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Abstract. It is well-established that input sequences for paging and list
update have locality of reference. In this paper we analyze the perfor-
mance of algorithms for these problems in terms of the amount of locality
in the input sequence. We define a measure for locality that is based on
Denning’s working set model and express the performance of well known
algorithms in term of this parameter. This introduces parameterized-
style analysis to online algorithms. The idea is to rather than normaliz-
ing the performance of an online algorithm by an (optimal) offline algo-
rithm, we explicitly express the behavior of the algorithm in terms of two
more natural parameters: the size of the cache and Denning’s working
set measure. This technique creates a performance hierarchy of paging
algorithms which better reflects their intuitive relative strengths. Also it
reflects the intuition that a larger cache leads to a better performance.
We obtain similar separation for list update algorithms. Lastly, we show
that, surprisingly, certain randomized algorithms which are superior to
MTF in the classical model are not so in the parameterized case, which
matches experimental results.

1 Introduction

The competitive ratio, first introduced formally by Sleator and Tarjan [35], has
served as a practical measure for the study and classification of online algorithms.
An algorithm (assuming a minimization problem) is said to be α-competitive if
the cost of serving any specific request sequence never exceeds α times the cost of
an optimal offline algorithm which knows the entire sequence. The competitive
ratio is a relatively simple measure to apply yet powerful enough to quantify,
to a large extent, the performance of many online algorithms. Notwithstanding
the wide applicability of competitive analysis, it has been observed by numerous
researchers (e.g. [9, 11, 29, 38, 15]) that in certain settings the competitive ratio
produces results that are too pessimistic or otherwise found wanting. Indeed, the
original paper by Sleator and Tarjan discusses the various drawbacks of the com-
petitive ratio in the case of the paging problem and uses resource augmentation
to address some of the observed drawbacks.
? Part of this work took place while the third author was on sabbatical at the Max-
Planck-Institut für Informatik in Saarbrücken, Germany.



A well known example for the shortcomings of competitive analysis is the
paging problem. A paging algorithm mediates between a slower and a faster
memory. Assuming a cache of size k, it decides which k memory pages to keep in
the cache without the benefit of knowing in advance the sequence of upcoming
page requests. After receiving the ith page request the online algorithm must de-
cide which page to evict, in the event the request results in a fault and the cache
is full. The objective is to design an online algorithms that minimizes the total
number of faults. Three well known paging algorithms are Least-Recently-

Used (LRU), First-In-First-Out (FIFO), and Flush-When-Full (FWF)
[10]. All these paging algorithms have competitive ratio k, which is the best
among all deterministic online paging algorithms [10]. On the other hand, ex-
perimental studies show that LRU has a performance ratio at most four times
the optimal offline [38]. Furthermore, it has been empirically well established
that LRU (and/or variants thereof) are, in practice, preferable paging strategies
to all other known paging algorithms [34].

Such anomalies have led to the introduction of many alternatives to competi-
tive analysis of online algorithms (see [20] for a comprehensive survey). Some ex-
amples are loose competitiveness [38, 40], diffuse adversary [29, 39], theMax/Max
ratio [9], the relative worst order ratio [15], and the random order ratio [28]. None
of them fully resolve all the known issues with competitive analysis.

It is well known that input sequences for paging and several other problems
show locality of reference. This means that when a page is requested it is more
likely to be requested in the near future. Therefore several models for paging with
locality of reference have been proposed. In the early days of computing, Denning
recognized the locality of reference principle and modeled it using the well known
working set model [17, 18]. He defined the working set of a process as the set of
most recently used pages and addressed thrashing using this model. After the
introduction of the working set model, the locality principle has been adopted
in operating systems, databases, hardware architectures, compilers, and many
other areas. Therefore it holds even more so today. Indeed, [19] states “locality
of reference is one of the cornerstones of computer science.”

One apparent reason for the drawbacks of competitive analysis of paging
is that it does not incorporate the corresponding locality of reference. Several
models incorporating locality have been proposed. The access graph model by
Borodin et al. [12, 26, 16, 22] and its generalization by Karlin et al. [27] model the
request sequences as a graph, possibly weighted by probabilistic transitions. Bec-
chetti [8] refined the diffuse adversary model of Koutsoupias and Papadimitriou
by considering only probabilistic distributions in which locality of reference is
present. Albers, Favrholdt, and Giel [2] introduced a model in which input se-
quences are classified according to a measure of locality of reference.

Recently, Angelopoulos et al. introduced Bijective Analysis and Average Anal-
ysis [4] which combined with the locality model of Albers et al. [2], shows that
LRU is the sole optimal paging algorithm on sequences with locality of refer-
ence. This resolved an important disparity between theory and practice of online
paging algorithms, namely the superiority in practice of LRU. An analogous re-



sult for list update and MTF is shown in [5] and the separation of LRU was
strengthened by Angelopoulos and Schweitzer in [6], earlier this year. These
last separation results are based on heavy machinery specifically designed to
resolve this singular long-standing question and leave open the question of how
to efficiently characterize the full spectrum of performance of the various known
paging and list update algorithms. We address this question in this paper.

