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aAbstra
tWe 
onsider the problem of k robots sear
hing on an integer latti
e on the plane. We give astrategy for �nding a target at an unknown distan
e away using k = 2j sear
hers, where j � 2,at a 
ompetitive ratio of n=2j�1 + 1. We give a lower bound for general k of 2n=k. We also givemat
hing upper and lower bounds for the spe
ial 
ase k = 2.1 Introdu
tionSear
hing for an obje
t on the plane with limited visibility is often modelled by a sear
h ona latti
e. In this 
ase it is assumed that the sear
h agent identi�es the target upon 
onta
t.This is the model traditionally used for sear
h and res
ue operations in the high seas wherea grid pattern is established and sear
h vessels are dispat
hed in predetermined patterns tosear
h for the target [9, 17℄.An axis parallel latti
e indu
es the Manhattan or L1 metri
 on the plane. One 
an measurethe distan
es traversed by the sear
h agent or robot using this metri
. Traditionally sear
hstrategies are analysed using the 
ompetitive ratio used in the analysis of on-line algorithms.For a single robot the 
ompetitive ratio is de�ned as the ratio between the distan
e traversedby the robot in its sear
h for the target and the length of the shortest path between thestarting position of the robot and the target. In other words, the 
ompetitive ratio measuresthe detour of the sear
h strategy as 
ompared to the optimal shortest route.In 1989, Baeza-Yates et al. [1℄ proposed a strategy for sear
hing on a latti
e with a singlesear
her with a 
ompetitive ratio of 2n+5+�(1=n) to �nd a point at an unknown distan
e nfrom the origin. This is shown to be optimal. The strategy follows a spiral pattern exploring d-balls in in
reasing order, for all integer d. This is illustrated in Figure 1. The axes are markedwith dashed lines, with the robot starting from the origin. Not surprisingly this strategy issimilar to those used in sear
h and res
ue operations [9℄.However, in real life a sear
h strategy o

urs in the presen
e of multiple agents, whi
h jointhe sear
h at di�erent times (and often at di�erent speeds). Coordination of su
h sear
hes isrefered to as a \diÆ
ult task" in the sear
h and res
ue literature [9, 16℄.1



Figure 1: Sear
hing in a latti
e. Figure 2: Two robot sear
h.In this paper we fo
us on sear
hes with multiple agents or robots starting from the samepoint (origin). In this 
ontext the 
ompetitive framework allows then for two natural measures:1. Time to destination.2. Total e�ort.Time to destination measures the amount of time trans
urred between the start of the sear
hand the en
ounter of the target, in the worst 
ase. In this parti
ular setting most sear
hesbene�t from in
reased number of robots as well as faster robots. Alternatively, total e�ort
ompares the total distan
e traversed by all robots with the shortest path from a start pointto the target.Baeza-Yates and S
hott [2℄ studied parallel sear
hes in the plane where the target is anin�nite line at a unit distan
e from the origin using the total e�ort metri
. In this 
ase theyassume that all sear
hers start from the origin and move at the same speed. Interestingly, underthe total e�ort metri
 optimality is a
hieved with four sear
hers and adding more sear
hers isof no use.The time to destination metri
 is parti
ularly relevant in real-life time-
riti
al situationssu
h as sear
h for survivors. In this situation we have a �xed number of resour
es that 
anrealisti
ally be brought to bear on the sear
h, and the objetive is to optimally 
oordinate thesemany sear
hers to �nd the target in the shortest time possible.In this work we study sear
hes in the latti
e using k sear
hers starting simultaneously fromthe origin, under the time to destination metri
. All k sear
hers move at the same speed. Wegive a strategy for �nding a target with k = 2j sear
hers with a 
ompetitive ratio of n=2j�1+1as well as a lower bound for k sear
hers of 2n=k for general k.
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2 Parallel Sear
hingConsider the 
ase of two robots sear
hing in the latti
e. We propose a sear
h path of thelatti
e as in Figure 2. In this 
ase the robots move in symmetri
 paths around the origin. Instep i the robot explores one quarter of the points at distan
e i and i + 1. That is, one sideof the i and i + 1-balls. The i-th ball then is explored in four passes. During step i� 1 ea
hof the two robots explores one quarter of both the i� 1 and i-ball, whi
h 
overs half of the iball. In step i ea
h of the two robots explores one quarter of the i and i + 1 ball. Thereforeat the end of this step the i-ball is fully explored.Theorem 1 Sear
hing in parallel with two robots for a point at an unknown distan
e n in thelatti
e is n + 2 
ompetitive.Proof. At step i ea
h robot moves on a zig-zag stair
ase 
omposed of one side of the pointson the i ball together with the immediately neighbouring points on the i+1 ball. Note that inthe previous step the robot explores one side of the (i� 1) and i ball. Therefore at the end ofthe ith step the ith ball has been 
ompletely explored. The length of this step is 2i+1. In theworst 
ase, the target point at distan
e n is the last one explored in the n ball after traversinga path of length 2n. The total distan
e traversed is given by 2n+Pn�1i=0 (2i+1) = n2+2n andthe 
ompetitive ratio is C = n+ 2 as 
laimed. 2This is in fa
t optimal, as the next theorem shows.Theorem 2 Sear
hing in parallel with k robots for a point at an unknown distan
e n in thelatti
e requires at least (2n2 + 4n + 2� k)=k steps.Proof. Let A(n) be the 
ombined total distan
e traversed by all robots up and until the lastpoint at distan
e n is visited. We 
laim that in the worst 
ase A(n) � 2n2 + 4n+ 2� k fromwhi
h the theorem follows. De�ne f(n) as the number of points visited on the (n + 1)-ballbefore the last visit to a point on the n-ball and g(n) as the number of points at a distan
egreater than n+ 1 before the last point at distan
e n was explored.First note that there are 2n2 + 2n + 1 points within in the interior of the 
losed ball ofradius n and that visiting any m points requires at least m� 1 steps. Hen
eA(n� 1) � 2(n� 1)2 + 2(n� 1) + f(n� 1) + g(n� 1):Now either f(n� 1) � 2n� 1 or f(n� 1) < 2n� 1. If f(n� 1) � 2n� 1 we haveA(n� 1) � 2(n� 1)2 + 2(n� 1) + (2n� 1) + g(n� 1)� 2(n� 1)2 + 4(n� 1) + 1� 2(n� 1)2 + 4(n� 1) + (2� k)as 
laimed. If f(n � 1) < 2n � 1 this means that after the last point at distan
e n is visitedthere remain 4n � f(n � 1) points to visit in the n-ball. Now, visiting m points in a ball3



