a point Q, and three re
e
tors, the set of fourthre
e
tor points that forms a spurious quadruple from Q with 
ross ratio k ispre
isely a line.
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i i i iFig. 5. The view from point Q is ambiguous.Proof. Using Figure 4 as referen
e, we are given three re
e
tors A;B;C and apoint Q. First 
onstru
t the lines QA, QB, and QC. Then use an auxiliary line lnot passing through Q whi
h 
reates the sequen
e A0B0C 0 on l. There is a uniquepoint D0 on l 
reating a sequen
e of 
ross ratio k as per Lemma 3. Pre
isely there
e
tors D on QD0 form spurious quadruples with QfABCDg = k. 2De�nition 2. Given a re
e
tor X, we denote by CZ(X) the union of all 
oni
sCZ(XYWZ) over all re
e
tors Y;W;Z forming a spurious quadruple. These
oni
s are 
alled 
oni
s of ambiguity.De�nition 3. A point Q is ambiguous of degree k if it belongs to the interse
tionof k 
oni
s of ambiguity for some re
e
tors X1; : : : ; Xk, i.e. Q 2 Tkj=1 CZ(Xj):3.3 A Re
e
tor Pla
ement AlgorithmBe
ause four points alone do not in general uniquely determine the position ofthe robot, we need to in
rease the number of re
e
tors per guard. As we haveshown, the existen
e of ambiguous points of degree 1 is unavoidable be
ause thereis a set of 
oni
s from whi
h a quadruple be
omes spurious. This fa
t extends topoints of degree 2, as in general two 
oni
s of ambiguity 
orresponding to twodi�erent quadruples might interse
t.To distinguish from these ambiguous points, we pla
e three quadruples alongea
h guard Gi, realizing the 
ross ratios 3i, 3i + 1 and 3i + 2, respe
tively.Denote by qj = fAj ; Bj ; Cj ; Djg the quadruple of re
e
tors realizing 
ross ratioj. From any point in the region guarded by Gi, the robot 
an always see the threequadruples q3i; q3i+1; q3i+2 with 
onse
utive integer 
ross ratios. We arrange sothat the points of ambiguity have degree at most 2. Thus, from any point inthe polygon, the robot sees at most two spurious quadruples, and at least one
onse
utive sequen
e of three quadruples with 
ross ratios 3i, 3i+ 1 and 3i+ 2



whi
h is the a
tual set 
orresponding to guard Gi. The robot 
an lo
alize itselfby sear
hing for a 
onse
utive sequen
e of three quadruples that 
on
lude a
ommon lo
ation for the robot, whi
h must then be the 
orre
t lo
ation be
auseat least one of those three quadruples must not be spurious.We provide an in
remental 
onstru
tion, inserting the quadruples for ea
hguard Gi for i from 0 to n. Denote by gi the set of re
e
tors 
orresponding toguard Gi, i.e. gi = q3i [ q3i+1 [ q3i+2. At iteration i of the algorithm, the robot
an lo
alize itself without ambiguity in any region guarded by a guard Gj forj < i. Moreover, as we introdu
e the re
e
tors of the set gi, we ensure that nonew ambiguities are introdu
ed in previously guarded regions.The algorithm maintains sets of relevant geometri
 obje
ts:1. A set M of the re
e
tors pla
ed thus far.2. A set D of all points of degree 2, i.e. D = TX2M CZ(X).3. As we insertAi+1,Bi+1, Ci+1, andDi+1, the sets of points IBiCiDi , ICiDiAi+1 ,ICiDiAi+1 , andIDiAi+1Bi+1 along edge edi=3e respe
tively.4. Given a point Q 2 D, an integer k, and any three re
e
tors, as per Claim 1,there is a line along whi
h pla
ement of a re
e
tor would in
rease the degreeof Q. Let H denote the set of these lines, over all Q 2 D, k 2 Z, and triplesinM. The algorithm avoids ambiguities by keeping tra
k of the interse
tionsof the lines with the boundary of the polygon �P .5. After inserting the �rst two re
e
tors Ai; Bi of a quadruple qi on edge edi=3e,it 
omputes the set of points I = SW;Y 2M; X2H\edi=3e IWYX : This 
orre-sponds to undesirable potential lo
ations for re
e
tor Ci that would for
eDi to 
oin
ide with a point X 2 H \ edi=3e, hen
e in
reasing the degree ofsome Q 2 D.The following theorem gives an upper bound on the size of these sets.Theorem 3 (Bezout's Theorem for Coni
s [2℄). Any two distin
t 
oni
sinterse
t in at most four points.It follows then that there is only a 
ountable set of points of degree 2. In fa
t,if we restri
t ourselves to 
oni
s of 
ross ratio at most 3n then there are O(n4)points in H . With these sets in hand we 
an now des
ribe the algorithm:For ea
h i = 1; : : : ; 3n, insert one-by-one the re
e
tors Ai, Bi, and Ci of ea
hquadruple while avoiding the sets IXY Z in (3) above and the sets H \ �P andI. This 
an always be done as these sets are dis
rete and the positions of Ai, Biand Ci are 
ontinuously varying. After this pro
ess, the lo
ation of Di is �xed.Be
ause of step (5) above, we know that for any triple XY Z not 
ontaining Ci,the 
oni
s of ambiguity through XY ZDi do not in
rease the degree of points inD. Nevertheless, it is indeed possible for a quadruple of the form CiDiXY , withX;Y 2 M, to in
rease the degree of a point in D:Let Q be the point in D whose degree is three after inserting Di (refer toFigure 5). Using the notation of this �gure, we see that Q lies in the interse
tionof two 
oni
s (ellipses), and hen
e is of degree two. To remove this ambiguity, wemust move Ci and Di in su
h a way that the 
ross ratio fAiBiCiDig = i remains




