
On the Separation and Equivalence of Paging Strategies

Spyros Angelopoulos∗ Reza Dorrigiv∗ Alejandro López-Ortiz∗

Abstract

It has been experimentally observed that LRU and variants

thereof are the preferred strategies for on-line paging. How-

ever, under most proposed performance measures for on-line

algorithms the performance of LRU is the same as that of

many other strategies which are inferior in practice. In this

paper we first show that any performance measure which

does not include a partition or implied distribution of the

input sequences of a given length is unlikely to distinguish

between any two lazy paging algorithms as their performance

is identical in a very strong sense. This provides a theoretical

justification for the use of a more refined measure. Building

upon the ideas of concave analysis by Albers et al. [AFG05],

we prove strict separation between LRU and all other paging

strategies. That is, we show that LRU is the unique opti-

mum strategy for paging under a deterministic model. This

provides full theoretical backing to the empirical observation

that LRU is preferable in practice.

1 Introduction

Paging is a fundamental problem in the context of the
analysis of on-line algorithms. A paging algorithm me-
diates between a slower and a faster memory. Assuming
a cache of size k, it decides which k memory pages to
keep in the cache without the benefit of knowing in ad-
vance the sequence of upcoming page requests. After
receiving the i-th page request and in the event the re-
quest results in a cache miss, the on-line algorithm must
decide irrevocably which page to evict. The objective is
to design efficient on-line algorithms in the sense that
on a given request sequence the total cost, namely the
total number of cache misses, is kept low.

Competitive analysis has long been established as
the canonical approach for the analysis of on-line algo-
rithms. The competitive ratio, first introduced formally
by Sleator and Tarjan [ST85], has served as a practical
measure for the study and classification of on-line al-
gorithms. An algorithm (assuming a cost-minimization
problem such as paging) is said to be α-competitive if
the cost of serving any specific request sequence never
exceeds α times the optimal cost (up to some additive

∗David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, Ont., N2L 3G1, Canada. {sangelop,
rdorrigiv, alopez-o}@uwaterloo.ca.

constant) of an off-line algorithm which knows the en-
tire sequence. The competitive ratio has been applied
to a variety of problems and settings, mainly due to
its amenability to analysis: the measure is relatively
simple to define yet powerful enough to quantify, to a
large extent, the performance of an on-line algorithm.
On the other hand, there are known applications in
which competitive analysis has yielded unsatisfactory
results. Most notably, for the case of paging algorithms
competitive analysis produces unrealistically pessimistic
measures and fails to distinguish between algorithms
which differ vastly in performance in practical settings,
as first observed in [ST85]. Consider, for example, the
paging strategies flush-when-full (FWF), least-recently-
used (LRU) and first-in-first-out (FIFO). For the case of
LRU and FIFO, Young established experimental values
of the competitive ratio no larger than four [You94]. In
contrast the competitive ratio for all three algorithms
has a theoretical value of k. Furthermore, it has long
been empirically established that LRU (and variants
thereof) are, in practice, preferable paging strategies to
all other known paging algorithms [SGG02]. An ad-
ditional drawback of competitive analysis, as can easily
be shown [BEY98], is that finite lookahead yields no im-
provement in the performance of an on-line algorithm.
Once again, this is a rather counterintuitive conclusion:
in practice, one expects that lookahead should improve
performance, and a “reasonable” theoretical measure
should reflect this reality.

Such anomalies have led to the introduction of many
alternatives to the competitive analysis of on-line algo-
rithms in general, and for the paging problem in par-
ticular (see [DLO05] for a comprehensive survey). In
general, known alternative approaches rely on one or
more of the following: i) defining a new measure as sub-
stitute of the competitive ratio; ii) limiting the power of
the adversary; iii) employing different definitions for the
concept of the “cost” of an algorithm; iv) incorporating
certain assumptions concerning the request sequences.
Competitive analysis uses an optimal off-line algorithm
as a baseline to compare on-line algorithms. While this
may be convenient, it is rather indirect: one could ar-
gue that in comparing A to B all we need to study is
the relative cost of the algorithms on the request se-
quences. The approach we follow in this paper stems

from this basic observation. Our definition focuses not
on a specific worst case request sequence, but rather in
the performance of the two algorithms on all possible se-
quences. We provide a formal definition of this intuitive
observation, which is based on bijective mappings of the
set of all possible sequences of a given length onto itself.
We term this technique Bijective Analysis (c.f. Section
3).