In this paper we analyze the performance of paging and list update algo-
rithms in terms of a measure of locality of reference. This measure is related to
Denning’s working set model [17], the locality of reference model of [2], and the
working set theorem in the context of the splay trees and other self-organizing
data structures [36, 25, 13]. We show that this new model produces the finest sep-
aration yet of list update algorithms while also being applicable to paging and
other online algorithms. Paging and list update are the best testbeds for develop-
ing alternative measures, given our extensive understanding of these problems.
We know why competitive analysis fails, what are typical sequences in practice
and we can better evaluate whether a new technique indeed overcomes known
shortcomings. It is important to note that even though well studied, most of the
alternative models for these problems are only partially successful in resolving
the issues posed by them and as such these problems are still challenging case
studies against which to test a new model.

Summary of Contributions. We apply parameterized analysis to two fundamen-
tal online problems, paging and list update (defined in Section 3). We express
the performance of well known paging and list update algorithms in terms of
a measure of locality of reference. For paging, this leads to better separation
than the competitive ratio. Furthermore, in contrast to competitive analysis it
reflects the intuition that a larger cache leads to a better performance. We also
provide experimental results that justify the applicability of our measure in prac-
tice. We obtain bounds on the parameterized performance of several list update
algorithms and prove the superiority of MTF. We also apply our measures to
randomized list update algorithms and show that, surprisingly, certain random-
ized algorithms which are superior to MTF in the classical model are not so in
the parameterized case. Some of the proofs follow the general outline of standard
competitive analysis proofs (e.g., those in [10]), yet in some cases provide finer
separation of paging and list update algorithms.

For the paging problem, many studies have been presented that integrate
the concept of locality, culminating with the LRU separation results in [4, 6].
These separation results are based on heavy machinery specifically designed to
resolve this singular long-standing question. In contrast, the new measure we
propose is easier to apply and creates a performance hierarchy of paging and list
update algorithms which better reflects their intuitive relative strengths. Several
previously observed experimental properties can be readily proven using the new
model. This is a strength of the new model in that is effective, that is readily
applicable to a variety of algorithms and with meaningful results.



2 Parameterized Analysis of Paging Algorithms

Recall that on a fault (with a full cache), LRU evicts the page that is least
recently requested, FIFO evicts the page that is first brought to the cache, FWF
empties the cache, Last-In-First-Out (LIFO) evicts the page that is most
recently brought to the cache, and Least-Frequently-Used (LFU) evicts the
page that has been requested the least. LFU and LIFO do not have a constant
competitive ratio [10]. A paging algorithm is called conservative if it incurs at
most k faults on any sequence that contains at most k distinct pages. A marking
algorithm A works in phases: all the pages in the cache are unmarked at the
beginning of each phase. We mark any page just after the first request to it in
each phase. When an eviction is necessary, A should evict an unmarked page.
LRU and FIFO are conservative algorithms, while LRU and FWF are marking
algorithms.

As stated before input sequences for paging show locality of reference in
practice. We want to express the performance of paging algorithms on a sequence
in terms of the amount of the locality in that sequence. Therefore we need a
measure that assigns a number proportional to the amount of locality in each
sequence. None of the previously described models provide a unique numerical
value as a measure of locality of reference3. We define a quantitative measure
for non-locality of paging instances.

Definition 1. For a sequence σ we define dσ[i] as either k+1 if this is the first
request to page σ[i], or otherwise, the number of distinct pages that are requested
since the last request to σ[i] (including σ[i]).4 Now we define λ(σ), the “non-
locality” of σ, as λ(σ) = 1

|σ|

∑

1≤i≤|σ| dσ[i]. We denote the non-locality by λ if

the choice of σ is clear from the context.

If σ has high locality of reference, the number dσ[i] of distinct pages between
two consecutive requests to a page is small for most values of i and thus σ has
a low non-locality. Note that while this measure is related to the working set
model [17] and the locality model of [2], it differs from both in several aspects.
Alberst et al. [2] consider the maximum/average number of distinct pages in
all windows of the same size, while we consider the number of distinct pages
requested since the last access to each page. Also our analysis does not depend
on a concave function f whose identification for a particular application might
not be straightforward. Our measure is also closely related to the working set
theorem in area of self-organizing data structures [36]. For binary search trees
(like splay trees), the working set bound is defined as

∑

1≤i≤|σ| log (dσ[i] + 1).
The logarithm can be explained by the logarithmic bounds on most operations in
binary search trees. Thus our measure of locality of reference can be considered
as variant of this measure in which we remove the logarithm.

3 Formally a measure is a function that assigns a numerical non-negative value to an
object, assigns the value of zero to the empty set and is additive over disjoint objects.

4 Asymptotically, and assuming the number of requests is much larger than the number
of distinct pages, any constant can replace k + 1 for the dσ[i] of the first accesses.



espresso li eqntott compress tomcatv ear sc swm gcc

Distinct 3913 3524 9 189 5260 1614 561 3635 2663

λ 193.1 195.2 1.7 2.3 348.3 34.1 5.4 166.7 90.6

Ratio 4.9% 5.5% 19.3% 1.2% 6.6% 2.1% 1.0% 4.6% 3.4%

Table 1. Locality of address traces collected from SPARC processors running the
SPEC92 benchmarks.

