Practical Discrete Unit Disk Cover Using an
Exact Line-Separable Algorithm*

Francisco Claude!, Reza Dorrigiv', Stephane Durocher?!, Robert Fraser!,
Alejandro Lépez-Ortiz! **) and Alejandro Salinger!

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada,
{f claude,rdorrigiv,sdurocher,r3fraser,
alopez-o0,ajsalinger}@cs.uwaterloo.ca
2 Department of Computer Science, University of Manitoba, Winnipeg, Canada,
durocher@cs.umanitoba.ca

Abstract. Given m unit disks and n points in the plane, the discrete
unit disk cover problem is to select a minimum subset of the disks to
cover the points. This problem is NP-hard [Joh82] and the best previ-
ous practical solution is a 38-approximation algorithm by Carmi et al.
[CKLTO07]. We first consider the line-separable discrete unit disk cover
problem (the set of disk centres can be separated from the set of points
by a line) for which we present an O(m?n)-time algorithm that finds an
exact solution. Combining our line-separable algorithm with techniques
from the algorithm of Carmi et al. [CKLT07] results in an O(m?n*) time
22-approximate solution to the discrete unit disk cover problem.

1 Introduction

Recent interest in specific geometric set cover problems is partly motivated by ap-
plications in wireless networking. In particular, when wireless clients and servers
are modelled as points in the plane and the range of wireless transmission is
assumed to be constant (say one unit), the resulting region of wireless communi-
cation is a disk of unit radius centred on the point representing the corresponding
wireless transmitting device. Under this model, sender a successfully transmits
a wireless message to receiver b if and only if point b is covered by the unit disk
centred at point a. This model applies more generally to a variety of facility
location problems for which the Euclidean distance between clients and facilities
cannot exceed a given radius, and clients and candidate facility locations are
represented by discrete sets of points. Examples include (1) select locations for
wireless servers (e.g., gateways) from a set of candidate locations to cover a set of
wireless clients, (2) position a fleet of water bombers at airports such that every
active forest fire is within a given maximum distance of a water bomber, (3) se-
lect a set of weather radar antennae to cover a set of cities, (4)select locations for

* Funding for this project was provided by the NSERC Strategic Grant on Optimal
Data Structures for Organization and Retrieval of Spatial Data.

** Part of this work took place while the fifth author was on sabbatical at the Max-
Planck-Institut fiir Informatik in Saarbriicken, Germany.

anti-ballistic defenses from a set of candidate locations to cover strategic sites.
These problems can be modelled by the discrete unit disk cover problem, whose
definition we recall:

— INPUT: A set P of m points in the plane (candidate facilities), and a set @
of n points in the plane (clients).

— OutpuT: Find a set P’ C P (facilities) of minimum cardinality such that
Disk(P’) covers @, where Disk(A) denotes the set of unit disks centred on
points in set A.

The discrete unit disk cover problem is NP-hard [Joh82]. In a recent result, Carmi
et al. [CKLT07] describe a polynomial-time 38-approximate solution, improving
on earlier 108-approximate [CMWZ04] and 72-approximate solutions [NV06].

The discrete unit disk cover problem can be approximated by finding an
exact solution to a restricted version of the problem, namely when sets P and @
are separated by a line. Thus, we consider the line-separable discrete unit disk
cover problem, formally defined as follows:

— INPUT: A set P of m points in the plane, and a set @@ of n points in the
plane such that sets P and @ are separable by a line L.

— OutpuT: Find a set P’ C P of minimum cardinality such that Disk(P’)
covers Q.

1.1 Owur Results

We present an O(m?n)-time algorithm that returns an exact solution to the line-
separable discrete unit disk cover problem, as well as a thorough proof of correct-
ness of the technique. By combining the line-separable algorithm with techniques
from the algorithm of Carmi et al. [CKLTO07], we present a 22-approximation al-
gorithm to the discrete unit disk cover problem, improving on the best previous
practical polynomial-time approximation factor of 38.