Our results We begin by showing that a very large
class of natural paging strategies known as lazy algo-
rithms are in fact strongly equivalent under this rather
strict bijective measure. In contrast, we show that LRU
is strictly better than FWF (note that the latter is not
a lazy strategy). Both of these results describe natural,
“to-be-expected” properties of the corresponding paging
strategies which competitive analysis nevertheless fails
to yield. The strong equivalence of lazy algorithms is at
first sight a negative result, however it can also be inter-
preted as evidence of an inherent difficulty to separate
algorithms in any very general setting. In fact, it im-
plies that to obtain theoretical separation between algo-
rithms we must either induce a partition of the request
sequence space (e.g. as in Albers et al. [AFG05]) or
assume a distribution on the sequence space (e.g. as in
Koutsoupias and Papadimitriou [KP00], Young [You98]
and Becchetti [Bec04]). The latter group of approaches
use probabilistic assumptions on the sequence space.
However, since we are interested in separating algo-
rithms under a deterministic model, we adopt concave
analysis as introduced by Albers et al. which we then
apply in the context of Bijective Analysis. Using this ap-
proach, we show formally the main result: namely that
LRU is never outperformed in any possible subpartition
on the request sequence space induced by concave anal-
ysis (c.f. Corollary 5.1), while it always outperforms
any other paging algorithm in at least one subpartition
of the sequence space (c.f. Theorem 5.2). This result
proves separation between LRU and all other algorithms
and provides theoretical backing to the observation that
LRU is preferable in practice. Additionally, we provide
concrete evidence that lookahead is beneficial: we show
that LRU with lookahead as small as one (namely the se-
quence is revealed to the algorithm as consecutive pairs
of requests) is strictly better than LRU without any
lookahead.

Structure of paper In Section 2 we describe
related work and introduce some standard definitions.
In Section 3 we define formally the notion of Bijective
Analysis and show strong equivalence between all lazy
marking algorithms. These results formalize ideas that
while perhaps familiar to many researchers of on-line
problems had yet to be proved in a rigorous manner.
We also show that LRU is strictly better than FWF

under this measure. In Section 4 we show that Bijective
Analysis also captures the effects of lookahead. This
is in contrast to the competitive ratio under which an
algorithm with lookahead performs no better than a
similar algorithm without lookahead. In Section 5 we
present our main result, i.e., separation between LRU
and all other paging strategies.

2 Preliminaries and Related Work
In this section we overview some alternatives to the com-
petitive ratio. We refer the reader to the survey of Dorri-
giv and López-Ortiz [DLO05] for a more comprehensive
and detailed exposition.

Loose competitiveness, which was first proposed by
Young in [You94] and later refined in [You02], considers
an off-line adversary that is oblivious to the parame-
ter k (the cache size). The adversary must produce a
sequence that is bad for most values of k rather than
for just a specific value. It also ignores the sequences on
which the on-line algorithm incurs a cost less than a cer-
tain threshold. This results in a weaker adversary and
hence in paging algorithms with constant performance
ratios. The diffuse adversary model by Koutsoupias and
Papadimitriou [KP00] as well as Young [You98, You00]
refines the competitive ratio by restricting the set of le-
gal request sequences to those derived from a class (fam-
ily) of probability distributions. This restriction follows
from the observation that although a good performance
measure could in fact use the actual distribution over
the request sequences, determining the exact distribu-
tion of real-life phenomena is a difficult task (e.g. de-
pending on the intended application different distribu-
tions might arise). The Max/Max ratio, introduced by
Borodin and Ben-David [BDB94] compares on-line al-
gorithms based on their amortized worst-case behaviour
(here the amortization arises by dividing the cost of the
algorithm over the length of the request sequence). The
relative worst order ratio [BF03, BFL05, BM04] com-
bines some of the desirable properties of the Max/Max
ratio and the random order ratio (introduced in [Ken96]
in the context of the on-line bin packing problem). As
with the Max/Max ratio, it allows for direct compari-
son of two on-line algorithms. Informally, for a given
request sequence the measure considers the worst-case
ordering (permutation) of the sequence, for each of the
two algorithms, and compares their behaviour on these
orderings. It then finds among all possible sequences
the one that maximizes this worst-case performance.

There are several measures that model paging with
locality of reference. Borodin, Raghavan, Irani, and
Schieber [BIRS95] proposed the access graph model in
which the universe of possible request sequences is re-
duced to reflect that the actual sequences that can arise

depend heavily on the structure of the program being
executed. The space of request sequences can then be
modeled by a graph in which paths between vertices
correspond to actual sequences. In a generalization of
the access graph model, Karlin, Phillips, and Ragha-
van [KPR00] proposed a model in which the request
sequences are distributed according to a Markov chain
process. Becchetti [Bec04] refined the diffuse adversary
model of Koutsoupias and Papadimitriou by consider-
ing only probabilistic distributions in which temporal
locality of reference is present. Torng [Tor98] consid-
ered the decomposition of input sequences to phases in
the same manner as marking algorithms. He then mod-
eled locality of reference by restricting the input to se-
quences with long average phase length. Using the full
access cost model, he computed the performance of sev-
eral paging algorithms on sequences with high locality
of reference.

Most notably, Albers, Favrholdt, and Giel [AFG05]
introduced a model in which input sequences are clas-
sified according to a measure of locality of reference.
The measure is based on Denning’s working set con-
cept [Den68] which is supported by extensive experi-
mental results. The technique used, which we term con-
cave analysis, reflects the fact that efficient algorithms
must perform competitively in each class of inputs of
similar locality of reference, as opposed to the worst
case alone. It should be noted that [AFG05] focuses
on the fault rate as the measure of the cost of an algo-
rithm, as opposed to the traditional definition of cost as
the number of cache misses. Recently, Panagiotou and
Souza proposed a model that explains the good per-
formance of LRU in practice [PS06]. They classify in-
put sequences according to some parameters and prove
an upper bound on the competitive ratio of LRU as
a function of these parameters. Then they argue that
sequences in practice have parameters that lead to con-
stant competitive ratio for LRU. Table 1 summarizes the
separation results achieved by the alternative measures
presented.

