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Abstract. We study the problem of on-line searching for a target inside a polygon. In par-
ticular we propose a strategy for finding a target of unknown location in a star polygon with
a competitive ratio of 14.5, and we further refine it to 12.72. This makes star polygons the
first non-trivial class of polygons known to admit constant competitive searches independent
of the position of the target. We also provide a lower bound of 9 for the competitive ratio of
searching in a star polygon—which is close to the upper bound.

A similar task consists of the problem of on-line recognition of star polygons for which we
also present a strategy with a constant competitive ratio ¢ncluding negative instances.

1 Introduction

In the past years on-line searching has been an active area of research in Computer Science
(e.g. [1, 2,4, 7,8, 11]). In its full generality, an on-line search problem consists of an agent
or robot searching for a target on an unknown terrain. In the worst case a search by a
robot on a general domain can be arbitrarily inefficient as compared to the shortest path
from the initial position to the target. However, as it is to be expected, strategies can be
improved depending on the type of terrain and the searching capabilities of the robot.

The robot is assumed to be equipped, as it is standard in the field, with an on-board
vision system that allows it to see its local environment. Since the robot has to make
decisions about the search based only on the part of its environment that it has seen
before, the search of the robot can be viewed as an on-line problem. The performance of
an on-line search strategy is measured by comparing the distance traveled by the robot
with the length of the shortest path from the starting point s to the target location ¢. The
ratio of the distance traveled by the robot to the optimal distance from s to t is called the
competitive ratio of the search strategy.

There are several known classes of polygons that admit search strategies for some
targets with a constant competitive ratio, most notably streets [7], G-streets [4, 10], HV-
streets [3] and @-streets [3]. However, the existence of a constant competitive searching
strategy for these classes of polygons is strongly dependent on the position of the target.

A natural question is to find a class of polygons which the robot may search at a
constant competitive ratio independently of the position of the target. Since the target
might be hiding anywhere inside the polygon, a natural choice is to explore the class of
polygons where one polygon can be seen in its entirety from a single point, known as star
polygons.

Icking and Klein studied the problem of on-line kernel searching in a star polygon.
In this case, the competitive ratio is given by the ratio of the length traversed by the
robot from the starting point to a kernel point and the optimal distance, which is the
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the distance from the starting point to the kernel set. In [4] Icking and Klein presented a
~ b.81 competitive strategy for walking into the kernel of a star polygon.

In this paper we present the first non-trivial class of polygons which admits constant
competitive-ratio position-independent target searching. In section 2 we introduce some
concepts and definitions of use in searching polygons. In section 3 we present a 14.5-
competitive algorithm for target searching in star polygons and prove a lower bound of
9 for the competitive ratio of any search strategy for star polygons, we further refine
this strategy to achieve a competitive-ratio of 12.72. In section 4 we use this strategy to
construct the first constant competitive algorithm for recognition of star polygons. That
is, given a polygon, the robot follows a path that proves or disproves that the polygon is
a star where the path is no more than a constant times longer than a shortest path with
the same property. Furthermore, such path leads into the kernel in a constant competitive
ratio as well. We also improve the v/2 lower bound for walking into the kernel of a star
polygon to ~ 1.48.

2 Definitions

We say two points p; and p; in a polygon P are visible to each other if the line segment
P1ps is contained in P.

Definition 1. Let p be a point in P. The visibility polygon of p is the subset of P visible
to p and denoted by Vp(p).

We assume that the robot has access to its local visibility polygon by a range sensing
device, e.g. a ladar.

Fig. 2. Left and right pockets.

Fig. 1. Visibility polygon.

Definition 2. [12] A simple polygon P is a star polygon if there exists a point z in P such
that Vp(z) = P. The set of all points z inside P with Vp(z) = P is the kernel of P.

Star polygons are often referred to as star-shaped polygons [12], in this paper we use
the equally common but shorter name of star polygons.

If the robot does not start in the kernel of P, then there are regions in P that cannot
be seen by it. The connected components of P\ Vp(p) are called pockets. The boundary
of a pocket consists of some polygon edges and a single line segment not belonging to the
boundary of P. The edge of the pocket which is not a polygon edge is called the window of
the pocket. Note that a window intersects the boundary of P only in its end points. More



generally, a line segment that intersects the boundary of P only in its end points is called
a chord.