1.2 Related Work

Line-Separable Discrete Unit Disk Cover. A solution to the line-separable
discrete unit disk cover problem was independently discovered and published by
[AEMNO06, Lemma 1], where they propose a dynamic programming algorithm
with a time bound of O(m?n) but whose correctness is not straightforward nor is
it formally argued. This paper presents an alternative algorithm together with a
proof of correctness. Both algorithms follow natural approaches, yet a full proof
of correctness is not immediate. We then observe that our new algorithm can be
combined with a suitably modified version of the Carmi et al. [CKLTO07] result
to achieve the improved discrete unit disk cover result.

e-nets for Geometric Hitting Problems. Suppose we are given a range space
R = (P, D), where P is a set of points and D is a family of subsets of P, which

in our situation would be all the subsets of points of P covered by some unit
disks. Now given our set of points P and a parameter € € R, where 0 < ¢ < 1,
we seek an e-net N C P with respect to D such that for each disk D € D where
|D N P| > ¢|P|, we have that DN N # @ [MSW90,BG95]. For the family of
circular disks, it is known that for any finite point set P there exists an e-net of
size O(1/e) [MSW90]. A new result [MRO9b] (see also the corrected version at
[MR09a]) presents a (1+¢)-approximation to the discrete unit disk cover problem
which is based on the idea of e-nets. Their algorithm runs in O(m2(c/a)2+1n)
time, where ¢ < 4y [MR09a]. Their value can be bounded from above by 2v/2
[Fre87,KMO7]. The fastest operation of this algorithm is obtained by setting
¢ =1 for a 2-approximation, and this will run in O(m2'(8\/§)2+1n) = O(m*n)
time in the worst case. Clearly, this algorithm will not be practical for large
values of m. It is possible that a lower running time may be obtained through
better bounding of the constant factors or improvements to their algorithm, but
that is not the aim of our work.

Minimum Geometric Disk Cover. In the minimum geometric disk cover
problem, the input consists of a set of points in the plane, and the problem is to
find a set of unit disks of minimum cardinality whose union covers the points.
Unlike our problem, disk centres are not constrained to be selected from a given
discrete set, but rather may be centred at arbitrary points in the plane. Again,
this problem is NP-hard [FPT81,Sup81] but has a PTAS solution [HMS85]. Of
course the problem can be generalized further: see [CVO07] for a discussion of
geometric set cover problems.

Discrete k-Centre. Also related is the discrete Euclidean k-centre problem:
given a set P of m points in the plane, a set Q of n points in the plane, and
an integer k, find a set of k disks centred on points in P whose union covers @
such that the radius of the largest disk is minimized. Observe that set @ has a
discrete unit disk cover consisting of k disks centred on points in P if and only
if @ has a discrete k-centre centred on points in P with radius at most one. This
problem is NP-hard if k is an input variable [AS98]. When k is fixed, Hwang et

al. [HLC93] give a mO(VF)_time algorithm, and Agarwal and Procopiuc [AP9S]

Okt~

give an m ") _time algorithm for points in R?.

2 Overview of the Algorithm

In this section we describe a polynomial-time algorithm for the line-separable
unit disk cover problem and prove its correctness. Details of the algorithm and
its running time will be discussed in Section 3. Recall that we have two sets
P = {p1,p2,.-.,pm} and Q = {q1,G2,...,qn} of points in the plane that are
separated by a line L. We want to find a subset P’ C P of minimum cardinality
such that all points of) are covered by unit disks centred at the points of P’.
An instance of the problem is shown in Figure 1. Without loss of generality we
assume that L is a horizontal line and points of P are above L. Let d; denote

the unit disk that is centred at p;, for i € {1,2,...,m}, and let D denote the
set of these disks. We use p; and d; interchangeably, e.g., our solution can be
considered both as a set of points (a subset of P) and as a set of disks.

dy

Fig. 1. An instance of the line-separable unit disk cover problem.

During the execution of our algorithm, it may be determined that a disk
d € D should be added to the solution or that it is not relevant for the remainder
of the computation of the solution set. When this occurs, we remove disk d from
the problem. Similarly, we remove a point ¢ € @ if this point is not relevant
for the remainder of the computation (i.e., point ¢ is covered by a disk in the
partial solution being constructed). Our algorithm is based on the following three
observations:

1. If a disk dy covers no points from @, we remove it.

2. If a disk dy is dominated by a disk do, then we can remove d; from the
problem instance. Disk do dominates d; if it covers all points of @) covered
by d;. If two disks cover the same subset of points from @), we designate the
dominating disk as that whose left intersection with L is rightmost.