3 Bijective Analysis and Average Analysis

Most alternative measures to the competitive ratio usu-
ally restrict the set of legal input sequences or consider
models other than the standard off-line adversary to
compare the behaviour of an on-line algorithm [DLO05].
In this paper, we use both techniques: more precisely,
we use the model for paging with locality of reference of
Albers et al. [AFG05] combined with a refined compar-
ison model. For an on-line algorithm A and an input
sequence σ, let A(σ) be the cost incurred by A on σ.
Denote by In the set of all input sequences of length
n. The first comparison model we introduce is Bijective

Analysis. In this model, we aim to pair input sequences
for A and B using a bijection in such a way that the
cost of A on sequence σ is no more than the cost of B
on the image of σ.

Definition 3.1. We say that an on-line algorithm A
is no worse than an on-line algorithm B according to
Bijective Analysis if there exists an integer n0 ≥ 1 such
that for each n ≥ n0, there is a bijection b : In ↔ In

satisfying A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote
this by A �b B. Otherwise we denote the situation by
A ��b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A.
This is denoted by A ≡b B. Finally we say A is better
than B according to Bijective Analysis if A �b B and
B ��b A. We denote this by A ≺b B.

Observe that similar to Max/Max ratio, this mea-
sure considers sequences of the same length and com-
pares two on-line algorithms directly. However it com-
pares all sequences in In rather than only the worst
sequence. A related comparison model can be obtained
by considering the average number of faults that a pag-
ing algorithm incurs on sequences of a certain length.

Definition 3.2. We say that an on-line algorithm A
is no worse than an on-line algorithm B according to
Average Analysis if there exists an integer n0 ≥ 1 such
that for each n ≥ n0,

∑
I∈In

A(I) ≤ ∑
I∈In

B(I).
We denote this by A �a B. Otherwise we denote the
situation by A ��a B. A ≡a B, and A ≺a B are defined
as for Bijective Analysis.

Observation 3.1. If A ��a B, then A ��b B. As well,
if A �b B, then A �a B with similar statements holding
for ≡b and ≺b.

Example. We use a simple example to contrast these
models. Let A, B, and C be three on-line algorithms
and In = {σ1, σ2, · · · , σ10} be the set of all possible
input sequences of length n. Suppose that the cost of
A, B, C, and the optimal off-line algorithm OPT on
input sequences are as follows:

σ A(σ) B(σ) C(σ) OPT (σ)
σ1 5 6 6 3
σ2 7 8 8 2
σ3 3 4 3 4
σ4 9 4 3 1
σ5 7 10 8 3
σ6 5 7 6 4
σ7 3 6 4 2
σ8 7 6 7 5
σ9 5 8 5 2
σ10 7 10 9 3

Measure Positive results Negative results Comments
Competitive ratio [ST85] amenable to analysis, applied

extensively to a multitude of
settings

LRU=FIFO=FWF canonical on-
line model

Loose competitiveness
[You94]

more realistic ratios for paging
algorithms

Adequate Performance
Measure [PS06]

more realistic ratios for paging
algorithms

Diffuse adversary [KP00,
You00, Bec04]

more realistic ratios for paging
algorithms, LRU < FWF, LRU
< FIFO

probabilistic
analysis

Access Graph [BIRS95] LRU≤FIFO
Max/Max ratio [BDB94] direct comparison, influence of

lookahead
LRU=FIFO=FWF

Relative worst order ratio
[BFL05]

direct comparison, influence of
lookahead, LRU < FWF

LRU=FIFO

Concave analysis [AFG05] LRU < FIFO, FWF uses the fault
rate cost model

Torng’s model [Tor98] more realistic ratios, influence
of lookahead

LRU=FIFO=FWF uses full access
cost model

Bijective Analysis [this
paper]

direct comparison, influence of
lookahead, FWF < LRU

LRU=FIFO

Average Analysis+ Con-
cave analysis [this paper]

LRU is the sole best paging
algorithm

Table 1: Separation results under alternative measures for analysis of on-line paging algorithms.

We have
∑

σ A(σ) = 58,
∑

σ B(σ) = 69, and∑
σ C(σ) = 59. Therefore A ≺a B, A ≺a C, and C ≺a B.

We have B ��b A, because B ��a A. We also have A �b B
by considering the bijection that maps σ1, σ2,. . . , σ10 to
σ1, σ2, σ3, σ5, σ6, σ7, σ4, σ9, σ8, and σ10, respectively.
Therefore A is better than B according to Bijective
Analysis, i.e., A ≺b B. Although A is better than C
according to Average Analysis, the two algorithms are
not comparable according to Bijective Analysis. Since
A ≺a C, we conclude that C ��b A. Also we have A ��b C
because C incurs a cost less than 5 on 3 sequences
while A incurs a cost less than 5 only on 2 sequences.
Now consider the competitive ratio of these algorithms.
The competitive ratio of A, B, and C is 9, 4, and 4
respectively. Although A seems to have better overall
performance than B and C, its bad performance on a
single sequence, σ4, leads to its very bad competitive
ratio.

