
Robot Loalization without Depth PereptionErik D. Demaine1, Alejandro L�opez-Ortiz2, and J. Ian Munro21 MIT Laboratory for Computer Siene, 200 Tehnology Square,Cambridge, MA 02139, USA, edemaine�mit.edu2 Department of Computer Siene, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada, falopez-o,imunrog�uwaterloo.aAbstrat. Consider the problem of plaing reetors in a 2-D environ-ment in suh a way that a robot equipped with a basi laser an alwaysdetermine its urrent loation. The robot is allowed to swivel at its ur-rent loation, using the laser to detet at what angles some reetorsare visible, but no distane information is obtained. A polygonal map ofthe environment and reetors is available to the robot. We show thatthere is always a plaement of reetors that allows the robot to loalizeitself from any point in the environment, and that suh a reetor plae-ment an be omputed in polynomial time on a real RAM. This resultimproves over previous tehniques whih have up to a quadrati numberof ambiguous points at whih the robot annot determine its loation [1,9℄. Further, we show that the problem of optimal reetor plaement isequivalent to an art-gallery problem within a onstant fator.1 IntrodutionProblem: Robot loalization. For a mobile robot to plan its motion, it re-quires both knowledge of its surrounding environment and aurate informationof its urrent loation in this environment. However, the robot's motion is im-preise from suh e�ets as frition, unevenness of the terrain, and inertia, so therobot's loation beomes unertain. Consequently, robots often perform orre-tive measurements that allow them to rehome their urrent position (e.g. [5, 3, 8,4℄). Thus the problem of robot loalization arises: determine the urrent loationof the robot in its surrounding environment. The basi approah to loalizationis for the robot to sense its immediate surroundings, and then math this loalimage against an internal model or map of the entire environment. Commonsensing devies inlude vision, radar, sonar, and ladar (laser radar).Highly detailed information about the environment an be obtained only atthe expense of a omplex vision system, as well as olletion and proessing timefor the data gathered. An eÆient low-ost method of loalization would thusallow more aurate motion ontrol for the robot. This paper investigates robotloalization with partiularly heap and limited vision systems.Model: Reeting Landmarks. Typially robots use landmarks to identifytheir position [8, 3℄. These landmarks an either be naturally present (suh as awall or door) or be arti�ially introdued (magneti markers, reetors, beaons).In this paper we follow the model of Sugihara [9℄, using mutually indistinguish-able reetive markers (reetors) that provide angular measurements. This
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Fig. 1. The robot R knows only the ylisequene of angles between visible reetors(drawn as irles), here plaed along theboundary of the polygon. The visibility re-gion is shaded.

an be realized in a simple and in-expensive form by plaing reetivestrips or mirrored ylinders in se-leted positions in the environment.The robot shines a laser in a 360-degree san and reords the angu-lar magnitude of those diretionsat whih a reetion was deteted.The result is a star of rays thatthe robot must math against itsgiven data. What makes this prob-lem diÆult is that the robot doesnot know the distane at whih thereetion ourred, nor whih ree-tor aused the reetion, and nordoes the robot know of a preferreddiretion or \true north."Connetion to Art Galleries.Sugihara [9℄ observed that thereetor-plaement problem is ageneralization of an art-gallery prob-lem. In the lassi art-gallery problem, the goal is to hoose �xed loations forguards (points) suh that every point in the environment is visible from at leastone guard; equivalently, at least one guard is visible from every point. If wethink of reetive strips as guards, ertainly the robot needs to see at least onereetive strip at all times. Thus any solution to the reetor-plaement problemis also a solution to the art-gallery problem. We establish a onnetion in thereverse diretion.Previous Work: Ambiguities. Sugihara [9℄ showed that it is possible to markthe environment in suh a way that the robot an loalize itself from all buta �nite number of ambiguous points [9℄. Pairs of ambiguous points have theproperty that the angle readings are the same from either point in the pair,and hene if the robot is plaed at either point, it annot determine at whih ofthe two points it is loated. Avis and Imai [1℄ proved that the total number ofdegenerate positions for n reetors, k of whih are visible from the robot, is inthe worst ase �(n2=k) [1℄. Hene, by plaing k = O(n2) reetors the numberof ambiguous points an be redued to at most a onstant number.More reently, Gonz�alez-Banos and Latombe [5℄ onsidered the related prob-lem of �nding a minimum set of identi�ably distint reetors in a given polygonsubjet to inidene and range onstraints. They propose a randomized algo-rithm whih returns, with high probability, a set of guards whih is a smallnon-onstant fator away from the minimum number of guards required. Theinidene and range onstraints model real-life limitations of reetor resolutionand sensing devies. However, in either appliation, ambiguities are never fullyresolved, so the robot annot be guaranteed to be able to loalize itself.