3. If a point ¢; € @ is only covered by a disk dj, then d; must be part of the
solution. We also remove d; together with all points of @) covered by d;.

These three observations give us three SIMPLIFICATION rules. The idea is to
apply these rules to remove as many disks as possible and simplify the problem.
For example, consider the problem instance shown in Figure 1. Initially no disk
dominates another, thus we cannot apply the second rule. Disk d3 is the only
disk that covers g4 and g9 is only covered by ds. Thus we add ds and ds to
the (initially empty) solution and remove them together with the points that
are covered by them, namely {q2, g3, 94, g5, g6, 97, gs, g9 } - Now disk dy covers no
point and can be removed. There is only one remaining point (¢;) and it is
covered by the two remaining disks (d; and ds). According to our convention,
d; is dominated by ds and is removed. Now ds is the only disk covering ¢;. We
add ds to the solution and remove dy and ¢;. No disks or points remain and
we are done. Thus the SIMPLIFICATION rules suffice for this instance and give
an optimal solution {ds,ds,ds}. This example also illustrates that an optimal

solution is not necessarily unique, as {di,ds,ds} is also an optimal solution. In
general, however, these SIMPLIFICATION rules do not suffice to obtain an optimal
solution, as shown in Figure 2.

dy

] Ogs

Fig. 2. An example that shows SIMPLIFICATION is not enough. No point ¢ € @ is
covered by only one disk and no disk dominates any other one.

We augment the SIMPLIFICATION rules with a simple greedy step to solve
the problem. We rename the disks so that the left intersection of d; with L
is to the left of the left intersection of d;11 with L. We say that d; precedes
d;+1 in the ordering (the disks in Figure 2 follow this ordering). This combined
algorithm, GREEDY, works by first applying the SIMPLIFICATION rules as many
times as possible. Next we find the first remaining disk in the left-to-right order,
say d;. We add d; to our solution and remove d; from D and all points covered
by d; from Q). We apply the SIMPLIFICATION rules followed by the greedy step
repeatedly until all disks have been removed. Since we remove at least one disk
at each greedy step, the algorithm terminates after at most m iterations. See
Algorithm 1 for the corresponding pseudocode.

Algorithm 1 GREEDY (D, Q)

D «—sortLeftToRight(D) //sort in increasing order of left intersection with L
S—o
while D is not empty do
SIMPLIFICATION (D, @, S) //SIMPLIFICATION possibly modifies D, Q and S
dy « leftmost disk in D
S — Su{de}
D~ D\d,
Q' — {q € Q| ¢ is contained in d;}
Q—Q\Q
end while
return S

2.1 Correctness of GREEDY

We now prove the correctness of the algorithm by proving that GREEDY gives a
minimum cover. Assume for the sake of contradiction that there is an algorithm
OPT that gives a cover with fewer disks than GREEDY. Let d; be the first disk
in the ordering that is selected by GREEDY but not by OPT. Let C' be the set of
points in @ that are covered by d; (we consider only the remaining points and
disks, i.e., those that have not been removed by the algorithm). First assume that
C is covered by a single disk dj in the solution of OPT. Since d; is not removed in
the SIMPLIFICATION step, it is not dominated by any other disk. Thus the only
possibility is that dy and d; cover exactly the same set of (remaining) points (i.e.,
set C') and dy precedes d; in the ordering. In this case, we replace dy with d; in
OPT, pushing the first difference between the solution of GREEDY and OPT to
the right. Otherwise, C is covered by at least two disks in the solution of OPT.
Let dy and ds be two disks in the solution of OPT such that each of them cover
a strict subset of C. Without loss of generality assume that ds precedes ds in
the ordering. We prove that d; U ds covers all points of () covered by ds U ds.

Fig. 3. Proof of correctness of GREEDY. If d; is the first disk selected by GREEDY and
not by OpT, then OPT must have d2 and ds in its solution.

Let I; and r; denote the respective left and right intersection points of the
boundary of the unit disk d; with the line L, for ¢ € {1,2,3}. If d3 precedes d;y in
the ordering, d; dominates ds (otherwise, GREEDY would select dy and not d;
at this step). In this case we replace dy with d; in OpPT, pushing the difference
between the two algorithms to the right. Hence we are left with the case in which
dy precedes do and ds precedes dg in the ordering. Thus the points are ordered
ly, lo, I3, 11, 12, 73 along line L (see Figure 3). Note that we cannot have the
nested case shown in Figure 4. Furthermore, we know that (dy Nd3) \ do # @.
Let R =ds \ d;. It suffices to prove that R is completely contained in ds.