Separation between certain Paging Algo-
rithms. As a warm-up, we will first show that LRU is
better than FWF according to Bijective Analysis (recall
that these algorithms have the same competitive ratio).
We also prove that all lazy algorithms are equivalent
according to Bijective Analysis. For the remainder of
this section let N denote the number of pages in slow

memory.

Lemma 3.1. LRU �b FWF.

Proof. We prove that for every n ≥ 1 there is a
bijection bn : In ↔ In so that LRU(σ) ≤ FWF (bn(σ))
for each σ ∈ In. We show this by induction on n, the
length of input sequences. For n ≤ k, this is trivial as
each sequence has at most k distinct pages and LRU
and FWF behave the same. Assume that it is true
for all n ≤ h, where h ≥ k. We prove that it is
also true for n = h + 1. We define a new bijection
bh+1 : Ih+1 ↔ Ih+1, which maps the continuations of a
sequence σ to the continuations of the sequence bh(σ)
in the image and more specifically, maps LRU’s last-
fault continuation sequences of σ into FWF’s last-fault
continuation sequences of bh(σ).

First assume that σ has at least k distinct pages.
Then LRU’s cache contains k pages after serving σ.
Therefore, there are k last-hit sequences and N −k last-
fault sequences in the continuation of σ for LRU. FWF’s
cache contains at most k pages after serving bh(σ). Thus
there are at least N −k last-fault sequences for FWF in
the continuation of σ.

Alternatively, if σ has k′ < k distinct pages then
from our construction b(σ) also contains exactly k′

distinct pages and the number of last-fault and last-

hit continuations for each algorithm match. Hence in
either case the number of last-fault sequences in LRU
is no larger than the number of last-fault sequences for
FWF and we can define an injective mapping bh+1 from
the former into the latter. We then arbitrarily map the
remaining (last-hit) LRU continuation sequences of σ
to the remaining unused sequences in the continuation
of bh(σ). Clearly from the construction the bijection
maps a request sequence in LRU to a request sequence
of FWF with the same or more number of page faults,
as claimed. �

Lemma 3.2. FWF ��b LRU.

Proof. We prove this by contradiction. Assume that
we have FWF �b LRU and so there is an n0 ≥ 1 so
that for each n ≥ n0 we have the bijection bn : In ↔ In.
Recall that we can partition a sequence into a number of
consecutive phases so that each phase contains exactly
k distinct pages. LRU incurs at most k faults in each
phase. FWF empties its cache at the end of each phase
and incurs exactly k faults in each phase. Therefore we
have LRU(σ) ≤ FWF (σ) for each sequence σ. Thus
the desired bijection exists only if we have FWF (σ) =
LRU(σ) for every sequence of length n ≥ n0. Consider
a sequence σ = p1p2 . . . ph (h ≥ n0) so that σ contains
at least k distinct pages and ph is the first page of a
phase. Therefore ph causes FWF to flush its cache,
which now contains only one page after serving σ. Now
consider the set of continuations of σ. The number of
last-fault sequences among these for LRU and FWF is
N − k and N − 1, respectively. Therefore there are at
least k − 1 sequences for every σ for which the cost of
LRU is strictly less than the cost of FWF and hence a
bijection as required does not exist. �

Combining Lemma 3.1 and Lemma 3.2 we obtain
strict separation of the performance of LRU and FWF.

Theorem 3.1. LRU ≺b FWF.

Note that we can use exactly the same argument as
in Lemma 3.1 to prove the following theorems.

Theorem 3.2. FIFO �b FWF, FIFO �b LRU, and
LRU �b FIFO. Thus we have LRU ≡b FIFO.

Theorem 3.3. Let A and B be two arbitrary lazy algo-
rithms. Then we have A ≡b B.

These results explain why most measures are unable
to separate lazy algorithms such as LRU and FIFO. This
supports the fact that we must constrain sequences to
the ones most often appearing in practice such as those
with locality of reference so that we may distinguish
differing paging algorithms.

4 Influence of Lookahead
In this section we demonstrate that Bijective Analysis
reflects the effects of lookahead. Let LRU(�) be a
modification of LRU defined for a lookahead of size � as
follows [Alb97]. On a fault, LRU(�) evicts a page in the
cache that is least recently used among the pages that
are not in the current lookahead. Our model reflects
the influence of the lookahead in that LRU(�) ≺b LRU,
i.e. LRU(�) is better than LRU according to Bijective
Analysis. Intuitively, LRU(�) �b LRU, because LRU(�)
behaves pretty much the same as LRU except when it
knows it can do better.

Lemma 4.1. The cost of LRU(�) is no more than the
cost of LRU on any given sequence of requests, hence
LRU(�) �b LRU.