Experimental Evaluation of the Measure. In order to check validity of our mea-
sure we ran some experiments on traces of memory reference streams from the
NMSU TraceBase [37]. Here we present the results of our experiments on address
traces collected from SPARC processors running the SPEC92 benchmarks. We
considered a page size of 2048 bytes and truncated them after 40000 references.
The important thing to notice is that these are not special cases or artificially
generated memory references, but are access patterns a real-life implementation
of any paging algorithm might face. The results for the corresponding eleven
program traces are shown in Table 1. The first row shows the number of distinct
pages, the second row shows λ, and finally the third row shows the ratio of the
actual locality to the worst possible locality. The worst possible locality of a
trace asymptotically equals the number of distinct pages in that trace. It is clear
from the low ratios that in general these traces exhibit high locality of reference
as defined by our measure.

Next we analyze several well known paging algorithms in terms of the non-
locality parameter. We consider the fault rate, the measure usually used by
practitioners. The fault rate of a paging algorithm A on a sequence σ is defined
as A(σ)/|σ|, i.e., the number of faults A incurs on σ normalized by the length of
σ. The fault rate of A, FR(A), is defines as the asymptotic worst case fault rate
of A on any sequence. The bounds are in the worst case sense, i.e., when we say

FR(A) ≥ f(λ) we mean that there is a sequence σ such that A(σ)
|σ| ≥ f(λ(σ))

and when we say FR(A) ≤ g(λ) we mean that for every sequence σ we have
A(σ)
|σ| ≤ g(λ(σ)). Also for simplicity, we ignore the details related to the special

case of the first few requests (the first block or phase). Asymptotically and as
the size of the sequences grow, this can only change the computation by additive
lower order terms.

Lemma 1. For any deterministic paging algorithm A, λ
k+1 ≤ FR(A) ≤ λ

2 .

Proof. For the lower bound consider a slow memory containing k + 1 pages.
Let σ be a sequence of length n obtained by first requesting p1, p2, . . . , pk, pk+1,
and afterwards repeatedly requesting the page not currently in A’s cache. Since
A(σ)
|σ| = n/n = 1, and λ is at most k+1 (there are k+1 distinct pages in σ), the

lower bound follows.
For the upper bound, consider any request sequence σ of length n. If the ith

request is a fault charged to A, then dσ[i] ≥ 2 (otherwise σ[i] cannot have been
evicted). Hence, 2A(σ) ≤

∑n
i=1 dσ[i] and the upper bound follows.

We now show that LRU gets the best possible performance in terms of λ.



Theorem 1. FR(LRU) = λ
k+1 .

Proof. It follows from the observation that LRU faults on the request σ[i] if and

only if dσ[i] ≥ k + 1, which implies LRU(σ) ≤ λ
k+1 and Lemma 1.

Next, we show a general upper bound for conservative and marking algorithms.

Lemma 2. Let A be a conservative or marking algorithm, then FR(A) ≤ 2λ
k+3 .

Proof. Let σ be an arbitrary sequence and let ϕ be an arbitrary phase in the
decomposition of σ. A incurs at most k faults on ϕ. For any phase except the
first, the first request in ϕ, say σ[i], is to a page that was not requested in the
previous phase, which contained k distinct pages. Hence, dσ[i] ≥ k + 1. There
are at least k − 1 other requests in ϕ to k − 1 distinct pages, which all could
have been present in the previous phase. But these pages contribute at least
∑k−1

j=1 (j + 1) = k − 1 + k2−k
2 to λ. It follows that the contribution of this phase

to |σ|λ is at least k + 1 + k − 1 + k2−k
2 = k2+3k

2 . Hence,

A(σ)

|σ|λ
≤

k
k2+3k

2

=
2

k + 3
⇒ FR(A) ≤

2λ

k + 3
.

There is a matching lower bound for FWF.

Lemma 3. FR(FWF) ≥ 2λ
k+3 .

Proof. Consider σ = {p1p2 . . . pkpk+1pkpk−1 . . . p2}
n. FWF(σ) = 2kn, since

FWF faults on all the requests. Now consider any block except the first. First,
consider a page pi, 2 ≤ i ≤ k. The first and second request to pi contribute i and
k+2− i to |σ|λ, respectively, giving a total contribution of k+2. The requests to
p1 and pk+1 contribute k + 1 each. Hence, the total contribution (for all phases
except the first) is (k − 1)(k + 2) + 2(k + 1) = k2 + 3k. Therefore

FWF(σ)

|σ|λ
=

2k

k2 + 3k
=

2

k + 3
.

Thus FWF has approximately twice as many faults as LRU on sequences with
the same locality of reference, in the worst case. FIFO also has optimal perfor-
mance in terms of λ.

Lemma 4. FR(FIFO) ≤ λ
k+1 .

Proof. See appendix.

Lemma 5. FR(LFU) ≥ 2λ
k+3 .

Proof. See appendix.