Proposition 1. Region R is contained in disk ds.

Proof. Since points r; and ro both lie between l3 and r3 on line L, both points
r1 and ro are in disk d3. Let = denote the rightmost point of the intersection of

the boundaries of disks d; and dy. Observe that z lies on the boundary of region
(d1 Nds) \ da. Consequently, x € ds. Since the boundary of R consists of arcs of
unit disks joining the points x, r1, and 79, it follows that R is contained in the
1-hull of {z,r1,72}3, denoted 1-H ({z,r1,72}) . Since {z,r1,m2} C ds, it follows
that R C 1-H({z,r1,72}) C ds. O

Thus by removing ds from the solution of OPT and adding d; to it we will
have a feasible solution with the same number of disks. This pushes the first
difference between the solution of GREEDY and OPT to the right. By continuing
this argument we can prove that the solution returned by GREEDY uses the same
number of disks as OPT and therefore GREEDY is an optimal algorithm.

3 Implementation Details and Analysis

In Section 2 we provided an overview of our algorithm and proved its correctness.
In this section we provide a detailed description of the algorithm and analyze
its running time. Recall that a SIMPLIFICATION step is applied before each it-
eration of the GREEDY algorithm. Each step of GREEDY adds one disk to the
solution and removes it from the set of disks D. Therefore we can have at most
m iterations.

Py

® P

dy

Fig. 4. Disk ds is nested in disk di, therefore d2 is removed by the dominance rule.

We begin by considering the second SIMPLIFICATION rule, i.e., the dominance
rule. An easy case is when two disks are nested (below L) (see Figure 4). In
this case, the upper disk is dominated by the lower one. All such cases can be
determined in O(mlogm) time by sorting the intersections of the disks with
the line L. In general, dominance cannot be determined only by the position
of the disks, but the points in @ also have to be considered. We can find all
dominance relations using a brute-force approach; for each pair of disks we can
check whether one dominates the other. For m disks, we have O(m?) pairs and
checking the dominance between two disks takes O(n) time. Thus we can find all

3 The 1-hull of {x, 1,72} is the intersection of all unit disks that contain {x,r1,72}.

dominance relations among O(m) pairs of disks in time O(m?n). Between any
two such comprehensive dominance checks our algorithm would remove at least
one disk (either by the third SIMPLIFICATION rule or by the greedy step). Hence,
the total time spent on the dominance checks would be bounded by O(m?n).

We can, however, combine both processes into one and obtain a more efficient
algorithm. The idea is to construct a graph G = (V, E), where each node v; € V
corresponds to disk d; for i € {1,...,m} (recall that d; is the ith disk sorted
according to its left intersection with L). We also associate a counter ¢,, to
each node that stores the number of points contained in that disk that have
not yet been covered by the algorithm (note that when we refer to the value of
the counters, we are always referring to the points that have not been covered).
Similarly, we associate with each edge e = (v;,,v;,) a counter c. that represents
the number of points contained in d;, N d;,. This graph can be constructed in
O(m?®n) time by checking which points are contained in the intersection of each
pair of disks, and adding the corresponding edges and updating the node and
edge counters.

The description of our algorithm in Section 2 was simplified by separating the
SIMPLIFICATION phase and the greedy steps. At each iteration we first applied
the SIMPLIFICATION rules as long as we could and then we performed a greedy
step. In practice we do not need to apply SIMPLIFICATION rules over all disks at
each iteration; they are only required to be applied in turn as we progress from
left to right through the set of disks. The algorithm GREEDY-GRAPH starts by
traversing the nodes in order vy, vo, v3, ..., vy. At each node v;, there are three
possible cases:

1. The counter c¢,, is 0; in this case d; does not contain any points or is dom-
inated by a set of disks that has already been added to the solution. This
disk will not be in the solution set, so we can ignore this node and continue
with the next one. This is analogous to the first SIMPLIFICATION rule.