A pocket edge of p is a ray emanating from p which contains a window. Each pocket
edge passes through at least one reflex vertex of the polygon, which is also an end point
of the window associated with the pocket edge. This reflex vertex is called the entrance
point of the pocket.

A pocket is said to be a left pocket if it lies locally to the left of the pocket ray that
contains its window. A pocket edge is said to be a left pocket edge if it defines a left pocket.
Right pocket and right pocket edge are defined analogously.

Since a point in the kernel of P sees all the points in P, in particular p, a pocket of
Vp(p) does not intersect the kernel of P which implies the following observation.

Observation 1 The kernel lies to the right of all left pocket edges and to the left of all
right pocket edges.

For example, in the polygon of Figure 2, the kernel, if it exists, lies to the right of pv{ and
% and to the left of pvs.

This also implies that, for star polygons, starting from a left pocket and moving clock-
wise, all left pocket edges appear consecutively; at some point the first right pocket edge
is seen and from then onwards all pocket edges are right pocket edges, until the full circle
back to the sequence of left pocket edges is completed. This is so as the extension of each
pocket defines a half plane which contains the kernel of P, if the pockets were to alternate
between left and right, the intersection of these halfplanes would be empty which is a
contradiction.

If the robot is initially located on a point s on the boundary of the polygon, the robot
can scan all left pocket edges by starting from the edge on which s lies, and proceeding on
the clockwise direction the interior of the polygon. At some point, a right pocket edge is
seen and from then onwards all pocket edges are right pocket edges until the robot reaches
the edge containing s again, which completes the scanning process.

3 Target Searching in Star Polygons

S

Fig. 3. Searching for a target via the kernel. Fig.4. An extended pocket edge.

There are many similarities between searching for the target and searching for the kernel.
However, note that in general, when searching for a target, it is not an efficient strategy to
first go to the kernel or towards the center and from there move to the target as illustrated
in Figure 3. As illustrated in this case, a path advancing towards the kernel can be made
arbitrarily larger than the distance from s to ¢.



Searching for a target of unknown location inside a star polygon is a provably harder
problem than searching for the kernel, as we shall see in the second part of this section.

First we present a strategy to search for a target in a star polygon.

Consider the set of pocket edges seen by the robot from the starting position. We
extend this set as follows.

Definition 3. Given a polygon P, an extended pocket edge from a point s is a polygonal
chain qq, q1, g2, - . ., g1 such that ¢y = s, and each of ¢; is a reflex vertex of P, save possibly
for g. Furthermore g;_», gr—1 and ¢ are collinear and form a pocket edge with gr_1qx
as associated window. If gz_2qx is a left (right) pocket edge, then each of Zg¢;_1¢;¢iy1 is a
counterclockwise (clockwise) reflex angle (see Figure 4).

If A and B are two sets, then A is weakly visible from B if every point in A is visible
from some point in B.

Lemmad4. If ¢ is a chord in star polygon P that splits P into two parts Py and Ps, then
one of Py and P is weakly visible from ¢ and the other contains at least one point of the
kernel of P.

Proof. Let ¢ be a point in the kernel of P. ¢ is contained in one of the two parts, say
in P;. As ¢ is in the kernel, all of P, can be seen from it. But any line contained in the
polygon and joining a point in P; with a point in P» intersects the chord c. This implies
that the chord weakly sees all points on the opposite side as well. a

Theorem 5. There exists a strategqy for searching for a target inside a star polygon with
a competitive ratio of at most 14.5.

Proof. Let F denote the set of all extended pocket edges starting from s. From the
definition it follows that, in general, the robot may not see all of F from s (see for example
the star polygon of Figure 5). The robot thus uses a strategy that starts with a subset 7y
of F. This set is enlarged as the robot sees new pocket edges. Given an extended pocket
edge F, let [ denote the last point in the chain, and pg denote the second to last point
of E.

Fig.5. The extended pocket edges of a poly- Fig.6. Searching on the extended pocket
gon. edges.