Proof. Assume for the sake of contradiction that
there is a sequence σ = p1p2 . . . pm on which LRU(�)
incurs strictly more faults than LRU. Let a be the
smallest index so that pa is a hit for LRU and a fault
for LRU(�). Suppose that the most recent eviction of
pa by LRU(�) is at time r on the request pr. Therefore
we have pi �= pa for r ≤ i ≤ a and furthermore LRU
does not evict pa at any time t, where r ≤ t ≤ a. Let
pr1 , pr2 , . . . , prk

be the pages in LRU’s cache at time r
so that pri is less recently used than prj at time r if and
only if i < j. Note that since a is the smallest index so
that pa is a hit for LRU and a fault for LRU(�), LRU in-
curs a fault on pr and evicts pr1 . Suppose that prx = pa

for some 1 < x ≤ k and let Lr the set of pages in
the lookahead of size � at time r. We consider two cases:

Case 1: All the pages pr1 , pr2 , . . . , prx−1 are in
LRU(�)’s cache at time r. Since LRU(�) evicts prx = pa

at time r, we should have pri ∈ Lr for 1 ≤ i ≤ x − 1.
Let y be the largest index so that r ≤ y ≤ r + �,
py ∈ {pr1 , pr2 , . . . , prx−1}, and LRU incurs a fault at
time y. Note that since pr1 ∈ L and LRU evicts pr1

at time r, y exists. We claim that LRU should evict
prx = pa at time y. Since pa has not been requested
between times r and y, the only pages that can be less
recently used than pa are pr1 , pr2 , . . . , prx−1 . Assume
that at time y, LRU evicts the page prz for some
1 ≤ z ≤ x − 1. prz should not be requested between
times r and y; otherwise pa is less recently used than
it. We know that prz ∈ Lr and therefore prz will be
requested at least once between the times y+1 and r+�.
The first such request is a fault on a page (prz) that is
in {pr1 , pr2 , . . . , prx−1}; this contradicts the choice of y.
Therefore pa is the least recently used page for LRU at
time y and LRU evicts it. This contradicts the fact that
LRU does not evict pa on a fault at any time r ≤ t ≤ a.

Case 2: There is a page p ∈ {pr1 , pr2 , . . . , prx−1}
that is not in LRU(�)’s cache at time r. Let r′ < r be the
last time that LRU(�) has evicted p. Since p is in LRU’s
cache and not in LRU(�)’s cache at time r, we have
pi �= p for r′ ≤ i ≤ r− 1 and furthermore LRU does not
evict p at any time t, where r′ ≤ t ≤ r−1. This reduces
to the situation discussed at the beginning of this proof,
with a = r and r = r′. Since a is a finite number and
we strictly decrease our time of interest, after a finite
number of applications of case 2 this reduces to case 1.

Thus we cannot have any request on which LRU(�)
incurs a fault and LRU does not, and hence LRU(�)
does not incur more faults than LRU on any sequence.
�

Lemma 4.2. There exists a sequence in which LRU(�)
outperforms LRU, therefore LRU ��b LRU(�).

Proof. From Lemma 4.1, we know that LRU has the
same or higher number of page faults as LRU(�) on each
sequence of length at least n0. So it suffices to show that
on at least one sequence LRU(�) strictly outperforms
LRU. Consider a sequence σ of size n1 ≥ n0 which
contains several consecutive copies of the subsequence
p1p2 . . . pkpk+1. LRU incurs a fault on all pages of σ
and therefore the cost of LRU on σ is n1. The cost of
LRU(�) on the other hand is n1/(� + 1). �

Theorem 4.1. LRU(�) ≺b LRU.

5 Paging with Locality of Reference
In Section 3, we proved that all lazy algorithms are
strongly equivalent according to Bijective Analysis.
However, this analysis ignored that in practice request
sequences exhibit locality of reference. We follow the
model of Albers et al. [AFG05], in which a request se-
quence has high locality of reference if the number of
distinct pages in a window of size n is small. Consider
a function that represents the maximum (or average)
number of distinct pages in a window of size n, in a re-
quest sequence. Extensive experiments with real data
show that this function can be bounded by a concave
function for most practical request sequences [AFG05].
Let f be an increasing concave function. There are two
possible ways to model the locality. In the Max-Model
we say that a request sequence is consistent with f if
the number of distinct pages in any window of size n is
at most f(n), for any n ∈ N . In the Average-Model we
say that a request sequence is consistent with f if the
average number of distinct pages in a window of size n is
at most f(n), for any n ∈ N . Now we can model local-
ity by considering only those request sequences that are
consistent with f . Albers et al. consider a slightly more
restrictive class of functions called concave* functions.

If1
2

If2
2

If1
4

If2
4

Σ∗
Σ4Σ1 Σ3Σ2

Figure 1: Partition of the input space induced by
different choices of f .

Definition 5.1. [AFG05] A function f : N → R+ is
concave* if

1. f(1) = 1 and

2. ∀n ∈ N : f(n + 1) − f(n) ≥ f(n + 2) − f(n + 1).

In the Max-Model we additionally require that f be
surjective on the integers between 1 and its maximum
value.

We restrict the input sequences to those consistent
with a given concave* function f in the Max-Model.
Let If denote the set of such sequences. We can easily
modify the definitions of Bijective Analysis and Average
Analysis (Definition 3.1 and Definition 3.2) by consid-
ering If instead of I. We denote the corresponding
relations by A �f

b B, A �f
a B, etc. Note that we can

make any sequence consistent with f by repeating every
request a sufficient number of times. Therefore even if
we restrict the input to sequences with high locality of
reference, there is a worst case sequence for LRU that
is consistent with f and therefore the competitive ratio
of LRU is the same as in the standard model 1. Figure
1 shows the partition of the input space induced by the
choice of f . Observe that the performance of a paging
algorithm is now evaluated within the subset of request
sequences of a given length whose locality of reference
is consistent with f , i.e. If

n .
Note that the inductive argument used to prove that

all lazy algorithms are equivalent according to Bijective
Analysis does not necessarily carry through under con-
cave analysis. When a continuation is proposed we must
ensure that it remains within the set If to be valid.