2. There is an edge e = (v;,vg), k > i, such that c. = ¢,,; in this case we know
that d; is dominated by disk di. Again, we ignore this node and continue.
Note that this corresponds to an application of the second SIMPLIFICATION
rule.

3. Every edge e = (v;,vk), k > i, satisfies ¢, < ¢,,; that means that disk d; is
not dominated by any disk to its right. In this case we add d; to the solution
set and we eliminate all remaining points contained by this disk from the
graph. We continue with the next node in the graph. Note that this is both
an application of the third rule of SIMPLIFICATION and the greedy step.

In order to identify the appropriate case above we traverse the adjacency
list of each node we visit. This requires O(m) time in the worst case. When
a disk is added to the solution in the third case, all points contained in the
disk must be eliminated. Consider the elimination of one point in disk d;. Let
N(vi) = {vr | ¢(;,0,) > 0}. For all v, € N(v;), we decrease c,, and c(,,) by
one. In addition, for each pair of elements {vg,, v, } C N(v;), we check whether

the point is contained by both disks, and if this is case we decrease Clog, vky)

by one. This can take at most O(m?) time per point, thus the total time for
eliminating all points is bounded by O(m?n) time. Since the time required to
construct the graph is also bounded by O(m?n), the overall process takes at
most O(m?n) time.

3.1 Correctness of GREEDY-GRAPH

We now demonstrate that the GREEDY-GRAPH algorithm is optimal by showing
that the set of disks returned by this algorithm has the same cardinality as that
returned by the GREEDY algorithm presented in section 2.

Lemma 1. If S is the disk cover returned by GREEDY-GRAPH, and S’ is the
disk cover returned by GREEDY, then |S| = |57].

Proof. Assume for the sake of contradiction that |S| # |S’|. Recall that GREEDY
is optimal, therefore |S’| and |S| can only differ if |S| > |S’|. Let dy be the first
disk in the left-to-right order that is present in the solution of GREEDY-GRAPH,
and not in the solution of GREEDY. At some point during the execution of
GREEDY, it must have decided to discard this disk. The only mechanisms in
GREEDY for the discarding of disks are the first and second SIMPLIFICATION
rules. Recall that the first rule removes a disk if it contains no points, and the
second rule discards a disk if it is dominated by some other disk. We now show
that for any of the following possible events, GREEDY-GRAPH will discard the
same disk dj.

— Empty - Suppose d; contains no points. In this case, GREEDY-GRAPH will
find that ¢,, = 0. Therefore, d; will be discarded by case 1, in contradiction
to our assumption.

— Dominance (right) - Now suppose d; is dominated by some disk to the right,
d,. In this case, we will encounter d; first during our walk, and we will have
that c,, = c(y, v,). Therefore, GREEDY-GRAPH will remove d; by rule 2, in
contradiction to our assumption.

— Dominance (left) - Suppose d; is dominated by some disk to the left, dy. In
this case, we will have encountered dy first during our walk. There are two
possible cases in this scenario:

(i) If co, > (v, for all di, dg is added to S by rule 3 of GREEDY-GRAPH.
All points covered by dy are removed, leaving no points covered by d;.
This is now an instance of the Empty case.

(ii) Otherwise, ¢\, = ¢(y,,v,) for some dj. This means that d; is dominated by
di. GREEDY-GRAPH would discard dy by rule 3. By transitivity, di also
dominates dy. If di is to the right of dy, then this is now an instance of
Dominance (right), and thus we reach a contradiction. If dj, is to the left
of dy, then this is again an instance of Dominance (left), so we apply this
same argument recursively. The recursion stops either when we reach an
instance of Dominance (right) or case (i) of Dominance (left).

We have shown that the solution of GREEDY-GRAPH has the same cardinality as
the solution of GREEDY, and since GREEDY is optimal, so is GREEDY-GRAPH.

4 Approximate Discrete Unit Disk Cover

We now show that our algorithm for the line-separable discrete unit disk cover
(LSDUDC) problem leads to a 22-approximation algorithm for the discrete unit
disk cover (DUDC) problem. The approximation algorithm is based on a suitable
adaptation of the 38-approximation algorithm of Carmi et al. [CKLTO07].