Let side € {left, right} and if side = right, then —side = left and vice versa.

Algorithm Star Search
Input: A star polygon P and a starting point s;
Output: The location of the target point ¢;



1 let F be the set of extended pocket edges currently seen but not explored;
(* Initially F contains only simple pocket edges; x*)

2 let pg be the closest entrance point to s and d = d(pg, s)
3 if F is a left pocket edge then let side < left
4 else let side + right;
5 while F is non-empty do
6 traverse d units on E starting from s;
7 if ¢ is seen then exit;
8 add the new pocket edges seen in this trajectory to F as extended pocket
edges starting from s;
9 remove from F all extended side pocket edges to the side side of the extended
pocket edge spg, including F if pg is reached;
10 move back to s;
11 side + —side; d + c - d;
12 if side — left
13 then let pg be the rightmost entrance point on a left pocket edge such
that the length of the extended pocket edge from s to pg is less than
d
14 if there is no such edge
15 then let E be the leftmost edge in F
16 if side = right
17 then select E analogously to the case side = left;

end while;

In the following we show that when the algorithm terminates, it has seen the target, and
it traveled no more than 14.5 times the distance from s to ¢.
Note that after the first two iterations the while-loop has the following invariant:

Invariant: All pockets at a distance of d/c? or less on the side side have been
explored.

The correctness of the algorithm follows from Observation 1 and Lemma 4 as follows.
As the robot visits extended pocket edges, it eventually visits the leftmost right pocket
edge and the rightmost left pocket edge if ¢ is not found before.

Once the robot has visited the extreme leftmost and rightmost pocket edges, it has
explored the part to the left of the extreme left-pocket edge, and to the right of the
extreme right-pocket edge. Furthermore, the part of the polygon contained in between the
two extreme pocket edges has no hidden regions as it contains no pockets. Thus, the entire
polygon is seen, and the target must have been found.

We claim that Algorithm Star Search has a competitive ratio of 14.5. At the end of
Step 17, the invariant holds because if there was a, say, left pocket at a distance of less
than d/c? it means it was part of the set F two steps before. Thus, if it was unexplored
then, it either was traversed, or another left pocket of length at most d/c? which is to the
right of it was traversed. But exploring this second edge entails exploring the earlier edge
as shown in Lemma 4.

A consequence of the invariant is that if the current distance to be traversed by the
robot is d, then the target cannot be at a distance of less than d/c%. The worst case occurs
when the robot sees the target at a distance of d/c? + ¢, at the very end of a search of
length d (see Figure 7). This means that the ratio of the distance traversed by the robot



according to Algorithm star search to the distance from s to t is at most

n 7 23
dorsc 1= c

2
cn—2 c—1

+1-0(1/c"h).

Substituting the value 3/2 which minimizes 2¢®/(c — 1) gives a competitive ratio of 1 +
27/2 = 14.5. In fact, it can be shown that there is no choice of the step lengths that yields
a better competitive ratio for the above algorithm [1, 5]. O

We observe that the worst case configuration occurs when the angle Z/L; »sL; is rela-
tively flat. In this case the competitive ratio can be improved if the robot does not follow
the straight line segment sL; but follows a curve that allows it to detect the target earlier
(see Figure 7).

Fig. 7. The worst case to discover the target. If the s
robot follows the dashed path, then ¢ is detected at
P instead of L;. Fig. 8. The new strategy of the robot.

So instead of traveling along the line segment sL; the robot now travels along the
semi-circle C; that is spanned by sL;. More precisely, the robot computes a curve C; that
connects s and L; and that consists of parts of circles C(1), ..., C*) as follows. The center
¢l of each circle C9) is contained in sL; with ¢() to the left of cUtD) for 1 < j < k; — 1.
The curve C; is defined inductively. The circle C1 is the first circle with its center to the
right of s that contains s and intersects either L; or the boundary of P in a point QW
above sL;. The part of C'(!) between s and Q1) is the first part of C;. Now assume that
C; is already constructed up to circle C9) with 1 < j < k; — 1. There is a point Q) such
that C'9) intersects the boundary of P in Q). The circle C3+1) is the first circle with its
center to the right of ¢ that contains Q) and intersects either L; or the boundary of P
in a point Q1) different from Q) above sL;. For illustration refer to Figure 8. Because
of the limited space and the fairly involved analysis of the above strategy, we just mention
that the competitive ratio can be improved to 12.72 in this way.