Our Results. In this paper, we show that any polygon an be unambiguouslymarked using at most ten reetive strips per guard using a partiular instane ofthe well-studied family of art-gallery problems. Next, we show that at least fourreetors per guard are needed in the worst ase. Lastly, we study hanges in theomplexity of the loalization task when we onsider more powerful loalizationprimitives, suh as a ompass (true north) or a 3-D environment with or withouta preferred \up" position.2 Marking A Single Wall
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AFig. 2. Two reetorsA;B on a line, andthe resent of pointsR with �xed angle\ARB.
A simple but important subproblem is when there areno obstales, and the robot R an be plaed anywherein the plane exept on top of one of the reetors. Inthis ontext, we show that two reetors limit the robot'sposition to a one-dimensional urve, and three reetorslimit the robot's position to a �nite number of points.For two reetors A;B, the robot's laser san measurestwo angles, \ARB and 2� � \ARB. From elementarygeometry it follows that the lous of points forming a�xed angle with two points is an ar of a irle passingthrough those points together with the reetion of thatar through the line joining the two points. See Figure 2.Lemma 1. [6℄ Given two distint points A and B on a irle, the interior angle\ARB is the same for all R on either of the open ars onneting A and B[Eulid's Proposition III.21℄. Furthermore, if C is the enter of the irle, then\ARB = 12\ACB for R on the longer ar and \ARB = �� 12\ACB for R onthe shorter ar [Eulid's Proposition III.33℄.There are two irles with enter C and C 0 suh that \AC 0B = \ACB = �for any 0 < � � �, and these irles are reetions of eah other through AB.Thus, the longer ars of these irles orrespond to angles � satisfying 0 < � ��=2, and the shorter ars orrespond to angles � satisfying �=2 � � < �. Hene,there are preisely two ars orresponding to eah angle �. Together these arsare alled the �-resent of A and B.Lemma 2. Given an angle 0 < � < �, the �-resent of points A and B ispreisely the lous of points R satisfying \ARB = �.For this lemma to hold for � = 0 and � as well, there are two additionalspeial ases, orresponding to the points along the line AB whih we have sofar ignored. The points R stritly between A and B satisfy \ARB = �, andthe other points R (exept A and B) satisfy \ARB = 0. Thus, we de�ne the�-resent of A and B to be the open line segment between A and B, and the0-resent to be the line AB minus the losed line segment between A and B.In partiular, two reetors ertainly do not suÆe to uniquely determinethe position of the robot: they leave every point in the plane ambiguous by anunountably in�nite amount.



We now turn to the ase of three reetors A;B;C in an arbitrary position inthe plane. At �rst it might seem that three angles suÆe to uniquely determinea position. Indeed, this would be the ase if the robot knew the orrespondenebetween reetors and reetion angles. Beause this information is not known,however, we an ylily shift this orrespondene, ompute the orrespondingresents, and take their intersetion, as shown in Figure 3.
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Fig. 3. Positions R and R0 annot be dis-tinguished beause the labels of A;B;C areunknown and hene an be shifted. Thinlines show the half-resents, medium linesshow the lines of sight, and thik lines showthe triangle.