Figure 3: Four robot sear
h.requires at least 2m � 1 steps with one robot, and 2m � k with k robots. Thus visiting theremaining points requires at least 2(4n� f(n� 1))� k steps. Hen
e,A(n) � A(n� 1)2 + 2(4n� f(n� 1))� k� 2(n� 1)2 + 2(n� 1) + f(n� 1) + g(n� 1) + 8n� 2f(n� 1)� k� 2(n� 1)2 + 2(n� 1)� f(n� 1) + 8n� k� 2n2 + 4n+ (2� k)as 
laimed. In either 
ase, there exist an n-ball whi
h is last explored after 2n2+4n+(2� k)steps in the worst 
ase. At best ea
h of the robots explores 1=kth of the total points visitedas 
laimed. 2Corollary 1 Sear
hing in parallel for a point at an unknown distan
e n in the latti
e is exa
tlyn+ 2 
ompetitive.Lemma 1 The latti
e 
an be sear
hed in parallel using four robots at a 
ompetitive ratio ofC = n=2 + 1.Proof. The path for four robots is illustrated in Figure 3. Let L(i) be the last point visitedat distan
e i. We de�ne step i as the path followed between the L(i � 1) and L(i). In step ithe robot visits i + [i is even℄ points. Thus ea
h robot visits the last point in the n ball after4



Figure 4: Eight robot sear
h.traversing a distan
e of nXi=1 (i+ [i is even℄) = n(n + 1)=2 + bn=2
;for a 
ompetitive ratio of C = n=2 + 1. 2Figure 4 shows the path followed by eight robots. In fa
t, one 
an infer from the fourand eight robot sear
h strategies a pattern to extend a sear
h strategy from 2j robots to 2j+1robots. In Figure 5 we overlay the eight robot path (dashed line) on a double-s
ale four robotpath (solid line). The straight edges are repla
ed by a zig-zag path of the same length in all
ases ex
ept for the turn points where an extra not
h two units larger than the edge in thefour robot path is inserted. This path is then rotated 90, 180 and 270 degrees, whi
h de�nesthe path followed by the 2nd, 3rd and 4th robots. The four other robots explore the gapbetween two 
onse
utive rotated 
opies of the path.The 
ompetitive ratio 
an thus be dedu
ed by noti
ing that in step i a single robot inthe eight robot sear
h path traverses twi
e the distan
e in the ith step of the four robotsear
h strategy, with an extra not
h of length two at the turn point. At the same time, therobot rea
hes twi
e as far at step i as the four robot path. In total the distan
e traversedby the robot to rea
h the last point of the n ball is given by n2=4 + n=2 for even n and1 + 2 bn=4
+ 4 (b(n+ 1)=4
+ b(n� 1)=4
2 + b(n� 1)=4
) for n odd.5



Figure 5: Four robot path (2x s
ale) and eight robot path (1x s
ale).Lemma 2 The latti
e 
an be sear
hed in parallel using eight robots at a 
ompetitive ratio ofC = n=4 + 2 whi
h is within an additive fa
tor of 3=2 of the lower bound from Theorem 2.Proof. Follows from the dis
ussion above. 2Theorem 3 The latti
e 
an be sear
hed using 2j robots in parallel at a 
ompetitive ratio ofC = n=2j�1 + 1.Proof. As before, we start from a sear
h path for 2j�1 robots, whi
h is doubled in s
ale. Ea
hedge is repla
ed by a zig-zag of the same length. This 
reates a gap between two 
onse
utivesolutions as the original distan
e between two path doubled from one unit to two units. Inother words the gap is doubled in the s
aling. Ea
h of these enlarged gaps is �lled by one ofthe remaining 2j�1 robots. Let S(j) denote the 
ompetitive ratio of sear
hing with 2j robots.Note that at step k the robot explores points at a distan
e twi
e as far from the origin as thesolution using 2j�1, hen
e S(j) = S(j � 1)=2 + 1=4, where the 1=4 term is due to the extranot
h in ea
h turn point. Thus we obtain S(j) � n=2j�1 + 1 as 
laimed. 23 Con
lusionsWe present strategies for sear
hing with two and four robots, whi
h we generalize to strategiesfor sear
hing with 2j robot with j � 3. We present a lower bound for k � 2 robots. The upperand lower bound mat
h to �rst order terms for k = 2j robots and it is exa
t for 2 robots.6
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