In contrast LIFO has much poorer performance than most other paging algo-
rithms (the worst possible) in terms of λ.



Lemma 6. FR(LIFO) ≥ λ
2 .

Proof. Consider the sequence σ = p1p2 . . . pkpk+1{pkpk+1}
n. We have LIFO(σ) =

k + 1 + 2n and |σ|λ = (k + 1)(k + 1) + 2 · 2n, and the bound follows.

LRU-2 is another paging algorithm proposed by O’Neil et al. for database disk
buffering [30]. On a fault, LRU-2 evicts the page whose second to the last request
is least recent. If there are pages in the cache that have been requested only once
so far, LRU-2 evicts the least recently used among them. Boyar et al. proved
that LRU-2 has competitive ratio 2k, which is worse than FWF [14].

Lemma 7.
2kλ

(k+1)(k+2) ≤ FR(LRU-2) ≤ 2λ
k+1 .

Proof. See appendix.

While no deterministic on-line paging algorithm can have competitive ratio
better than k, there are randomized algorithms with better competitive ratio.
The randomized marking algorithm MARK, introduced by Fiat et al. [21], is
2Hk-competitive, where Hk is the kth harmonic number. On a fault, MARK

evicts a page chosen uniformly at random from among the unmarked pages. Let
σ be a sequence and ϕ1, ϕ2, . . . , ϕm be its phases. A page requested in phase ϕi
is called clean if it was not requested in phase ϕi−1 and stale otherwise. Let ci
be the number of clean pages requested in phase ϕi. Fiat et al. proved that the
expected number of faults MARK incurs on phase ϕi is ci(Hk −Hci

+ 1).

Lemma 8. FR(MARK) = 2λ
3k+1 .

Proof. Let σ be {p1p2 . . . pkpk+1pk+2 . . . p2kpkpk−1 . . . p1p2k . . . pk+1}
n. This se-

quence has 4n phases. All pages of each phase are clean. Therefore we have
ci = k for 1 ≤ i ≤ 4n and the expected number of faults MARK incurs on
each phase is k × (Hk − Hk + 1) = k. Thus E(MARK(σ)) = 4nk. We have
|σ|λ = 4n(k+ 1+ k+ 2+ · · ·+ 2k) = 4n(k2 + k(k+ 1)/2) = 2n(3k2 + k). Hence
E(MARK(σ))

|σ|λ
= 4nk

2n(3k2+k) = 2
3k+1 , which proves the lower bound.

For the upper bound, consider an arbitrary sequence σ and let ϕ1, ϕ2, . . . , ϕm
be its phases. Suppose that the ith phase has ci clean pages. Therefore the
expected cost of MARK on phase i is at most ci(Hk−Hci

+1). The first request
to the jth clean page in a phase contributes at least k+ j to |σ|λ (k pages from
previous phase and j − 1 clean pages that have been seen so far). The first
request to the jth stale page in a phase contributes at least j + 1. Therefore
the contribution of phase i to |σ|λ is at least

∑ci

j=1 (k + j) +
∑k−ci

j=1 (j + 1) =

(2c2i −2ci+k2+3k)/2, and E(MARK(σ))

|σ|λ
≤

2ci(Hk−Hci
+1)

2c2
i
−2ci+k2+3k

, where 1 ≤ ci ≤ k. This

is an increasing function in terms of ci and gets its maximum at ci = k. Then
we have

E(MARK(σ))

|σ|λ
≤

2k(Hk −Hk + 1)

2k2 − 2k + k2 + 3k
=

2

3k + 1
.



Finally we prove bounds on the performance of Longest-Forward-distance

(LFD), an optimal offline algorithm. On a fault, LFD evicts the page whose
next request is farthest in the future.

Lemma 9.
λ

3k+1 ≤ FR(LFD) ≤ 2λ
3k+1 .

Proof. Let σ be {p1p2 . . . pkpk+1pk+2 . . . p2kpkpk−1 . . . p1p2k . . . pk+1}
n. This se-

quence has 4n phases. Each two consecutive phases of σ contain 2k distinct
pages. LFD contains at most k pages in its cache before serving these phases
and thus it would incur at least k faults on serving any two consecutive phases.
Thus we have LFD(σ) ≥ 2kn. We have |σ|λ = 4n(k + 1 + k + 2 + · · · + 2k) =
4n(k2 + k(k + 1)/2) = 2n(3k2 + k). Hence

LFD(σ)

|σ|λ
≥

2nk

2n(3k2 + k)
=

1

3k + 1
.

Any randomized algorithm can be viewed as a probability distribution on a set
of deterministic algorithm. Since the performance of LFD on any sequence is at
least as good as performance of any deterministic algorithm on that sequence, the
performance of LFD is not worse than the expected performance of a randomized
algorithm on any sequence. Thus the upper bound follows from Lemma 8.

This analysis can also be applied within the framework of Albers et al. [2]. One
can readily obtain results similar but sharper to those of [2]. In them the cost
is both in terms of f−1 for a concave function f and the non-locality parameter
λ. We omit these for lack of space. See appendix for details.