3.1 A Lower Bound on the Competitive Ratio

In this section we prove a lower bound of nine for the competitive ratio for searching in
star polygons. Our proof is based on the following theorem about on-line searching on the
line.

Theorem 6. [9, Theorem 2.2] Any on-line search strategy on the line for a target at
a distance of at most D is at least (9 — f(D))-competitive, where f(n) < 24/log, n, for
sufficiently large D.

Theorem 7. Any strategy for searching for a target inside a star polygon is at least 9-
competitive.
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Fig. 9. Lower bound for searching for a target. Fig. 10. Distance to a beam.

Proof. Consider the polygon of Figure 9. Let s be located at the origin. This polygon is
made of (n — 1)2"7! + 1 teeth with (n — 1)/2"73 + 4 vertices attached to a rectangle of
height n? and width 2n. Teeth are equally spaced at a distance 1/2", and of width 1/27*!
save for the tooth containing s which is of width 2 — 1/2". Each tooth defines a beam (see
Definition 9). All beams intersect at the point v = (0, n?) which sees the entire interior of
the polygon.

We claim that the robot must essentially do a doubling search on the teeth, in which case
Theorem 6 gives a lower bound of 9. However, in this case there are several differences that
must be considered. First, the movement of the robot is not restricted to a line; second, the
lower bound is for searches on any point of the interval rather than on discrete positions.
Thus the proof proceeds as follows: first we argue that any search strategy is sufficiently
close to a search on the real line, and secondly we show that the bound for the continuous
case implies a similar bound for the discrete case.

For the robot to explore a tooth it must reach the beam above it. We number the
beams symmetrically, and consecutively starting from the origin; thus beam b; is at the
same distance from the origin as beam —b;. The distance from s to the the base of the ith
beam on either side is d; = 1+ (¢ — 1)/2". The distance from s to the closest point in the
beam is (see Figure 10)

d; d;
)= V1i+ (14 (di)?/nt - Vi+1/n?

However the robot is not forced to move back to s after each search. Since the robot
cannot reach a height past 9n as that alone would imply a competitive ratio above 9 we
consider the point p’ located at (0,9n) and it follows that

n? — 9n n? — 9n n—9

> d; = di—
n4—|—d?_ Vn* 4+ n? vn?4+1

The order in which beams are visited can be denoted by the sequence S = {s;}1<;<n of
the distances d; from the origin to the base of those beams in which the robot changed
direction (turn points).

Consider the beams associated to two consecutive terms in the sequence S above, say
by, and by, , . Without loss of generality, let us assume that by, is on the left side and by, ,
on the right side. Then, the distance traversed by the robot from beam b;,; to beam by, ,
is at least d(qi,¢i+1) > d(¢i,pi) + d(pi, ¢i+1), where g; denotes the position of the robot



in by, for j = {é,7+ 1}, and p; is the intersection of g;¢;;1 with the y-axis. Furthermore,
d(g;, p;) > d(bx;,p;) > d(bx;, ')

Let Cs denote the competitive strategy of the strategy S on the real line. Analogously,
let Cé? denote the competitive ratio of a strategy S in the discrete case.

Now we will show that the search strategy .S, applied to a target hiding at a point at
distance d; on the real line has competitive ratio:

Ly lsil
CE > sup {142 ==L 2% > 9_25/log,n.
5 _1§j§N{ |sj—1l+1/27 | ~ /o8,

Assume that, to the contrary, Cé? < 9—25/log, n. We know from Theorem 7 that any
sequence S visiting the interval [—n, n] and searching for a target located in any interior
point has a competitive ratio greater or equal to 9 — 24/ log, n. Since S is such a sequence,
we have then that

iz Isil

|$k—1]
for some k such that 1 < k < N. Let Cs(s) and CZ (s;) denote the competitive ratio of
strategy .S to find a target hiding at the point s, for the real and discrete case respectively.
Note that Cs = Cg(si) > 9 — 24/ log, n and that
1
|sk—1] + on |

