
Position-Independent Street SearchingChristoph A. Br�ocker1 and Alejandro L�opez-Ortiz21 Institut f�ur Informatik, Universit�at Freiburg, Am Flughafen 17, Geb. 051, D-79110Freiburg, FRG. hipke@informatik.uni-freiburg.de2 Faculty of Computer Science, University of New Brunswick, Fredericton, NewBrunswick, Canada, E3B 4A1. alopezo@unb.caAbstract. A polygon P is a street if there exist points (u; v) on theboundary such that P is weakly visible from any path from u to v. Opti-mal strategies have been found for on-line searching of streets providedthat the starting position of the robot is s = u and the target is locatedat t = v. Thus a hiding target could foil the strategy of the robot bychoosing its position t in such a manner as not to realize a street.In this paper we introduce a strategy with a constant competitive ratioto search a street polygon for a target located at an arbitrary point t onthe boundary, starting at any other arbitrary point s on the boundary.We also provide lower bounds for this problem. This makes streets onlythe second non-trivial class of polygons (after stars) known to admit aconstant-competitive-ratio strategy in the general position case.1 IntroductionIn 1991 Klein considered the problem of an agent or robot searching the interiorof a simple unknown polygon for a visually identi�able target point [13]. Thecompetitive ratio, de�ned as the ratio between the distance traversed by a robotand the length of the shortest path between the robot and the target, is a naturalframework to evaluate the performance of a given search strategy. It is not hardto see that in general searching an arbitrary simple polygon with n vertices is
(n) competitive (see e.g. [13, 16]).In the same paper, Klein introduced the class of street polygons, which canbe searched on-line at a constant competitive ratio under speci�c restrictions onthe position of the target. A polygon P is a street if there exists a pair of points(u; v) on the boundary such that the interior of the polygon is weakly visiblefrom any path from u to v. Speci�cally, the strategy proposed depends on thetarget being located at v and the starting position of the robot being u. Severalimproved strategies for streets have been proposed under the same assumptions[8, 14, 16, 18]. Recently streets have been shown to be searchable at a competitiveratio of p2 in the worst case, which is optimal [20, 10], provided, as before thats = u and t = v.Several other classes of polygons that admit constant competitive ratios havebeen proposed including G-streets [6, 17], HV-streets [5] and �-streets [5]. Just aswith streets, the existence of a constant competitive searching strategy for theseclasses of polygons is also dependent on the position of the target.



II In 1997, L�opez-Ortiz and Schuierer [15, 19] introduced the �rst non-trivialclass of polygons known to admit a constant competitive ratio irrespective ofthe starting position of the robot and the target, namely star polygons.However it remained an open question if street polygons could be searched ata constant competitive ratio when the starting position of the robot is di�erentfrom u and the location of the target is not v, as all known search strategiesdepend heavily on this fact. In this paper we answer this question in the a�rma-tive. This is an important generalization of the restricted street search algorithm,as otherwise a hiding target could foil the search strategy of the robot by choos-ing its hiding position t in such a manner as not to realize a street. This makesstreets only the second non-trivial class of polygons (after stars) known to admita constant-competitive-ratio strategy in the general case.We propose �rst an algorithm for the case s = u and a free target, i.e. t 6= vwith a competitive ratio of 36.806, and then an algorithm for the general casewhen s 6= u with a competitive ratio of 69.216. This completes all the searchcases for street polygons. It is also interesting to note that the competitive ratiocan be improved signi�cantly for rectilinear street polygons using a strategydevised for that speci�c case [4].The paper is organized as follows. In Section 2 we give some basic de�nitions.In Section 3 we present a strategy to search a street polygon when the startingposition of the robot is s = u but the target is located at an arbitrary point onthe boundary. In Section 4 we give a strategy for searching street polygons forarbitrary location of s and t. In Section 5 we present a lower bound of 9 for thesearch case when s = u and of 11:78 for arbitrary position streets searching.2 De�nitionsWe assume that the robot is equipped with an on-board vision system thatallows it to see its local environment. Since the robot has to make decisionsabout the search based only on the part of its environment that it has seenbefore, the search of the robot can be viewed as an on-line problem. As such,the performance of an on-line search strategy can be measured by comparingthe distance traveled by the robot with the length of the shortest path from thestarting point s to the target location t. The ratio of the distance traveled bythe robot to the optimal distance from s to t is called the competitive ratio ofthe search strategy.We say two points p1 and p2 in a polygon P are mutually visible if the linesegment p1p2 is contained in P . If A and B are two sets, then A is weakly visiblefrom B if every point in A is visible from some point in B.De�nition 1. Let p be a point in P . The visibility polygon of p is the subset ofP visible to p and denoted by VP (p).We assume that the robot has access to its local visibility polygon by a rangesensing device, e.g. a ladar (laser \radar").