3 Parameterized Analysis of List Update Algorithms

In this section we study the parameterized complexity of list update algorithms
in terms of locality of reference. In the list update problem, we have an unsorted
list of m items. The input is a sequence of n requests that should be served in
an online manner. Let A be an arbitrary online list update algorithm. To serve
a request to an item x, A should linearly search the list until it finds x. If x is
ith item in the list, A incurs cost i to access x. Immediately after accessing x,
A can move x to any position closer to the front of the list at no extra cost.
This is called a free exchange. Also A can exchange any two consecutive items
at a cost of 1. These are called paid exchanges. The idea is to use free and
paid exchanges to minimize the overall cost of serving a sequence. Three well
known deterministic online algorithms are Move-To-Front (MTF), Transpose,
and Frequency-Count (FC). MTF moves the requested item to the front of the
list and Transpose exchanges the requested item with the item that immediately
precedes it. FC maintains a frequency count for each item, updates this count
after each access, and makes necessary moves so that the list always contains
items in non-increasing order of frequency count. Sleator and Tarjan showed that
MTF is 2-competitive, while Transpose and FC do not have constant competitive
ratios [35]. While list update algorithms can be more easily distinguished using



competitive analysis than in the paging case, the experimental study by Bachrach
and El-Yaniv suggests that the relative performance hierarchy as computed by
the competitive ratio does not correspond to the observed relative performance
of the algorithms in practice [7]. Several authors have pointed out that input
sequences of list update algorithms in practice show locality of reference [1,
33, 10] and indeed online list update algorithms try to take advantage of this
property [23, 32]. Recently, Angelopoulos et al. [5] and Albers and Lauer [3]
have studied list update with locality of reference. We define the non-locality of
sequences for list update in an analogous way to the corresponding definition for
paging (Definition 1) . The only differences are:

1. We do not normalize the non-locality by the length of the sequence, i.e.,
λ(σ) =

∑

1≤i≤|σ| dσ[i].

2. If σ[i] is the first access to an item we assign the value m to dσ[i]
5.

Theorem 2. For any deterministic online list update algorithm A we have
λ ≤ A(σ) ≤ m · λ.

Proof. [Upper bound] Consider an arbitrary sequence σ of length n. Since the
maximum cost that A incurs on a request is m, we have A(σ) ≤ nm. We have

dσ[i] ≥ 1 for all values of i. Thus λ ≥ n. Therefore A(σ)

λ
≤ nm

n
= m.

[Lower bound] Consider a sequence σ of length n obtained by requesting the
item that is in the last position of list maintained by A at each time. We have
A(σ) = nm. Also we have dσ[i] ≤ m because σ has at most m distinct items.

Therefore λ ≤ nm, and A(σ)

λ
≥ nm

nm
= 1.

Theorem 3. MTF has the optimal performance in terms of λ: MTF (σ) ≤ λ.

Proof. Consider the ith request of σ. If this is the first request to item σ[i],
then dσ[i] = m, while the cost of MTF on σ[i] is at most m. Otherwise, the
cost of MTF is dσ[i]. Thus the cost of MTF on σ[i] is at most dσ[i]. Hence,
MTF (σ) ≤

∑

1≤i≤n dσ[i] = λ, and the upper bound follows. Theorem 2 shows
that this bound is tight.

The following lemmas show that other well known list update algorithms do not
have the optimal performance in terms of λ.

Lemma 10. Transpose(σ) ≥ m·λ
2 .

Proof. Let L0 = (a1, a2, . . . , am) be the initial list. Consider a sequence σ of
length n obtained by several repetitions of pattern amam−1. We have Transpose(σ) =
n ·m. Also we have dσ[i] = m for 1 ≤ i ≤ 2 and dσ[i] = 2 for 2 < i ≤ n. Therefore

λ = 2m+ 2n− 4, and Transpose(σ)

λ
= n·m

2m+2n−4 , which becomes arbitrarily close

to m/2 as n grows.

5 As for paging, asymptotically, and assuming the number of requests is much larger
than m, any constant can replace m for the dσ[i] of the first accesses.



Lemma 11. FC(σ) ≥ (m+1)λ
2 ≈ m·λ

2 .

Proof. See appendix.

Albers introduced the algorithm Timestamp (TS) and showed that it has com-
petitive ratio 2 [1]. After accessing an item a, TS inserts a in front of the first
item b that is before a in the list and was requested at most once since the last
request for a. If there is no such item b, or if this is the first access to a, TS does
not reorganize the list.

Lemma 12. TS(σ) ≥ 2m·λ
m+1 ≈ 2λ.

Proof. See appendix.

Observe that parameterized analysis by virtue of its finer partition of the input
space resulted in the separation of several of these strategies which are not
separable under the classical model. This introduces a hierarchy of algorithms
better reflecting the relative strengths of the strategies considered above. We
can also apply the parameterized analysis to randomized list update algorithms
by considering their expected cost.