For simplicity, we use the notation and assumptions of [CKLT07]. In that
work, the DUDC problem is reduced to finding a solution to the following variant:

We are given a set of disks D = LUU. The disks in U are centred above
a line [while the disks in L are centred below [. We are also given a set
of points @ covered by U. The goal is to obtain the subset G of D of
smallest cardinality such that every point in @ is covered by a disk in G.

First we observe that our line-separable algorithm does not immediately result
in a straightforward improvement to the approximation factor of the algorithm
of Carmi et al.; their proof of correctness depends crucially on the fact that
their 2-approximation to the LSDUDC problem consists of disks forming the
lower boundary of U (see [CKLTO07] for the formal definition of lower boundary),
which is not necessarily the case in our optimal solution.

Instead, we first solve the LSDUDC problem optimally using our algorithm
to obtain a disk set H and then use the greedy minimum assisted cover algorithm
in Carmi et al. (algorithm simple-line therein) over the set H and the assisting
set L to obtain an improved solution E. Now we wish to compare the cardinality
of F with that of the global minimum disk cover G.

Consider the upper and lower components of the solutions E and G, i.e.,
Ey=EnNU,E,=ENL,Gy =GnNU, and G, = GN L. Note that |G| < |E|
since G is the global minimum. Similarly it follows that |E| = |Ey| + |EL] <
|H/Gr|+ |G|, where H/GYy, is the smallest subset of H which is a cover when
assisted by G . The inequality follows from the fact that F is the minimum size
assisted cover based on H.

Now we will show that 2|Gy| > |H/Gr|. Given a disk d in Gy, there are
two cases: either d lies above the lower boundary of H/Gp, i.e., d is contained
in the union of all the disks in H/Gp, or d contains one or more arc segments
of the lower boundary of H/Gy. In the first case, Carmi et al. show that at
most two disks in H/Gy, suffice to cover d and hence for every such disk in the
global optimum solution G there are most two in H/G,. In the second case, let
V' denote the subset of the lower boundary segments contained in d. V' consists,
from left to right, of a partially-covered arc segment of the lower boundary,
zero or more fully-covered arc segments, and a partially-covered arc segment.
Let W consist of the disks whose arcs are partially covered together with d. W
dominates V' and hence there is at most one arc of the lower boundary fully
contained in d; otherwise replacing V' with W results in a cover based on H
of smaller cardinality, deriving a contradiction. Furthermore, observe that the
partially-covered arc disks must contain other points; otherwise they can also
be eliminated while reducing the cardinality of the cover. As those disks contain
other points, each of them is partially covered by at least one other disk in G.

We arbitrarily assign each disk covered more than once to its leftmost disk in
G. Thus, of the (at most) three disks in V, at most two are associated to d.

In sum, in either case each disk in Gy has at most two associated disks in
H/Gyp, from which it follows that 2|Gy| > |H/GL|. Hence,

21G] =2(IGu| +|GL]) = 2|Gu| + |G| = [H/Gr| + |GL| = |[Ev| + |EL| = |E]

which gives the approximation factor of two as desired. Substituting this ap-
proximation factor in the algorithm of [CKLTO07] gives an approximation ratio
of 8 x2+4+1x6=22.

4.1 Algorithm Analysis

There are essentially two main components to the algorithm for solving DUDC
by Carmi et al. [CKLT07]. First, the LSDUDC algorithm supplemented by their
assisting disk technique is run on all grid lines. Note that the number of relevant
grid lines is clearly O(n). Our technique runs in O(m?n), and the assisting disk
operation is easily implementable in O(mn), so the running time of the first
component is dominated by our step.

The second major component to their technique is finding the 6-approximation
for the DUDC of all disk centres and points contained in the 3/2 x 3/2 squares
of the grid. Their technique is based on the application of a subset of nine prop-
erties depending on where the disk centres are located. First, they determine
whether a solution exists using one or two centres by brute force, which is easily
done in O(m?n) time. The determination of which properties may be applied
can be done in O(m) time, and there are only two expensive steps that may
be used in any of the procedures, each of which may only be used a constant
number of times. First is the assisted LSDUDC technique, whose running time
is O(m?n), as we just discussed. The second technique that may be required is
to determine the optimal disk cover of a set of points using centres contained in
one of the 1/2 x 1/2 squares, which can be solved in O(m?n?) time using the
technique presented in [LT05]. The centre of each disk can only be contained in
one square, and so this operation is never performed twice for any given disk.
Therefore, the complete DUDC algorithm achieves worst-case performance when
all of the disk centres in the plane are confined to a single 1/2 x 1/2 square, so
that the O(m?n?*) operation is performed over the entire data set.