Consider a fixed concave* function f . Let If
n denote

sequences of length n in If and A be an arbitrary
paging algorithm. We call a sequence bad for A if A
incurs a fault on its last request; otherwise we call it
a good sequence for A. Let Bh(A) be the number of

1This is one of the reasons that Albers et al. [AFG05] use the
fault rate as a measure of performance.

sequences in If
h that are bad for A. For a sequence

σ ∈ If
h , let Bh+1(A |σ) denote the number of sequences

in If
h+1 that have σ as their prefix and are bad for

A. Define Gh(A) and Gh+1(A |σ) in an analogous
way for good sequences. Intuitively, a good algorithm
maintains its good sequences in the set of sequences
with high locality of reference and hence can safely
perform the continuation. Observe that LRU naturally
fits this criterion: the most recently accessed sequences
are exactly those that are in its cache, and therefore
good (i.e. last-hit) sequences for LRU are more likely
to be in sequences with high locality of reference. We
formalize this intuition in the rest of this section.

Lemma 5.1. For any integer h > 0 and any paging
algorithm A, Bh(LRU) ≤ Bh(A).

Proof. If h = 1, then every sequence of Ih is consistent
with f and each algorithm incurs a fault on its last
request (recall that algorithms start with an empty
cache). Therefore we have B1(LRU) = |If

1 | = N =
B1(A). If h > 1, consider an arbitrary sequence σ ∈
If

h−1. If σ has at most k distinct pages, then LRU and
A have the same pages in their cache after serving σ and
therefore Bh(LRU |σ) = Bh(A |σ). Otherwise, both
LRU and A have filled their cache with k pages after
serving σ. The next page requested can be an arbitrary
page, provided that the number of different request
pages thus far does not surpass the limit imposed by
f .

From the definition of f , repeating the last request
of a sequence σ ∈ If

h−1 is always consistent with f .
Repeating the second to last sequence may or may
not be consistent with f , however if the second to
last sequence is not consistent neither is any other
request. This implies that for every good request for
A that is consistent with f , there is a good request for
LRU that is consistent with f . Hence Gh(LRU |σ) ≥
Gh(A |σ). Now since the good and bad continuations
form a partition of the set of valid extensions of σ, the
inequality above implies Bh(LRU |σ) ≤ Bh(A |σ). To
conclude observe that Bh(X) =

∑
σ∈Ih−1

Bh(X |σ) for
any algorithm X . Hence

Bh(LRU) =
∑

σ∈Ih−1

Bh(LRU |σ)

≤
∑

σ∈Ih−1

Bh(A |σ) = Bh(A)

as claimed. �

Lastly, we show that LRU strictly outperforms all
other caching algorithms.

Definition 5.2. Let m be an integer, A and B be
paging algorithms, and f be a concave* function. A

is said to (m, f)-dominate B if we have
∑

σ∈If
m
A(σ) ≤∑

σ∈If
m
B(σ). A is said to dominate B if there exists

an integer m0 ≥ 1 so that for each m ≥ m0 and every
concave* function f , A (m, f)-dominates B.

Observation 5.1. A �a B if and only if there exists
an integer m0 ≥ 1 so that A (m, f)-dominates B for
each m ≥ m0.

Lemma 5.2. For every paging algorithm A, LRU dom-
inates A.

Proof. Let f be an arbitrary concave* function and
m be a positive integer. For any 1 ≤ i ≤ m, let
Fi,m(A) be the number of sequences in If

m for which
A incurs a fault on the ith request. We will show that
Fi,m(LRU) ≤ Fi,m(A) for any 1 ≤ i ≤ m. For i = 1, we
have F1,m(LRU) = F1,m(A) = |If

m|. Now assume that
i > 1. Let σ be an arbitrary sequence of length i − 1,
and let Tσ denote the set of sequences in If

m that have
σ as their prefix. Denote by Fi,m(A |σ) the number of
sequences in Tσ for which A incurs a fault on the ith

request.
If σ contains at most k distinct pages, then

LRU and A behave the same on σ and we have
Fi,m(LRU |σ) = Fi,m(A |σ). Assume then that σ has
more than k distinct pages. We can partition Tσ into
four subsets: (1) T 1

σ : sequences in which neither LRU
nor A incur a fault on the ith page request, (2) T 2

σ : se-
quences in which both LRU and A incur a fault on the
ith page request, (3) T 3

σ : sequences in which A incurs
a fault on the ith page request, but LRU does not. (4)
T 4

σ : sequences in which LRU incurs a fault on the ith

page request, but A does not.
We have Fi,m(LRU |σ) = |T 2

σ | + |T 4
σ |, and

Fi,m(A |σ) = |T 2
σ | + |T 3

σ |. We show that |T 4
σ | ≤ |T 3

σ |
by proving that there exists a one-to-one mapping d
from T 4

σ to T 3
σ . For 1 ≤ q ≤ 4, let P q

σ be the set
of pages that are requested as the ith page of a se-
quence in T q

σ . If a page p appears as the ith request
of a sequence in If

i , then it will appear as the ith re-
quest of a sequence in If

m, namely the one obtained by
repeating p after the ith request. Therefore, we have
Bi(LRU |σ) = |P 2

σ | + |P 4
σ | and Bi(A |σ) = |P 2

σ | + |P 3
σ |.