More preisely, in this �gure, weproeed as follows from the triangleABC and the point R hosen arbi-trarily. We draw the irular ar withaperture \ARB subtending AC. Werepeat this proedure with \BRCsubtending AB. These two irularars interset at R0. It follows then byonstrution that \ARC = \BR0C,\ARB = \AR0C, and \BRC =\AR0B, and hene R and R0 annotbe distinguished. Therefore, threereetors in general position do notuniquely determine the position of therobot. However, three reetors do re-strit the position to one of a �nitenumber of loations, at most for eahyli shift of the angles. The diÆ-ulty is to make this number of possible positions equal to exatly one.3 Loalization in PolygonsWe now fous on the ase in whih robot motion is limited to a polygon, possiblywith polygonal holes. Reetors are plaed on the walls, this means that therobot annot ollide with the reetor and that it must be on the same side ofthe wall as the reetor. Three reetors along a ommon wall will always beseen in the same order so the results of the previous setion apply and threereetors suÆe for a onvex polygon.For nononvex polygons, we onvert a partiular type of art-gallery guardplaement into a olletion of reetors by expanding eah guard into a tightluster of reetors. For this to work, we onsider a slight variation on the art-gallery problem. A wall guard is a positive-length (short) interval along an edgeof the polygon. A wall-guard plaement must satisfy that every point in thepolygon an see an entire wall guard (strong visibility), and the goal of theart-gallery problem is to minimize the number of wall guards. It is easy to showthat the worst-ase bounds for wall guards are similar to standard vertex guards:�(n) guards suÆe and are sometimes neessary to guard an n-vertex polygon.The main diÆulty with obstales is that (most likely) not all of the reetors arevisible from a given point. Thus a major hallenge is to identify whih reetorsare those seen. Suh an enoding sheme will be the fous of this setion. Onewe have suh a sheme, and we an identify three visible reetors on a ommon



wall, then we an appeal to the previous setion to determine the robot's positionrelative to the reetors. As a result, the entire reetor-plaement problem willredue to the art-gallery problem outlined above.So we turn to the problem of enoding information in the reetors so thatthe robot an tell whih reetors it an see. We make use of the ross ratioas suggested by Sugihara [9℄. This fundamental onept in projetive geometryallows us to store a number|represented by four ollinear points (reetors)|that is readable from any point not ollinear with the four points.3.1 The Cross Ratio of a PenilLet A, B, C, and D be four ollinear points; a, b,  and d denote four onurrentlines and let O be the point of onurreny. We denote by a the angle betweenlines a and .De�nition 1. The ross ratio fABCDg of four ollinear points A;B;C;D isde�ned as the quotient ACCB ÆADDB where the magnitude of a segment is direted,i.e. AC = �CA. The ross ratio of a penil of lines is de�ned as sin asin b Æ sin adsin db :The ross ratio of four lines is denoted by fabdg. Given four points A, B, C,D and a point O, we denote by OfABCDg the ross ratio of the penil de�nedby the lines OA, OB, OC and OD.Theorem 1 ([7℄). Let abd be a penil of lines passing through vertex O, andlet L be a line transversal of the penil not passing through O. Let A be the pointof intersetion of L and a, and analogously de�ne points B, C, and D. Thenfabdg = fABCDg. Conversely, let A, B, C, and D be four ollinear points,and O be a point o� the line ABCD. Then fABCDg = OfABCDg.In other words, the ross ratio of four ollinear points is the same whenviewed from any vantage point o� the line.We an use this priniple to label walls in suh a way that the label an beread from any robot position O. More preisely, let G1; : : : ; Gk denote the set ofwall guards. Then we plae four (ollinear) reetors along wall guard Gi so thatthose four points have integral ross ratio i. Thus, from any robot position O,the wall guarding guarantees that we see at least one integral ross ratio, andthis ross ratio identi�es the wall, in priniple permitting loalization.Unfortunately, this approah does not suÆe, beause we do not know whihof the visible reetors form ollinear quadruples from a ommon wall guard. Forexample, onsider a situation in whih the robot sees �ve reetors,A;B;C;D;X ;the �rst four reetors A;B;C;D orrespond to a single wall guard; and the lastreetor X orresponds to another guard whose quadruple of reetors is par-tially oluded. Moreover, the robot happens to be positioned in suh a waythat both OfABCDg and OfBCDXg are integers in f1; : : : ; kg. In this ase,the robot annot in general distinguish whih of the two sequenes orrespondsto a guard and whih is spurious.Indeed, this senario is but one of several possible ambiguous on�gurations.To solve these problems, we use additional reetors and more areful plaementsof guard reetors to ensure that these ambiguities are fully resolved.