In the next theorem we show that, surprisingly, certain randomized algo-
rithms which are superior to MTF in the standard model are not so in the
parameterized case. Observe that in the competitive ratio model a deterministic
algorithm must serve a pathological, rare worst case even if at the expense of
a more common but not critical case, while a randomized algorithm can hedge
between the two cases, hence in the classical model the randomized algorithm is
superior to the deterministic one. In contrast, in the parameterized model the
rare worst case has a larger non-locality measure if it is pathological, leading to
a larger denominator. Hence such a cases can safely be ignored, with a resulting
overall increase in the measured quality of the algorithm.

The algorithm Bit, considers a bit b(a) for each item a and initializes these
bits uniformly and independently at random. Upon an access to a, it first com-
plement b(a), then if b(a) = 0 it moves a to the front, otherwise it does nothing.
Bit has competitive ratio 1.75, thus beating any deterministic algorithm [31]. In
the parameterized model this situation is reversed.

Theorem 4. E(Bit(σ)) ≥ (3m+1)λ
2m+2 ≈ 3λ/2.

Proof. Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary integer.
Consider the sequence σ = {a2

ma
2
m−1 . . . a

2
1}

n. Let σi and σi+1 be two consecutive
accesses to aj . After two consecutive accesses to each item, it will be moved to
the front of the list with probability 1. Therefore aj is in the last position of the
list maintained by Bit at the time of request σi and Bit incurs cost m on this
request. After this request, Bit moves aj to the front of the list if and only if
b(aj) is initialized to 1. Since b(aj) is initialized uniformly and independently at
random, this will happen with probability 1/2. Therefore the expected cost of



Bit on σi+1 is 1
2 (m+1) and the expected cost of Bit on σ is nm(m+ m+1

2 ). We

have λ = m(m+ 1)n. Therefore

E(Bit(σ))

λ
=

n ·m(m+ m+1
2 )

m(m+ 1)n
=

3m+ 1

2m+ 2
.

4 Conclusions

We applied parameterized analysis in terms of locality of reference to paging
and list update algorithms and showed that this model gives promising results.
The plurality of results shows that this model is effective in that we can readily
analyze well known strategies. Using a finer, more natural measure we separated
paging and list update algorithms which were otherwise indistinguishable under
the classical model. We showed that a randomized algorithm which is superior
to MTF in the classical model is not so in the cooperative case, which matches
experimental evidence. This confirms that the ability of the online adaptive al-
gorithm to ignore pathological worst cases can lead to the selection of algorithms
that are more efficient in practice.
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A Omitted proofs

Lemma 4. FR(FIFO) ≤ λ
k+1 .

Proof. Let σ be an arbitrary sequence. Consider a fault σ[i] on a page p and
let σ[j1], σ[j2], . . . , σ[jm] be the requests to p since p last entered the cache. By
definition all the requests σ[j1], σ[j2], . . . , σ[jm] are hits and p is evicted between
σjm

and σi. Observe that for p to get evicted at least k distinct pages other than p
have to be requested since p entered the cache, hence dσ[i]+

∑m
h=1 dσ[jh] ≥ k+1.

It follows that for each fault charged to FIFO we have at least a contribution
of k + 1 to |σ|λ.

Lemma 5. FR(LFU) ≥ 2λ
k+3 .

Proof. Consider the (usual) sequence σ = pn1p
n
2 . . . p

n
k−1{pkpk+1}

n, where LFU(σ) =

k−1+2n. For |σ|λ, each of the pages p1, p2, . . . , pk−1 contributes k+1+n−1 =
k + n, and the pages pk and pk+1 contribute (k + 1) + 2(n − 1) each. Hence,
|σ|λ = (k − 1)(k + n) + 2(k + 2n− 1) = (k + 3)n+ k2 + k − 2, and therefore

LFU(σ)

|σ|λ
=

2n+ k − 1

(k + 3)n+ k2 + k − 2
,

which becomes arbitrarily close to 2
k+3 as n grows.

Lemma 7.
2kλ

(k+1)(k+2) ≤ FR(LRU-2) ≤ 2λ
k+1 .

Proof. Let σ be the sequence {p1p2 . . . pk−1pkpkpk−1 . . . p1pk+1pk+1}n. Now, con-
sider any repetition except the first. LRU-2 faults on all requests except the
second request to pk and the second request to pk+1, giving a total of 2k faults.
The first request to pi, 1 ≤ i ≤ k−1, contributes i to |σ|λ and the second request
to pi contributes k+2− i. Hence, each of these k−1 pages contributes k+2. For
the pages pk and pk+1, their first request contributes k + 1 and the second only
1 to |σ|λ. This gives a total contribution of (k + 1)(k + 2), and asymptotically
the result follows.

For the upper bound, consider three consecutive faults on some page p. At
least k other distinct pages should be requested since the first fault on p (at least
k − 1 other pages with at least 2 request and at least one other page).

Lemma 11. FC(σ) ≥ (m+1)λ
2 ≈ m·λ

2 .

Proof. Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary integer.
Consider the following sequence: σ = an1a

n
2a

n
3 . . . a

n
m. On serving σ, FC does

not change the order of items in its list and incurs cost
∑m

i=1 ni = n
∑m

i=1 i =

nm(m+1)
2 . We have λ =

∑m
i=1(m+ (n− 1)) = m · n+m2 −m. Therefore

FC(σ)

λ
=

nm(m+1)
2

m · n+m2 −m
,

which approaches m+1
2 as n grows.