The additive factor of 1/2" in the denominator accounts for the next possible position of
the target on that side. We claim that 0 < Cs(s;) — C2(sx) < 1/logy n. Indeed,

Cs=1+2 >9—24/log,n

k
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as claimed. Thus, from Cs(sy,) > 9—24/ log, n it follows that C2 > C2(sz) > 9-25/1og, 7,
which is a contradiction.
Thus it follows that Cé? > 9 — 25/log, n. Now, we know that the robot traversed, for

each s; a distance d(g;, p;) which is at least |s;] \/%, for a total competitive ratio of at

least

n—9 n—9 25
1—|—sup{7 CDsk —1}21—|—sup{(7) (8——)}
keZ vn2+1( 5 () =1) kez L\vn?+1 logy n
The value above is a lower bound for the competitive ratio of the robot searching a polygon.

As the construction of the polygon of Figure 9 is valid for any n, we have that, in the
limit, the competitive ratio is bounded by

I 1+("_9)(8 2 )
im e -—— )=
n—oo vn?+1 log, n

as claimed. O



4 Recognition of Star Polygons

For the on-line star recognition problem, we assume that given a polygon, the robot aims
to determine if it is star shaped. Similarly to target searches, the competitive ratio is given
by the quotient between the shortest path that proves or disproves that a given polygon
is a star and the distance traversed by the robot.

As Figure 11 shows, the problem of on-line search for the kernel of a polygon is at least
V/2 competitive [6].

kern(P)

R

P

Fig.11. A lower bound of V2 for
the competitive ratio of searching
for the kernel of a star polygon.

Any on-line strategy with a com- s
petitive ratio of < v/2 has to fol-
low the dashed path. Fig.12. Polygon with two beams.

The next theorem shows that kernel searches are strictly worse than /2-competitive.
This result stands out against several other lower bounds for searching in simple domains,
for which it seems that a robot can find an optimal path on-line for the L; metric [8].

Definition 8. The visibility region of a subset B of a polygon is the set of all points in
the polygon which see all points in B.

Definition 9. Given the current position of the robot p and a pocket B with respect to
that point, the beam of the pocket is the visibility region of B.

Notice that if the pocket is a trapezoid, the visibility region resembles a search light
beam (see Figure 12).

Observation 2 The kernel lies in the intersection of all beams.

Theorem 10. Searching for the kernel of a polygon is at least 1/2 + 3/8+/2 + (2 +

\/5)/8 V102 — 13 ~ 1.48-competitive.

Proof. Consider the polygon of Figure 12. Notice that the robot must reach the line
segment U705 before it reaches the kernel. As well, the robot must reach w775 at its midpoint
p, as otherwise the following construction can be made on the opposite side and it follows
from the triangle inequality that the competitive ratio would only worsen. Again, from p
it is not yet clear where the kernel is located. In fact, depending upon the specific angle
and location of the pockets, the beams might specify a small kernel located anywhere in
the visibility polygon region of s which is above v1v5.

We now use an adversary argument. After the robot reaches p the adversary closes one
side, and selects two candidate kernels, illustrated by the large dots in Figure 13, such
that one is next to v; the other right above the midpoint, and the line joining them is at
a m/4 angle to the horizontal. This can be achieved by locating a beam A along the line



Fig.13. Lower bound configuration. Fig. 14. Progressively thinner beams.

joining the two candidate regions, and a second one, B, nearly parallel and to the right of
A (see Figure 14). The intersection of both beams defines the kernel of visibility.

At this point, we assume that the robot learns of this decision and thus can restrict
itself, to its benefit, to determining which of the two regions is the kernel.

In this case, the robot cannot decide which of the candidates is the kernel before it
reaches at least one of A or B. As the beams become progressively thinner, the robot
reaches either beam at an ¢ distance of the 7 /4 line joining the two candidate regions
(that is, the right edge of the A beam).