We know that Bi(LRU |σ) ≤ Bi(A |σ) from the proof
of Lemma 5.1; therefore |P 4

σ | ≤ |P 3
σ | and there is a one-

to-one mapping r from P 4
σ to P 3

σ . We use the mapping
r to define the desired mapping d. Consider an arbi-
trary sequence S = p1p2 . . . pm ∈ T 4

σ . Let pi = x and
y = r(x). According to definitions we know that on the
ith request of a sequence in Tσ, x is a fault for LRU and
a hit for A, while y is a hit for LRU and a fault for A.
Let σx ∈ If

i be the sequence obtained by appending the
page x to σ, and σy ∈ If

i be the sequence obtained by

appending the page y to σ. On serving σx, the last page
(x) is a fault for LRU; therefore x is not among the last
k distinct pages in σ. LRU does not incur a fault on
the last page of σy; thus y is among the last k distinct
pages of σ. Hence if starting from ith request, we con-
vert each x in a sequence in Tσx to y, we will obtain
a sequence that is consistent with f , i.e., a sequence in
Tσy . This gives us a one-to-one mapping from Tσx to
Tσy . By a similar process for the pages in P 4

σ , we obtain
a one-to-one mapping from T 4

σ to T 3
σ . Therefore

|T 4
σ | ≤ |T 3

σ | ⇒ Fi,m(LRU |σ) ≤ Fi,m(A |σ).

Since
Fi,m(LRU) =

∑

σ∈Ii−1

Fi,m(LRU |σ)

and
Fi,m(A) =

∑

σ∈Ii−1

Fi,m(A |σ),

we get Fi,m(LRU) ≤ Fi,m(A). We also have
∑

σ∈If
m

LRU(σ) =
∑

1≤i≤m

Fi,m(LRU)

and ∑

σ∈If
m

A(σ) =
∑

1≤i≤m

Fi,m(A).

Therefore
∑

σ∈If
m

LRU(σ) ≤
∑

σ∈If
m

A(σ).

Thus LRU (m, f)-dominates A for every concave* func-
tion f , and every integer m ≥ 1. Hence LRU dominates
A. �

Corollary 5.1. For any concave* function f and any
paging algorithm A, LRU �f

a A.

Therefore LRU is an optimal algorithm when we
restrict input to sequences with high locality of refer-
ence. A natural question is whether or not LRU is a
unique optimum, i.e., is there a paging algorithm A that
dominates LRU? The following theorem answers this
question in the affirmative.

Theorem 5.1. No paging algorithm (other than LRU)
dominates LRU .

Proof. Assume for the sake of contradiction that a
paging algorithm A dominates LRU and A is different
from LRU . Then there must exist a sequence σ so that
LRU and A have different pages in cache after serving σ.
Let R denote the set of k distinct pages that are most

recently accessed in σ. Let σ′ be the smallest suffix
of σ that contains k distinct pages, namely pages in R.
Select a concave* function f so that σ is consistent with
f and f(|σ′| + 1) = f(|σ′|) = k.2

Consider an arbitrary integer m > |σ| . We define
Tσ, Fi,m(σ), and T q

σ for 1 ≤ q ≤ 4 as in the proof
of Lemma 5.2. Suppose that after serving σ, LRU’s
cache is different from A’s cache in 1 ≤ w ≤ k
pages. Let W be the set of pages that are in A’s
cache, but not in LRU’s cache. Adding any member
of W to σ leads to a sequence that has more than
k = f(|σ′|+1) distinct pages in a window of size |σ′|+1;
therefore such sequences are not consistent with f and
we have T 4

σ = ∅. We have |T 3
σ | ≥ w ≥ 1, because

for each page p ∈ R \ W , the sequence obtained by
appending m − |σ| repetitions of p to I is consistent
with f and belongs to T 3

σ . Therefore |T 4
σ | < |T 3

σ | and
thus Fi,m(LRU |σ) < Fi,m(A |σ). Since for any other
sequence θ ∈ Ii−1 we have Fi,m(LRU | θ) ≤ Fi,m(A | θ),
we get Fi,m(LRU) < Fi,m(A). Using the proof of
Lemma 5.2, we have Fi,m(LRU) ≤ Fi,m(A) for any
1 ≤ i ≤ m. Therefore

∑
σ∈If

m
LRU(σ) <

∑
σ∈If

m
A(σ).

As the argument holds for any m > |σ|, this refutes the
assumption that A dominates LRU . �

Theorem 5.2. Let A be a paging algorithm other than
LRU. Then there is a concave* function f so that
A ��f

a LRU which implies A ��f
b LRU.

6 Conclusions
In this paper we introduced Bijective Analysis and
Average Analysis as two new techniques for comparing
the performance of on-line algorithms. These measures
compare on-line algorithms over all sequences of the
same length, rather than the worst case sequences
alone. In this line of research we set as a goal to
propose a model that would more accurately reflect
the performance of known on-line paging algorithms.
After examining a variety of options, we chose the
model of Albers et al. as the best starting point
for our endeavours. We then proceeded to further
refine the measure using Bijective Analysis. It then
became apparent that this model, proposed purely from
first principles, would naturally reflect the effects of
lookahead and provide separation between well known
paging algorithms.