3.2 The Cross Ratio of Nonollinear PointsThe following theorems from projetive geometry [10℄ will help in the task ofdisambiguating a given set of angular measurements. First we need to hara-terize those points from whih a given nonollinear quadruple forms an integerross ratio in f1; : : : ; kg:Theorem 2 (Steiner's Theorem [2, 10℄). Given four points A;B;C;D, notall ollinear, and given a ross ratio r, the lous Cr of points O suh that the rossratio OfABCDg equals r|Cr(ABCD) = fO j OfABCDg = rg|is a oniurve. Conversely �ve points in the plane, not neessarily in general position,de�ne a unique oni passing through them.The oni may be an ellipse, irle, parabola, hyperbola, or the degenerate asesof a point, a line, or two lines. Consider now four reetors, three of whih areollinear. The following two lemmas desribe the robot loations O from whihthe four reetors would appear to belong to a ommon wall guard.Lemma 3. Given three ollinear points and ross ratio r, there is a fourth pointon the line (inluding the projetive point at in�nity) realizing ross ratio r.Proof. We onsider the four points to lie along the (projetive) real line with C atthe origin. Without loss of generality, let dist(AC) = 1. De�ne b = dist(BC) andsimilarly d = dist(BD) whih implies dist(AD) = 1 + b+ d. Hene ACCB ÆADDB =1�b . 1+b+d�d = db (1+b+d) = : Solving for d we have d = b  (1 + b)=(1� b ). 2Given an edge e of the polygon and three points X;Y; Z 2 e, let IXY Z be theset of points on e realizing an integer ratio, i.e. IXY Z = fW 2 e j fXYZWg 2 Zg :If, from a point Q, four reetors not all ollinear form a penil with an integerross ratio, then this quadruple is alled a spurious quadruple from Q. If theloation of Q is lear from the ontext, then we simply refer to the quadrupleas spurious. In general, given four points A;B;C;D, not all ollinear, we denoteby CZ(ABCD) the lous of points that make the quadruple A;B;C;D spurious.More formally, CZ(ABCD) = Sk2ZCk(ABCD):Lemma 4. Given three ollinear points A, B, C, a point E not on the line, anda ross ratio r, the lous of points O suh that OfABCEg = r is a line.Proof. Given the three ollinear points A, B, C, let D be the point along thatline suh that fABCDg = r as per Lemma 3. Then given a point O along theline DE we have that OfABCEg = OfABCDg = r. 2From Steiner's Theorem it follows that CZ(ABCD) is omposed of onisthrough the points A;B;C;D.Claim 1. Given an integer k, a point Q, and three reetors, the set of fourthreetor points that forms a spurious quadruple from Q with ross ratio k ispreisely a line.
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i i i iFig. 5. The view from point Q is ambiguous.Proof. Using Figure 4 as referene, we are given three reetors A;B;C and apoint Q. First onstrut the lines QA, QB, and QC. Then use an auxiliary line lnot passing through Q whih reates the sequene A0B0C 0 on l. There is a uniquepoint D0 on l reating a sequene of ross ratio k as per Lemma 3. Preisely thereetors D on QD0 form spurious quadruples with QfABCDg = k. 2De�nition 2. Given a reetor X, we denote by CZ(X) the union of all onisCZ(XYWZ) over all reetors Y;W;Z forming a spurious quadruple. Theseonis are alled onis of ambiguity.De�nition 3. A point Q is ambiguous of degree k if it belongs to the intersetionof k onis of ambiguity for some reetors X1; : : : ; Xk, i.e. Q 2 Tkj=1 CZ(Xj):3.3 A Reetor Plaement AlgorithmBeause four points alone do not in general uniquely determine the position ofthe robot, we need to inrease the number of reetors per guard. As we haveshown, the existene of ambiguous points of degree 1 is unavoidable beause thereis a set of onis from whih a quadruple beomes spurious. This fat extends topoints of degree 2, as in general two onis of ambiguity orresponding to twodi�erent quadruples might interset.To distinguish from these ambiguous points, we plae three quadruples alongeah guard Gi, realizing the ross ratios 3i, 3i + 1 and 3i + 2, respetively.Denote by qj = fAj ; Bj ; Cj ; Djg the quadruple of reetors realizing ross ratioj. From any point in the region guarded by Gi, the robot an always see the threequadruples q3i; q3i+1; q3i+2 with onseutive integer ross ratios. We arrange sothat the points of ambiguity have degree at most 2. Thus, from any point inthe polygon, the robot sees at most two spurious quadruples, and at least oneonseutive sequene of three quadruples with ross ratios 3i, 3i+ 1 and 3i+ 2