III
Fig. 1. Visibility polygon.
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pFig. 2. Left and right pockets.De�nition 2. [13] Let P be a simple polygon with two distinguished vertices, uand v, and let L and R denote the clockwise and counterclockwise, resp., orientedboundary chains leading from u to v. If L and R are mutually weakly visible, i.e.if each point of L sees at least one point of R and vice versa, then (P; u; v) iscalled a street.Streets are also known as LR-visibility polygons [3].If the robot does not see the entire interior of P , then the regions not seenin P form connected components of P n VP (p) called pockets. The boundary ofa pocket is made of some polygon edges and a line segment not belonging to theboundary of P . The edge of the pocket which is not a polygon edge is calleda window of VP (p). Note that a window intersects the boundary of P only inits end points. More generally, a line segment that intersects the boundary of Ponly in its end points is called a chord.A pocket edge of p is a ray emanating from p which contains a window. Eachpocket edge passes through at least one re
ex vertex of the polygon, which isalso an end point of the window associated with the pocket edge. This re
exvertex is called the entrance point of the pocket.A pocket is said to be a left pocket if it lies locally to the left of the pocketray that contains its window. A pocket edge is said to be a left pocket edge if itde�nes a left pocket. Right pocket and right pocket edge are de�ned analogously.De�nition 3. Given a polygon P , an extended pocket edge from a point s is apolygonal chain q0; q1; q2; : : : ; qk such that q0 = s, and each of qi is a re
ex vertexof P , save possibly for qk. Furthermore qk�2, qk�1 and qk are collinear and forma pocket edge with qk�1qk as associated window. If qk�2qk is a left (right) pocketedge, then each of \qi�1qiqi+1 is a counterclockwise (clockwise) re
ex angle.De�nition 4. We say two pocket edges p1 and p2 are clockwise consecutive ifthe clockwise oriented polygonal chain of V (p) does not contain another pocketedge between p1 and p2.Lemma 1. Let (P; u; v) be a street polygon. All left (right) pocket edges anchoredin u are clockwise (counterclockwise) consecutive.



IV It is easy to verify this by assuming otherwise and noticing then that one ofthe pockets cannot see the opposite boundary chain, as required by the de�nitionof street polygons (see e.g. [13] for a more detailed treatment). We call thisarrangement left-right consecutive pockets. Notice that in general this propertyonly holds for the points u and v in P , and is not necessarily the case for otherpoints w on the boundary of P .De�nition 5. A chord between two points w1w2 on the boundary of the polygonis said to be w1-minimal if and only if there exists an � > 0 such that for allchords with end points (w1; w02) and jw2 � w02j < � we have jw1w2j < jw1w02j.Notice that w1-minimal chords either form a right angle with the boundaryat w2, or w2 is a re
ex vertex of P .A chord uw is clasi�ed as left, right or middle depending on its position withrespect to the surrounding pockets. That is, if a chord is located between twoconsecutive left (right) pockets is called a left (right, respectively) chord. If thechord is located between a right and a left pocket, in clockwise order, then it istermed a middle chord.3 Searching for a Target from a Restricted Starting PointIn this section we consider the problem of searching for a target located at anarbitrary point t in the interior of a street polygon, with the robot starting fromthe point s = u on the boundary.Lemma 2. If c is a chord with endpoints (u;w) in a street polygon (P; u; v),then it splits P into two parts P1 and P2, and one of P1 and P2 is weakly visiblefrom c while the other contains the point v.Proof. Clearly v is contained in one of the two parts, assume that it is on the leftside, P1 (the other case is symmetrical). Therefore the entire counterclockwisepolygonal chain from u to w is contained in P2. Moreover, we know that thepolygonal chain from u to w sees the left chain L in P1. But any line containedin the polygon and joining a point in P1 with a point in P2 intersects the chordc. This implies that the chord weakly sees all points in P2.Observation 1 The point v lies to the right of all but the last left pocket edgeand to the left of all but the last right pocket edge.Theorem 1. There exists a strategy for searching for a target of arbitrary loca-tion t inside a street (P; u; v) starting from s = u with a competitive ratio of atmost 36.806.Proof. The proof of this theorem is based on the algorithm for star polygons�rst presented in [15] and further improved in [19]. However, there are severalkey di�erences which result in a signi�cantly larger competitive ratio than thecase of a star polygon.