2Note that this is not possible if the page immediately before
σ′ in σ is not in R. In this case, modify σ by repeating the
first page of σ′. Since we can assume without loss of generality
that both algorithms are demand algorithms, this does not change
their behaviour. If the prefix of σ before σ′ is not consistent with
f , we can apply the same repeating trick to make it consistent
with f .

In particular, we showed that these models over-
come some of the shortcomings of competitive analysis,
namely they reflect the influence of lookahead and sep-
arate the performance of LRU and FWF. We proved
that all lazy algorithms are equivalent according to Bi-
jective Analysis. Since Bijective Analysis appears to be
a natural model, this explains why most measures are
unable to separate the theoretical performance of lazy
algorithms (e.g. LRU and FIFO).

We then combined Average Analysis with concave
analysis, a model of paging with locality of reference
proposed by Albers et al. [AFG05]. We showed
that under this model, LRU is the sole candidate
for being the best on-line paging algorithm. More
specifically, we proved that when we restrict the input to
sequences with high locality of reference, LRU is never
outperformed by another paging algorithm according to
Average Analysis, while it outperforms any other paging
algorithm according to Average Analysis (and thus
Bijective Analysis). Since in practice, input sequences
are believed to show locality of reference, this justifies
theoretically why LRU is believed to have the best
practical performance among on-line paging algorithms.
Applying these comparison models to other on-line
problems remains an open problem.

Acknowledgements We thank Ian Munro for
early discussions on alternative measures of perfor-
mance for on-line algorithms.

References

[AFG05] Susanne Albers, Lene M. Favrholdt, and Oliver
Giel. On paging with locality of reference. Journal of
Computer and System Sciences, 70, 2005.

[Alb97] Susanne Albers. On the influence of looka-
head in competitive paging algorithms. Algorithmica,
18(3):283–305, July 1997.

[BDB94] Shai Ben-David and Allan Borodin. A new mea-
sure for the study of on-line algorithms. Algorithmica,
11:73–91, 1994.

[Bec04] Luca Becchetti. Modeling locality: A probabilistic
analysis of LRU and FWF. In 12th Annual European
Symposium on Algorithms (ESA ’04), pages 98–109,
2004.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Compu-
tation and Competitive Analysis. Cambridge Univer-
sity Press, 1998.

[BF03] Joan Boyar and Lene M. Favrholdt. The relative
worst order ratio for on-line algorithms. In CIAC: Ital-
ian Conference on Algorithms and Complexity, 2003.

[BFL05] Joan Boyar, Lene M. Favrholdt, and Kim S.
Larsen. The Relative Worst Order Ratio Applied to
Paging. In ACM-SIAM SODA ’05, pages 718–727,
2005.

[BIRS95] Allan Borodin, Sandy Irani, Prabhakar Raghavan,
and Baruch Schieber. Competitive paging with local-
ity of reference. Journal of Computer and System Sci-
ences, 50:244–258, 1995.

[BM04] Joan Boyar and Paul Medvedev. The relative worst
order ratio applied to seat reservation. In SWAT:
Scandinavian Workshop on Algorithm Theory, 2004.

[Den68] Peter J. Denning. The working set model for
program behaviour. Communications of the ACM,
11(5), May 1968.

[DLO05] Reza Dorrigiv and Alejandro López-Ortiz. A
survey of performance measures for on-line algo-
rithms. SIGACT News (ACM Special Interest Group
on Automata and Computability Theory), 36(3):67–81,
September 2005.

[Ken96] Claire Kenyon. Best-fit bin-packing with random
order. In ACM-SIAM SODA ’96, pages 359–364, 1996.

[KP00] Elias Koutsoupias and Christos Papadimitriou. Be-
yond competitive analysis. SIAM J. Comput., 30:300–
317, 2000.

[KPR00] Anna R. Karlin, Steven J. Phillips, and Prabhakar
Raghavan. Markov paging. SIAM Journal on Comput-
ing, 30(3):906–922, 2000.

[PS06] Konstantinos Panagiotou and Alexander Souza. On
adequate performance measures for paging. In Proceed-
ings of the 38th Annual ACM Symposium on Theory of
Computing (STOC ’06), pages 487–496, 2006.

[SGG02] Abraham Silberschatz, Peter B. Galvin, and Gerg
Gagne. Operating System Concepts. John Wiley &
Sons, 2002.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized
Efficiency of List Update and Paging Rules. Commu-
nications of the ACM, 28:202–208, 1985.

[Tor98] Eric Torng. A unified analysis of paging and
caching. Algorithmica, 20(2):175–200, 1998.

[You94] Neal E. Young. The k-server dual and loose
competitiveness for paging. Algorithmica, 11(6):525–
541, June 1994.

[You98] Neal E. Young. Bounding the diffuse adversary.
In Proceedings of the 9th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’98), pages 420–425, 1998.

[You00] Neal E. Young. On-line paging against adversar-
ially biased random inputs. Journal of Algorithms,
37(1):218–235, 2000.

[You02] Neal E. Young. On-line file caching. Algorithmica,
33(3):371–383, 2002.