Assume this happens at a point ¢ located, as indicated in the previous paragraph,
arbitrarily close to the 7/4 line. Let 6 be the angle given by Zv;pq. Without loss of
generality, let the distance d(s,v;) = V2. We compute the competitive ratio on the left.
Let C; and C5 be the two candidate regions. To compute the competitive ratio we first
notice that d(Cy,C5) = v/2 — €. Then from elementary trigonometry we obtain d(g,C1) =
d(p, q) sin(8)/ sin(w/4) and 1 — d(g,C — 2) = d(p, ¢) cos(d), from which follows

sin(m/4) sin(9)
sin(7/4 + 0) sin(@ + mw/4)
Similarly, d(q,C3) = sin(n/2 — 6)/sin(w /2 — § 4+ w/4). Thus the competitive ratio for the
kernel on the left side is given by

V2sin(8) 4+ v/2 cos(6) + /2 + 2 sin(8)
2 sin(8) + 2 cos(6)

d(p,q) = and d(q,C1) =

and on the right side
sin(8) 4 cos(8) 4+ 1 + /2 cos()
2 sin(8) + 2 cos(6)
As the competitive ratio is the maximum of both quantities above, the robot selects # such
that the competitive ratio on either side is the same. Solving the equation we obtain,

f = arctan (1/4—|—1/8\/§(1—\/10\/§—13)).

For this value, the competitive ratio is

(24+/2)/84/10V2 — 13+ 1/2+ 3/8/2 ~ 1.48642

as required. a
The best known search strategy for finding the kernel of a given star polygon, is by
Icking and Klein [6] and results in a no worse than (/4 + (2+ )2 ~ 5.5-competitive




strategy. However, it is unclear if the same algorithm applied to a general polygon would
terminate at a constant competitive ratio for negative instances. A modification of the
target searching strategy of Theorem 5 can be used for this purpose. Furthermore, if
the polygon is a star the proposed modified strategy reaches the kernel, if it exists, at a
constant competitive ratio as well.

Definition 11. Let s be the starting position of the robot inside a polygon P. Let V(T')
denote the visibility region of a continuous path I' inside P. Then we denote by OPT the
length of the shortest path such that a computational agent (such as a Turing machine)
can determine from V(I') that P is or is not a star.

Theorem 12. There exists a 46.35-competitive strategy that identifies if a polygon is or
1s not a star.

Proof. The algorithm is somewhat similar to the one proposed for target searching in
Theorem 5. However there are some key differences. Let side € {left, right} as before. For
this theorem we say that a straight chord is a local side pocket edge if it joins two points
which are in between two consecutive side extended pocket edges with one endpoint lying
on the side-most of the two pocket edges. Similarly, local pocket edges together with the
extended pocket edge in which they are anchored will be considered as extended pocket
edges themselves.

The new strategy Circle-Swipe replaces Steps 7 and 10-11 from strategy Star-Search
of Theorem 5.

Step 7 If the intersection of the half planes defined by the extension of the rectilinear seg-
ments of explored pocket edges becomes empty the strategy rejects. Otherwise continue
until all pockets have been explored and accept.

Steps 10-11 The robot changes side side < —side. Let F; = <qé:5, q’i, .. .,q,ii>. The robot
moves on a circular arc centered on q,i_2, of radius d(q,i_2, q,i_l) to side side until it sees
q,i_3. The robot then updates the radius to be d(q,i_3, q,i_l) and continues describing a
(new) circular arc centered at g._,. Eventually the robot sees s and continues describing
a circle of radius d until it starts reaching the extension of edges of the next pocket

edge F;1q1 = <qé+1:s, qi+1, .. .,q,i‘i:ll} to be visited on the side side. In each of this
cases, the robot does the reverse process, reducing the radius by the length of the edge

seen (d(q;‘i_'i, q;."'l)) and centering the arc on q;.‘i'l where j takes the values 0,1,2...k;11
successively (see Figure 15). When the robot reaches the boundary of the polygon it

returns to s moving over E;,; and sets d to cd.
The invariant is now as follows.

Invariant: The visibility region of the path explored thus far by the robot contains the
vistbility region of any path of length d/c or less.