5 Conclusions

This paper presents a polynomial-time algorithm that returns an exact solution
to the line-separable discrete unit disk cover problem, as well as a proof of
correctness of the approach. Our algorithm for the line-separable problem allows
us to improve the approximation algorithm of Carmi et al. [CKLT07], resulting
in a 22-approximate solution to the general discrete unit disk cover problem,
which runs in O(n?m?*) time in the worst case.

Acknowledgements The authors wish to thank Paz Carmi for sharing his in-
sights and discussing details of his results on the discrete unit disk cover problem
[CKLTO07]. In addition, the authors acknowledge Sariel Har-Peled with whom a
preliminary problem was discussed that inspired our examination of the disk
cover problem.

References

[AEMNO6] C. Ambiihl, T. Erlebach, M. Mihal’ak, and M. Nunkesser. Constant-factor

[AP9S]
[AS98]
[BGY5)

[CKLTO07]

approximation for minimum-weight (connected) dominating sets in unit
disk graphs. In Proc. of APPROX, 2006.

P. Agarwal and C. Procopiuc. Exact and approximation algorithms for
clustering. In Proc. Symp. on Disc. Alg. ACM Press, 1998.

P. Agarwal and M. Sharir. Efficient algorithms for geometric optimization.
ACM Comp. Surv., 30:412-458, 1998.

H. Brénnimann and M. Goodrich. Almost optimal set covers in finite ve-
dimension. Disc. and Comp. Geom., 14(1):463-479, 1995.

P. Carmi, M. Katz, and N. Lev-Tov. Covering points by unit disks of fixed
location. In Proc. Int’l Symp. on Alg. and Comp., pages 644—655, 2007.

[CMWZ04] G. Calinescu, I. Mandoiu, P.-J. Wan, and A. Zelikovsky. Selecting forward-

[CVO7]
[FPTS1]
[Fre87]

[HLC93]

[HMS5]

[Joh82]
[KMO7]
[LT05]
[MR09a]
[MRO9b)]
[MSW90]
[NV06]

[Sup8l]

ing neighbours in wireless ad hoc networks. Mobile Networks and Appl.,
9(2):101-111, 2004.

K. Clarkson and K. Varadarajan. Improved approximation algorithms for
geometric set cover. Disc. and Comp. Geom., 37(1):43-58, 2007.

R. Fowler, M. Paterson, and S. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Inf. Proc. Lett., 12(3):133-137, 1981.

G. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. on Comp., 16(6):1004—-1022, 1987.

R. Hwang, R. Lee, and R. Chang. The generalized searching over separators
strategy to solve some np-hard problems in subexponential time. Alg.,
9:398-423, 1993.

D. Hochbaum and W. Maass. Approximation schemes for covering and
packing problems in image processing and VLSI. J. ACM, 32:130-136,
1985.

D. Johnson. The NP-completeness column: An ongoing guide. J. of Alg.,
3(2):182-195, 1982.

I. Koutis and G. Miller. A linear work, o(nl/G) time, parallel algorithm for
solving planar laplacians. In Proc. Symp. Disc. Alg., 2007.

N. Lev-Tov. Algorithms for Geometric Optimization Problems in Wireless
Networks. PhD thesis, Weizmann Institute of Science, 2005.

N. Mustafa and S. Ray. Improved results on geometric hitting set problems.
www.mpi-inf.mpg.de/~saurabh/Papers/Hitting-Sets.pdf, 2009.

N. Mustafa and S. Ray. Ptas for geometric hitting set problems via local
search. In Proc. Symp. on Comp. Geom., 2009.

J. Matousek, R. Seidel, and E. Welzl. How to net a lot with little: small
epsilon-nets for disks and halfspaces. In Proc. symp. on Comp. geom., 1990.
S. Narayanappa and P. Voytechovsky. An improved approximation factor
for the unit disk covering problem. In Proc. Can. conf. comp. geom., 2006.
K. Supowit. Topics in Computational Geometry. PhD thesis, University of
Illinois at Urbana-Champaign, 1981.