whih is the atual set orresponding to guard Gi. The robot an loalize itselfby searhing for a onseutive sequene of three quadruples that onlude aommon loation for the robot, whih must then be the orret loation beauseat least one of those three quadruples must not be spurious.We provide an inremental onstrution, inserting the quadruples for eahguard Gi for i from 0 to n. Denote by gi the set of reetors orresponding toguard Gi, i.e. gi = q3i [ q3i+1 [ q3i+2. At iteration i of the algorithm, the robotan loalize itself without ambiguity in any region guarded by a guard Gj forj < i. Moreover, as we introdue the reetors of the set gi, we ensure that nonew ambiguities are introdued in previously guarded regions.The algorithm maintains sets of relevant geometri objets:1. A set M of the reetors plaed thus far.2. A set D of all points of degree 2, i.e. D = TX2M CZ(X).3. As we insertAi+1,Bi+1, Ci+1, andDi+1, the sets of points IBiCiDi , ICiDiAi+1 ,ICiDiAi+1 , andIDiAi+1Bi+1 along edge edi=3e respetively.4. Given a point Q 2 D, an integer k, and any three reetors, as per Claim 1,there is a line along whih plaement of a reetor would inrease the degreeof Q. Let H denote the set of these lines, over all Q 2 D, k 2 Z, and triplesinM. The algorithm avoids ambiguities by keeping trak of the intersetionsof the lines with the boundary of the polygon �P .5. After inserting the �rst two reetors Ai; Bi of a quadruple qi on edge edi=3e,it omputes the set of points I = SW;Y 2M; X2H\edi=3e IWYX : This orre-sponds to undesirable potential loations for reetor Ci that would foreDi to oinide with a point X 2 H \ edi=3e, hene inreasing the degree ofsome Q 2 D.The following theorem gives an upper bound on the size of these sets.Theorem 3 (Bezout's Theorem for Conis [2℄). Any two distint onisinterset in at most four points.It follows then that there is only a ountable set of points of degree 2. In fat,if we restrit ourselves to onis of ross ratio at most 3n then there are O(n4)points in H . With these sets in hand we an now desribe the algorithm:For eah i = 1; : : : ; 3n, insert one-by-one the reetors Ai, Bi, and Ci of eahquadruple while avoiding the sets IXY Z in (3) above and the sets H \ �P andI. This an always be done as these sets are disrete and the positions of Ai, Biand Ci are ontinuously varying. After this proess, the loation of Di is �xed.Beause of step (5) above, we know that for any triple XY Z not ontaining Ci,the onis of ambiguity through XY ZDi do not inrease the degree of points inD. Nevertheless, it is indeed possible for a quadruple of the form CiDiXY , withX;Y 2 M, to inrease the degree of a point in D:Let Q be the point in D whose degree is three after inserting Di (refer toFigure 5). Using the notation of this �gure, we see that Q lies in the intersetionof two onis (ellipses), and hene is of degree two. To remove this ambiguity, wemust move Ci and Di in suh a way that the ross ratio fAiBiCiDig = i remains



onstant yet the ross ratio QfCiDiXY g is no longer an integer. First note thatQfCiDiXY g = fCiDiX 0Y 0g. Without loss of generality, we introdue a real axisoordinate system on edge edi=3e suh that Ai is the origin and BiAi = 1. Let; d; x; y denote the position on the real axis of Ci; Di; X 0; Y 0 respetively. Hene1�1 . dd��1 = 3 =) d = +11�3+3 : Similarly d�x .d�+x+yy = k x =)d = y�kx+kx2+kxyy�kx : Equating the two expressions for d, we obtain a quadratiexpression on  with at most two solutions for eah integer k. That is, the set ofpositions Ci that fore a Di to make Q ambiguous is a disrete set and hene itan be avoided by perturbing Ci by an � amount.Theorem 4. If g is the number of wall guards required to guard a polygon P ,then a robot an loalize itself using at most 10g reetors.Proof. In the previous algorithm, for a guard gj we an identify D3j = A3j+1and D3j+1 = A3j+2, thus reduing reetors per guard from 12 to 10. 24 Lower BoundIn this setion we prove that, in the worst ase, at least 4g � 2 reetors arerequired for unambiguous robot loalization for a polygon guardable by g (wall)guards. This lower bound holds even if the reetors are not on the walls of thepolygon. The example is the standard omb polygon shown in Figure 6.