onstant yet the 
ross ratio QfCiDiXY g is no longer an integer. First note thatQfCiDiXY g = fCiDiX 0Y 0g. Without loss of generality, we introdu
e a real axis
oordinate system on edge edi=3e su
h that Ai is the origin and BiAi = 1. Let
; d; x; y denote the position on the real axis of Ci; Di; X 0; Y 0 respe
tively. Hen
e1
�1 . dd�
�1 = 3 =) d = 
+11�3
+3 : Similarly d�
x .d�
+x+yy = k x =)d = y
�kx
+kx2+kxyy�kx : Equating the two expressions for d, we obtain a quadrati
expression on 
 with at most two solutions for ea
h integer k. That is, the set ofpositions Ci that for
e a Di to make Q ambiguous is a dis
rete set and hen
e it
an be avoided by perturbing Ci by an � amount.Theorem 4. If g is the number of wall guards required to guard a polygon P ,then a robot 
an lo
alize itself using at most 10g re
e
tors.Proof. In the previous algorithm, for a guard gj we 
an identify D3j = A3j+1and D3j+1 = A3j+2, thus redu
ing re
e
tors per guard from 12 to 10. 24 Lower BoundIn this se
tion we prove that, in the worst 
ase, at least 4g � 2 re
e
tors arerequired for unambiguous robot lo
alization for a polygon guardable by g (wall)guards. This lower bound holds even if the re
e
tors are not on the walls of thepolygon. The example is the standard 
omb polygon shown in Figure 6.
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NFig. 6. Two types of ambiguous positions.Theorem 5. If g is the number of wall guards required to guard a polygon P ,then we need at least 4g� 2 re
e
tors to uniquely lo
alize the position of a robotin P .Proof. It follows from the dis
ussion in Se
tion 2 that we need at least threere
e
tors per tine. Suppose that three or more tines had just three re
e
tors.Then either two of these tines have the three re
e
tors 
ollinear, or two of thetines have the three re
e
tors non
ollinear. If the three re
e
tors are 
ollinear inat least two tines, then for a position arbitrarily 
lose to the midpoint betweentwo re
e
tors in su
h a tine, the angles observed are an almost-180Æ angle andan almost-zero angle. This angular 
on�guration 
an be realized in both of thetines with three 
ollinear re
e
tors, and therefore it is ambiguous.Alternatively, if at least two of the three-re
e
tor sets are not 
ollinear, thendrop a perpendi
ular from the vertex opposite the longest edge of the triangleformed by three re
e
tors, and obtain a point for the robot that reads angles 90Æ,90Æ, and 180Æ. This applies to both tines and therefore the position is ambiguous.2



5 Other Lo
alization PrimitivesThe lo
alization problems may be
ome a simpler task if the robot 
an bene�tfrom alternative, independent orientation me
hanisms. In real life, the robotmoves on the 
oor, whi
h is a 2-D surfa
e embedded in a 3-D spa
e. We 
antake advantage of this fa
t by using the third dimension to pla
e re
e
tors. Inthis model, the robot 
an perform 360-degree s
ans along any given 
hosen planethrough its 
urrent position. The robot might also perform a 2-D-like s
an byperforming a laser sweep along the horizontal plane of height zero. The robot isequipped with a devi
e that indi
ates the \up" dire
tion (de�ning the orientationof the 
oor plane) at all times. We omit proofs in this abstra
t.Theorem 6. If n is the number of verti
es in a polygon P , then a robot aidedby a 
ompass indi
ating a North position at a point at in�nity requires at leastn=4� 8 re
e
tors in the worst 
ase to uniquely indentify its position in P .Theorem 7. Consider a robot on a plane in a 3-D environment with walls,given an \up" dire
tion and a map of the environment. Let g be the number ofguards required to guard su
h environment. Then at least 4g re
e
tors and atmost 6g re
e
tors are needed for the robot to lo
alize itself in the environment.6 Con
lusionsWe have developed a method to remove ambiguities from Sugihara's re
e
tormodel for robot lo
alization. This model 
an be implemented e
onomi
ally bothin terms of hardware (laser, re
e
tors) as well as 
omputational requirements. Wehave given nearly mat
hing upper and lower bounds on the number of re
e
torsneeded per guard. We also 
onsidered alternative s
enarios for lo
alization withmore general primitives and showed upper and lower bounds in these 
ontexts.A
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