Lemma 12. TS(σ) ≥ 2m·λ
m+1 ≈ 2λ.

Proof. Let L0 = (a1, a2, . . . , am) be the initial list and n be an arbitrary integer.
Consider the sequence σ obtained by the repetition of the block a2

ma
2
m−1 . . . a

2
1

n times. Let B be an arbitrary block of σ. Each item ai is accessed twice in
B. TS does not move ai after its first access in B, because each item has been
accessed twice since the last access to ai. After the second access, TS moves the
item to the front of the list. Therefore each access is to the last item of the list
and TS incurs a cost of m on each access. Thus, we have TS(σ) = 2m2n. Next
we compute λ. The first and second access to a in block B contribute m and 1
to λ, respectively. Thus we have λ = m(m+ 1)n. Therefore

TS(σ)

λ
=

2m2n

m(m+ 1)n
=

2m

m+ 1
.

B Restricting the set of legal sequences to those with

locality of reference

We can further incorporate locality of reference assumption by restricting the
input to those with high locality of reference in the max-model proposed by
Albers et al. [2]. For a concave function f we say that a sequence is consistent
with f if the number of distinct pages in any window of size n is at most f(n) for
any positive integer n. We model locality of reference by restricting the input to
If , sequences that are consistent with f . For any positive integer m, we define
f−1(m) as the smallest size of a window in a sequence consistent with f that
contains m distinct pages, i.e., f−1(m) = min{n ∈ N|f(n) ≥ m}. Table 2 shows
the fault rate of paging algorithms in terms of λ when we restrict the input to
If .

Algorithm Lower Bound Upper Bound

General (k−1)λ

k(k−1)+f−1(k+1)−2
λ
2

Marking (k−1)λ

k(k−1)+f−1(k+1)−2
2kλ

k(k+1)+2(f−1(k+1)−1)

LRU
(k−1)λ

k(k−1)+f−1(k+1)−2

(k−1)λ

k(k−1)+f−1(k+1)−2

FWF 2kλ
k(k+1)+2(f−1(k+1)−1)

2kλ
k(k+1)+2(f−1(k+1)−1)

FIFO
(k− 1

k
)λ

(k−1)(k+1)+f−1(k+1)−1
kλ

(k−1)(k+1)+f−1(k+1)

Table 2. The fault rate of paging algorithms in terms of λ with respect to a concave
function f .

Most of the proofs below uses constructions similar to the ones given by
Albers et. al [2]. Let FRf (A) denote the fault rate of an algorithm A with
respect to a function f .



Lemma 13. For any deterministic online paging algorithm A,

(k − 1)λ

k(k − 1) + f−1(k + 1)− 2
≤ FRf (A) ≤

λ

2
.

Proof. The upper bound follows from the general upper bound proved in Lemma
1. For the lower bound, given the function f and algorithm A, we construct a
sequence σ as follows. We use k+1 distinct pages. The sequence σ is constructed
in phases, each with length f−1(k + 1) − 2, where each phase consists of k − 1
blocks. Each block contains requests all to the page that was not in A’s cache
just before the first request of the block. Hence, A faults on the first request
of each block and incurs k − 1 faults on each phase. In each phase, block j,
1 ≤ j ≤ k − 1, starts with request f−1(j + 1) − 1. The construction is well-
defined and is consistent with f ([2, Theorem 1]). For an upper bound on the
non-locality of a phase, observe that since there are only k+1 distinct pages, the
first request of each block of the phase contributes at most k+1 to |σ|λ. Each of
the following requests in the block, contributes 1. Since there are k−1 block, the
first requests of blocks contribute at most (k+1)(k−1) to |σ|λ totally. Since there
are f−1(k+1)−2−(k−1) other requests in a phase, each contributing 1 to |σ|λ,
we get a total contribution of at most (k+1)(k− 1)+ f−1(k+1)− 2− (k− 1) =
k(k − 1) + f−1(k + 1)− 2, and the result follows.

Lemma 14. FRf (LRU) ≤ (k−1)λ
k(k−1)+f−1(k+1)−2 .

Proof. Let σ be an arbitrary sequence consistent with f . Partition σ into phases
such that each phase contains k − 1 faults made by LRU, except possibly the
last, and is maximal subject to that constraint. Hence, the request just before
and just after a phase is a fault for all phases except the first and last phases.
Let ϕ be any such phase. In [2, Theorem 2] it is shown that ϕ has length at least
f−1(k+1)− 2. Since LRU faults on the i’th request if and only if dσ[i] ≥ k+1,
each of the k − 1 faults made by LRU in ϕ contributes at least k + 1 to |σ|λ.
All other requests contribute at least 1. Hence, the total contribution to |σ|λ is
at least (k + 1)(k − 1) + f−1(k + 1)− 2− (k − 1) = k(k − 1) + f−1(k + 1)− 2,
and the upper bound follows.

Lemma 15. For any marking algorithm A, FRf (A) ≤ 2k·λ
k(k+1)+2(f−1(k+1)−1) .