Again we must show correctness and analyze the competitiveness of the strategy. In
Steps 10-11, while walking on the circular arc if the robot cannot reach a side pocket
edge, it means that the robot was blocked by the boundary of P. This boundary point
must necessarily lie between the leftmost right pocket and the rightmost left pocket, as
otherwise it would have been considered an extended pocket edge of the —side side and,
chosen as target pocket edge (since it is at a distance of at most d from s).

Now if we have reached a boundary point that is to the right (left) of the rightmost
(leftmost) left (right) pocket edge but before a right (left) pocket edge then this point
must be visible from s. In this case the robot traverses to s and has completed searching



the left (right) side and continues searching on circular arcs on the remaining side to be
explored.

Since after the ith iteration of Steps 10—-11 the robot has enclosed by a simple connected
curve all points at distance at most de¢'~?! it follows from Observation 4 that the invariant
is correct. Step 7 accepts or rejects when either an impossibility for a star polygon has
been found or the whole polygon has been explored, which is trivially correct, concluding
the proof of correctness.

In turn, the analysis has two components. First we must determine the length of the
worst case longest path that may be traversed up to and including the ith iteration of
Steps 10-11. Secondly, we shall show that all correct algorithms must accept according to
Step 7.

In iteration 4 the robot traverses a distance no greater than de to reach the circular
arc, at most 2v;dc’ on the arc itself for some angle v; and then at most dc® back to the
point s. In the worst case, in step k we surround a point at distance de*~! + ¢ as given
by the invariant of Steps 10-11. Clearly, if the polygon is a star v; < 27 as otherwise the
intersection of the half planes determined by the edges forming and extended pocket edge
would be empty.

The distance traversed before surrounding the point depends on whether or not the
pocket edges on one side were exhausted. If they were, the competitive ratio is:

S8 d2m+2)] + FH 2+ a) + FH2(2 4 27 — a)
k
C

2 +2)+c(2+a)+ 22+ 21 —a)

c
<
—c—1
where 0 < a < 2x. Differentiation shows that the maximum is attained when a = 0,
for all ¢. Minimizing with respect to ¢ we obtain a cubic equation —which can be solved
symbolically— and is minimized when ¢ ~ 1.547 with a competitive ratio of 46.35.
If the pocket edges were not exhausted the competitive ratio is,
Sl di(er 4 2) c?

< 2 2).
ck _c—l(ﬂ-—l_)

This ratio is smaller than 46.35 for ¢ = 1.547 which gives a maximum between the two
expressions of 46.35 as required.

Secondly, it is easy to see using an adversarial argument, that if the robot accepts a
star polygon without having looked into all of its pockets or rejects without having found
non-intersecting half planes the adversary can suitably modify the pockets and make the
robot fail. That is, if the robot accepts P without exploring a pocket the adversary creates
a spiral in that pocket, and the polygon is not a star. On the other hand if the robot
rejects without having found non-intersecting half-planes the adversary “empties” all the
pockets by means of inserting an almost flat two edge chain closing the pocket (the chain
is ¢ dented by a vertex on its midpoint). Because at any time there are only a finite
number of pockets and the interior of the intersection of non-degenerate set of half planes
is an open set, it follows that there exists small enough € such that the intersection of
all the half-planes of this modified polygon is not-empty and thus the polygon is a star,
contradicting the robot.

Thus we have established that an agent optimally recognizing a star-polygon traverses
the shortest path I' that satisfies the visibility conditions of step 7 for the given polygon.
The invariant then states that a robot using the Circle-Swipe strategy swipes a region
that is at most ¢ times farther than the given path, for a total competitive ratio of 46.35
as computed.
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Fig. 15. Recognizing a polygon.

Conclusions

We have presented a strategy for on-line searching in a star polygon and for on-line recog-

ni

tion of a star polygon. Qur strategies have constant competitive ratios independent of

the starting position of the robot and the position of the target. This is in contrast to
on-line searching in other classes of polygons where both the position of the target and
the starting position are heavily limited.

is

We have also presented a lower bound for on-line searching in a star polygon which
close to the upper bound obtained by our strategy. Finally, we show that no strategy

which searches for the kernel of a star polygon can achieve a competitive-ratio better than
1.48 which improves on the best previously known lower bound of /2.
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