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NFig. 6. Two types of ambiguous positions.Theorem 5. If g is the number of wall guards required to guard a polygon P ,then we need at least 4g� 2 reetors to uniquely loalize the position of a robotin P .Proof. It follows from the disussion in Setion 2 that we need at least threereetors per tine. Suppose that three or more tines had just three reetors.Then either two of these tines have the three reetors ollinear, or two of thetines have the three reetors nonollinear. If the three reetors are ollinear inat least two tines, then for a position arbitrarily lose to the midpoint betweentwo reetors in suh a tine, the angles observed are an almost-180Æ angle andan almost-zero angle. This angular on�guration an be realized in both of thetines with three ollinear reetors, and therefore it is ambiguous.Alternatively, if at least two of the three-reetor sets are not ollinear, thendrop a perpendiular from the vertex opposite the longest edge of the triangleformed by three reetors, and obtain a point for the robot that reads angles 90Æ,90Æ, and 180Æ. This applies to both tines and therefore the position is ambiguous.2



5 Other Loalization PrimitivesThe loalization problems may beome a simpler task if the robot an bene�tfrom alternative, independent orientation mehanisms. In real life, the robotmoves on the oor, whih is a 2-D surfae embedded in a 3-D spae. We antake advantage of this fat by using the third dimension to plae reetors. Inthis model, the robot an perform 360-degree sans along any given hosen planethrough its urrent position. The robot might also perform a 2-D-like san byperforming a laser sweep along the horizontal plane of height zero. The robot isequipped with a devie that indiates the \up" diretion (de�ning the orientationof the oor plane) at all times. We omit proofs in this abstrat.Theorem 6. If n is the number of verties in a polygon P , then a robot aidedby a ompass indiating a North position at a point at in�nity requires at leastn=4� 8 reetors in the worst ase to uniquely indentify its position in P .Theorem 7. Consider a robot on a plane in a 3-D environment with walls,given an \up" diretion and a map of the environment. Let g be the number ofguards required to guard suh environment. Then at least 4g reetors and atmost 6g reetors are needed for the robot to loalize itself in the environment.6 ConlusionsWe have developed a method to remove ambiguities from Sugihara's reetormodel for robot loalization. This model an be implemented eonomially bothin terms of hardware (laser, reetors) as well as omputational requirements. Wehave given nearly mathing upper and lower bounds on the number of reetorsneeded per guard. We also onsidered alternative senarios for loalization withmore general primitives and showed upper and lower bounds in these ontexts.Aknowledgments. We thank Martin Demaine for many helpful disussions.Referenes1. D. Avis and H. Imai. Loating a robot with angle measurements. Journal ofSymboli Computation, 10(3{4):311{326, 1990.2. M. Berger. Geometry, vol. II. Springer-Verlag, 1987.3. M. Betke and L. Gurvits. Mobile robot loalization using landmarks. In Pro. IEEEInternational Conferene on Robotis and Automation, vol. 2, 135{142, 1994.4. G. Dudek, K. Romanik, and S. Whitesides. Loalizing a robot with minimumtravel. In Pro. 6th ACM-SIAM Symposium on Disrete Algorithms, 1995.5. H. Gonzalez-Banos and J. Latombe. A randomized art-gallery algorithm for sensorplaement. In Pro. 17th ACM Symposium on Computational Geometry, 2001.6. S. T. L. Heath. The thirteen books of Eulid's Elements translated from the text ofHeiberg with introdution and ommentary. Dover Publiations, New York, 1956.7. L. S. Shively. Introdution to Modern Geometry. John Wiley & Sons, 1939.8. R. Sim and G. Dudek. Mobile robot loalization from learned landmarks. In Pro.IEEE/RSJ Conferene on Intelligent Robots and Systems, 1998.9. K. Sugihara. Some loation problems for robot navigation using a single amera.Computer Vision, Graphis, and Image Proessing, 42(1):112{129, 1988.10. O. Veblen and J. W. Young. Projetive Geometry, vol. 1. Gin and Company, 1938.