Proof. Let σ be an arbitrary sequence and consider the decomposition of σ. A
incurs at most k faults on each phase. For any phase ϕ except the last, the
next phase begins with a request to a page not in ϕ. Hence, the subsequence
consisting of ϕ and the first request of the next phase, contains k + 1 distinct
pages and has length at least f−1(k + 1). It follows that the length of ϕ is at
least f−1(k+1)− 1. For any phase ϕ except the first, the first request, say i, in
ϕ is to a page that was not requested in the previous phase, which contained k
distinct pages. Hence, dσ[i] ≥ k + 1. Now, consider any phase ϕ except for the
first and last phase. The first request contributes at least k + 1 to |σ|λ. There
are at least k − 1 other requests in ϕ to k − 1 distinct pages, which all could



have been present in the previous phase. But these pages contribute at least
∑k−1

j=1 (j+1) = k−1+ k2−k
2 to |σ|λ. The remaining f−1(k+1)−1−k requests in

P (requests to pages already requested in ϕ) all contribute at least 1. It follows
that the contribution to |σ|λ of ϕ is at least

k + 1 + k − 1 +
k2 − k

2
+ f−1(k + 1)− 1− k =

k(k + 1) + 2(f−1(k + 1)− 1)

2
.

Hence,

A(σ)

|σ|λ
≤

k
k(k+1)+2(f−1(k+1)−1)

2

=
2k

k(k + 1) + 2(f−1(k + 1)− 1)
.

Lemma 16. FRf (FWF) ≥ 2k·λ
k(k+1)+2(f−1(k+1)−1) .

Proof. We construct a sequence σ as follows. We use k+1 pages, p1, p2, . . . , pk+1.
σ consists of phases (corresponding to the phases of FWF) and each phase is
composed of k blocks, where each block is a subsequence of requests to the
same page. In each phase, block j, 1 ≤ j ≤ k, has length f−1(j + 1) − f−1(j).
By Proposition [2, Proposition 1], the block lengths are well-defined, i.e., they
are non-zero, and non-decreasing in a phase, and the total length of a phase is
f−1(k + 1)− 1.

In the first phase, the jth block consists of requests to pj (1 ≤ j ≤ k). Now we
inductively define the (i+1)st phase. The first block consists of f−1(2)−f−1(1) =
2− 1 = 1 requests to the unique page that was unmarked at the end of the ith
phase. That causes FWF to fault and flush the cache (and all pages become
unmarked). The second block consists of requests to the page that was requested
in the last block of the ith phase. The third block consists of requests to the page
that was requested in the second to last block of the ith phase. The following
k−2 blocks are defined similarly. By [2, Theorem 4], the construction is consistent
with f .

FWF faults k times in each phase. For the non-locality of the sequence
consider any phase except the first or the least. The first request contributes
k + 1 to |σ|λ. There are k − 1 other distinct pages requested in the phase, and

the first request to each of these contributes
∑k−1

j=1 (j + 1) = k − 1 + k2−k
2 . The

remaining f−1(k + 1) − 1 − k requests (requests to pages already requested in
the phase), contributes all 1 to |σ|λ, and the result follows as in the previous
lemma.

Lemma 17.
(k− 1

k
)λ

(k−1)(k+1)+f−1(k+1)−1 ≤ FRf (FIFO) ≤ k·λ
(k−1)(k+1)+f−1(k+1) .

Proof. For the lower bound, follow the construction from [2, Theorem 5]. For
the non-locality, observe that the first request in each block contributes k+1 to
|σ|λ. The following request to pk contributes 2 and any following request to pk
contributes 1. Hence, each block contributes k+ 1+ |block|, and since there are
k − 1 blocks in a phase and k phases in a super phase, the total contribution to
|σ|λ of a super phase is

k(k − 1)(k + 1) + |super phase| = k(k − 1)(k + 1) + k(f−1(k + 1)− 1),



and the lower bound follows.
For the upper bound, first consider a fault σ[i] incurs on a page p and let

σ[j1], σ[j2], . . . , σ[jm] be the requests to p since p last entered the cache. By
definition all the requests σ[j1], σ[j2], . . . , σ[jm] are hits and p is evicted between
request σ[jm] and σ[i]. Observe that for p to get evicted at least k distinct
pages different from p has to be requested since it entered the cache, hence
dσ[i] +

∑m
h=1 dσ[jh] ≥ k + 1. It follows that for each fault charged to FIFO we

have at least a contribution of k + 1 to |σ|λ. Now, partition the sequence into
phases that contains exactly k faults by FIFO and starts with a fault. Since
a subsequence consisting of a phase and the following request, contains k + 1
faults it must have a length of at least f−1(k+1). Hence, a phase has length at
least f−1(k+1)−1. By the above observation the k faults in a phase contribute
k(k+1) to |σ|λ. The remaining f−1(k+1)−1−k requests contribute at least 1.
It follows that the total contribution of a phase is k(k+1)+f−1(k+1)−1−k =
(k − 1)(k + 1) + f−1(k + 1). The upper bound follows.