VThis algorithm traverses left and right pockets edges alternatively, and inorder of increasing length, until the entire polygon is seen. The aim of the al-gorithm is to traverse those pocket edges that form chords, since such chordsfully explore a portion of the polygon as shown in Lemma 2. Otherwise, if thereis no pocket edge at a given distance forming a chord, then the robot traversesan unexplored pocket edge to its current entrance point. We classify extendedpocket edges in two groups, Fleft and Fright. The robot starts with the subset ofcurrently visible extended pocket edges F0left and F0right, respectively. These setsare updated as the robot explores pocket edges and at the same time discoversnew ones. Given an extended pocket edge E, let lE denote the last point in thechain, and pE denote the second to last point of E.

Fig. 3. Extended pocket edge search.
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Fig. 4. A left pocket inside a rightpocket.Let side 2 fleft, rightg and if side = right, then :side = left and vice versa,and let a > 1 be a constant.Algorithm Restricted-Start Free-Target SearchInput: A street polygon (P; u; v) and a starting point s = u (notice thatthe location of v is not required by the algorithm);Output: The location of the target point t;1 let Fleft (Fright) be the set of extended left (right) pocket edges cur-rently seen but not explored;(� Initially Fleft and Fright contain only simple pocket edges; �)2 let pE be the closest entrance point to s and E the pocket edge corre-sponding to pE ;3 let d be the distance of pE to s;4 if E is a left pocket edge5 then let side left6 else let side right7 while Fleft [ Fright is non-empty do8 traverse d units on E measuring from s;9 if t is seen then exit loop;



VI10 add the new pocket edges seen on this path to Fleft or Fright asextended pocket edges starting from s;11 if a new side pocket edge EN is seen inside a :side pocket andjEN j � d12 then let E  EN ;13 move to the entrance point of the :side pocket and exploreE;14 remove from Fside all extended side pocket edges to the side sideof the extended pocket edge E15 if lE is reached then remove E;16 move back to s;17 let d a � d;18 let side :side;19 if side = left20 then let E 2 Fleft such that pE is the rightmost entrance pointor pocket forming a chord with d(s; pE) � d.21 if there is no such edge22 then select as E as the leftmost edge in Fleft23 else (� side = right �)select E analogously;end while;24 move to t;An important di�erence with the star searching algorithm of [15, 19], is thatin this case it is possible for a left pocket to be contained inside a right pocketand vice versa. Figure 4 illustrates one such case, where traversal of a left pocketedge leads to the discovery of a further left pocket edge hidden inside a rightpocket.Assume that the new pocket edge is left and is contained in a right pocket (theother case is symmetric). When the algorithm sees the new pocket edge it addsit to Fleft. Furthermore, if the length of the new pocket edge is smaller than theone currently being explored, then the robot moves on the new pocket edge. Thiscauses a detour in the algorithm, since if the robot had known of the existenceof such hidden pocket, it would have travelled straight to the entrance of theright pocket edge and from there to the hidden left pocket edge. Unfortunatelythat edge was not in contention in Step 20. The length of this detour can bebounded as follows.Claim. Let q be the point on the original pocket edge where the robot discoveredthe new pocket edge, and let w be the entrance to the pocket de�ned by thisnew pocket edge. Then d(s; q) + d(q; w) � (2a+ 1) d(s; w).Proof. Since the new left pocket was hidden inside an unexplored right pocketedge, we know that the distance d(s; w) must be larger than the value d usedto explore in the last step, as otherwise that pocket would have been explored.Therefore we have that d(s; q) � a d � a d(s; w). Now, the robot must reach wfrom q (see Figure 4). We apply the triangle inequality and obtain d(q; w) �



VIId(s; q) + d(s; w) � a d(s; w) + d(s; w). Therefore the total distance traversed bythe robot to reach w is at most d(s; q) + d(q; w) � (2a+ 1) d(s; w).The last observation we need to make is that such a hidden pocket edgediscovery might happen more than once within one exploration step. That is,once the robot starts moving towards the newly discovered pocket edge it mightdiscover yet another left pocket edge with entrance w0 further inside the rightpocket. This re
ects the case of a street with more than one \funnel structure"(see for example [13]). Klein showed that since the shortest path to the hiddenpocket goes through the entrance of the right visible pocket, the street polygoncan be decomposed into a sequence of funnel structures. The search strategythen has a competitive ratio no greater than the maximum of the competitiveratios in each of the consecutive funnel structures [13, 16].Note that after the �rst two iterations the while-loop has the following in-variant:Invariant : All pockets at a distance of d=a2 or less on the side side havebeen explored.Clearly the algorithm always terminates, as it either �nds the target or iteventually explores all pocket edges. In the later case we must ensure that thetarget is also found. This follows from Lemma 1, Lemma 2 and Observation 1.Indeed, after exploring the last pocket edge all of the polygon to the left of thelast left pocket edge has been explored, all of the polygon to the right of the lastright pocket edge has been explored as well and there are no unseen areas (i.e.pockets) left to explore. Therefore, the target must have been discovered in thelast step when the robot reaches the entrance point of the last pocket edge andin all cases the target is found.The competitive ratio is derived from the Claim 3 and the Invariant. AfterStep 16, the invariant holds because if there was a, say, left pocket at a distanceof less than d=a2 it means it was part of the set F two steps before. Thus, if itwas unexplored then, it either was traversed, or another left pocket of length atmost d=a2 which is to the right of it was traversed. But exploring this secondedge entails exploring the earlier edge as shown in Lemma 2 and Observation 1.
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d/aFig. 5. Worst case discovery of a target.This means that after Step 16 we know that the target must be located insidea pocket with entrance point at a distance of strictly greater than d=a2 from s.The worst case occurs when the robot sees the target at a distance of d=a2 + �,at the very end of a search of length d (see Figure 5). This means that the ratio



VIIIof the distance traversed by the robot according to Algorithm Restricted-StartFree-Target Search to the distance from s to t is at most2Pni=0(2 + 1=a) aian�2 + 1 = 2a2 (2a+ 1)a� 1 + 1:This expression is minimized when a = (5 +p57)=8 which gives a competitiveratio of (151 + 19p57)=8 � 36:806 as claimed.4 Searching in a Street from an Arbitrary Starting PointIn this section we present an algorithm for searching for a target of arbitraryposition t in a street polygon, starting from an arbitrary point s on the boundaryof the polygon. In other words we remove the restriction from the previous sectionthat s = u. Moreover, the robot does not need to know the location of u andv to explore P . The algorithm is considerably more involved than the one forrestricted starting position, and the competitive ratio is somewhat larger, as itis to be expected.A chord c inside a street polygon (P; u; v) splits a polygon in two parts. P1,and P2. The points u or v may be located both on one of the two parts, or oneon each part.Lemma 3. Consider a chord c in P and assume that u and v are on the sameside of P , say P1. Then P2 is weakly visible from c.Proof. Since both u and v are in P1, one of the two polygonal chains from u tow is entirely contained in P1, say the left polygonal chain L from u to v. Weknow that any point on R \ P2, where R is the right polygonal chain from u tov, sees at least one point in L. But any line contained in the polygon and joininga point in P1 with a point in R\P2 intersects the chord c. This implies that thechord weakly sees all points in P2.Notice that this lemma holds for any simple path between two points on theboundary of the polygon (not just a chord) as long as the points u and v are onthe same side of the path.De�nition 6. If the points u and v are one on each side of the chord c, say u inP1 and v in P2, then the chord splits each of L and R in two. Let LL = L \ P1,LR = L \ P2, RL = R \ P1 and RR = R \ P2.For example, in Figure 6, the chord c = (s; w) splits the left (clockwise) polygonalchain L from u to v in two parts, from u to w and from w to v correspondingto LL and LR, respectively. Similarly, the counterclockwise chain R from u to vis split into two parts from u to s and from s to v which correspond to RL andRR, respectively.Lemma 4. In the polygon formed by the chord c = (s; w), LL and RL, there areonly right pockets on LL and only right pockets in RL visible from c. Similarly,for the polygon formed by c, LR and RR, there are only right pockets on RR andleft pockets on LR visible from c.
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Fig. 6. Right pockets in LR.Proof. Assume otherwise. That is, there is, say a right pocket on LR with anassociated pocket edge E with entrance point e (see Figure 6). In this case, theboundary points delimiting the window edge of this pocket are both in L. Sincethe polygon is a street, every point in the boundary of the pocket can see atleast one point in R. Now, the two edges (w; s) and (s; e) together form a pathseparating the points in the pocket from the right polygonal chain R. Therefore,from Lemma 3 it follows that the pocket must be entirely visible from this path.Since the pocket cannot be seen from the pocket edge itself, the pocket must bevisible from the chord c, which is a contradiction. The same argument applies toLL. For RR and RL, the robot moves to w and the argument above also applies.A general description of the algorithm is to traverse edges as in the Restricted-Start Free-Target Search (RSFTS) algorithm described in the previous sectionas long as the pocket edges are left-right consecutive and the entire portion ofthe polygon to the left side of a left pocket edge (and to the right side of a rightpocket edge) can be seen from the edge. If the portion of the polygon to the leftof a left pocket edge already explored was not seen in its entirety, we know byLemma 3 that u and v must necessarily be on opposite sides of this pocket edgeand Lemma 4 applies. The same holds for the right part of the polygon to theright of a pocket edge. If the pocket edges are no longer left-right consecutive, therobot selects the shortest length minimal middle chord and traverses it, whichsplits the polygon in two parts. In this case, since the chord is of type middle,it follows that the points u and v must be on opposite side of the chords, andtherefore we are in the situation described in Lemma 4 and De�nition 6.In either case, we are in the situation of Lemma 4 and the robot simplysearches each side using the RSFTS algorithm. The competitive ratio corre-sponds then to a four ray search, which gives a di�erent choice of a for RSFTS.More formally,Theorem 2. There exists a 69:216-competitive strategy that �nds a target ofarbitrary position in a street polygon starting from a point s on the boundary.Proof. The algorithm is a modi�cation of RSFTS. Initially the robot executeslines 1-21 of RSFTS with the exception of line 7 which now reads:



X 7 while Fleft [ Fright is non-empty and the pocket edges appear in con-secutive left-right order and all the side of a side pocket edge was seendoLines 22 onwards are replaced by22 if t was found then move to t;(� Since we exited the loop without �nding t, pockets are not in left-rightorder �)23 letM be the set of minimal middle chords;24 sortM by increasing length;25 traverse the chord c min(M);26 the chord c splits P in two parts. Let P1 and P2 be those parts;27 while target has not been found do28 alternatingly apply one step of RSFTS on P1 and P2;29 endwhile30 move to t;The invariant is now as follows.Invariant: The visibility region of the path explored thus far by the robotcontains the visibility region of any path of length d=a4 or less.The correctness of the algorithm follows from Lemmas 2-4 and Observation 1.Lemmas 3 and 4 guarantee that either we can explore the entire polygon usingRSFTS or the polygon is split into two pieces. Lemma 2 and Observation 1guarantee that each of the parts can be explored using RSFTS.As before the worst case competitive ratio occurs when the target is locatedat a distance d=a4 + �, and the competitive ratio is given by2Pni=0(2 + 1=a) aian�4 + 1 = 2a4 (2a+ 1)a� 1 + 1:This expression is minimized when a = (7+p177)=16 which gives a competitiveratio of (71893+ 5251p177)=2048 � 69:216 as claimed.5 Lower BoundsIn Figure 7 we have a street polygon that provides a 9 lower bound on thecompetitive ratio of searching in streets starting from a point s = u. This polygoncan be explored, say, by traversing the path (u; v) from which, by de�nition, theentire polygon is seen. Notice that from each indentation we can see the oppositepolygonal chain somewhere in the upper part of the polygon. As we increase theheight of the polygon and make the angle of the walls of each indentation go to�=2 the polygon remains a street, yet traversing (u; v) is no longer an e�cientexploration strategy. Thus the robot is restricted to exploring the base using adoubling strategy, which has a 9 competitive ratio (see [2, 1, 7] for a lower boundon doubling and [15, 19] for a more detailed analysis on this general type ofindented rectangular polygons).
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s=uFig. 7. Lower bound when s = u.
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Fig. 8. Lower bound for arbitrary position.For the case of searching from an arbitrary position the polygon of Figure8 is a street. In this case the indentations along the diagonals, which seem tobe horizontal, are in fact slanted just enough to actually intersect the verticaledges on the opposite side of the street. For example, the extension of the nearlyhorizontal walls of the indentation containing t in the �gure above intersect theleft vertical line just below u. As the distance from u to v is increased, the angleof the walls of the indentations goes to zero. In this case the robot is forced to doa simpli�ed form of a four ray search, which can be shown to have competitiveratio of at least a4=(a � 1) + a3. This is minimized for a = (5 + p7)=6 withcompetitive ratio of at least 11:78.6 ConclusionsWe have presented a strategy for on-line searching of a street polygon regardlessof the starting position of the robot or the location of the target. The strategyproposed has a constant competitive ratio. This is in contrast to previous strate-gies for searching on streets as well as other classes of polygons for which thechoice of position of the target and the starting position are highly restricted inorder to achieve a constant competitive ratio. We provided lower bounds for thisproblem.We also presented a more e�cient strategy for the special case when therobot starts from a distinguished point on the polygon but the target is free toselect its hiding position, and gave a lower bound for this variant as well.Acknowledgements: We wish to thank Sven Schuierer for helpful discussionson this subject.References1. R. Baeza-Yates, J. Culberson and G. Rawlins. \Searching in the plane", Informationand Computation, Vol. 106, (1993), pp. 234-252.2. A. Beck. \On the linear search problem", Israel Journal of Mathematics, Vol. 2,(1964), pp. 221-228.
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