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Abstract

In this paper we give a finer separation of several known paging algorithms
using a new technique called relative interval analysis. This technique com-
pares the fault rate of two paging algorithms across the entire range of inputs
of a given size rather than in the worst case alone. Using this technique we
characterize the relative performance of LRU and LRU-2, as well as LRU and
FWF, among others. We also show that lookahead is beneficial for a paging
algorithm, a fact that is well known in practice but it was, until recently, not
verified by theory.
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1. Introduction

Paging is a fundamental problem in the context of the analysis of online
algorithms. A paging algorithm mediates between a slower and a faster
memory. Assuming a cache of size k, the algorithm decides which & memory
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pages to keep in the cache without the benefit of knowing in advance the
sequence of upcoming page requests. After receiving the ith page request the
online algorithm must decide which page to evict, in the event the request
results in a fault and the cache is full. The objective is to design efficient
online algorithms in the sense that on a given request sequence the total cost,
namely the total number of faults, is kept low. Three well known paging
algorithms are Least-Recently-Used (LRU), First-In-First-Out (FIFO), and
Flush-When-Full (FWF). On a fault, if the cache is full, LRU evicts the page
that is least recently requested, FIFO evicts the page that is first brought to
the cache, and FWF empties the cache.

The competitive ratio, first introduced formally by Sleator and Tarjan [2],
has served as a practical measure for the study and classification of online
algorithms. An algorithm (assuming a cost-minimization problem) is said to
be a-competitive if the cost of serving any specific request sequence never
exceeds « times the optimal cost (up to some additive constant) of an op-
timal offline algorithm which knows the entire sequence. The competitive
ratio has been applied to a variety of online problems and settings: it is rel-
atively simple measure to apply yet powerful enough to quantify, to a large
extent, the performance of many an online algorithm. On the other hand,
it has been observed by numerous researchers [3, 4, 5, 6, 7, 8] that for pag-
ing it produces results that are too pessimistic or otherwise found wanting.
For example, experimental studies show that LRU has a performance ratio
at most four times the optimal offline algorithm [6, 9], as opposed to the
competitive ratio k£ predicted by competitive analysis. Furthermore, it has
been empirically well established that LRU (and/or variants thereof) most
often are, in practice, preferable paging strategies to all other known paging
algorithms [10]. This is in contrast to competitive analysis in which the com-
petitive ratio of LRU is the same as FWF and worse than some randomized
algorithms. An additional drawback of competitive analysis, as can easily be
shown [11], is that finite lookahead yields no improvement in the performance
of an online algorithm. Once again, this is a rather counterintuitive conclu-
sion: in practice, one expects that lookahead should improve performance,
and a “reasonable” theoretical measure should reflect this reality.

Such anomalies have been observed since the early days of competitive
analysis, and there is a vast literature studying alternative proposals to the
competitive analysis of online algorithms in general, and for the paging prob-
lem in particular, e.g., [3, 7, 12, 13, 14, 5, 15, 16] (see [17] for a comprehensive
survey). Note that competitive analysis uses the concept of an optimal of-

2



fline algorithm as a baseline for comparing online algorithms. While this may
be convenient, it is rather indirect: one could argue that in comparing two
online algorithms, all we need to study is the relative cost of the algorithms
on the request sequences. The approach we follow in this paper stems from
this basic observation. Furthermore, our definition focuses not on a specific
worst case request sequence, but rather on the performance of an algorithm
on all possible sequences.

We briefly review some of these alternatives and refer the reader to the
survey of Dorrigiv and Lépez-Ortiz [17] for a more comprehensive and de-
tailed exposition. Loose competitiveness, which was first proposed by Young
in [6] and later refined in [18], considers an offline adversary that is oblivious
to the cache size k. The adversary must then produce a sequence that is
bad for most values of k rather than for just a specific value. It also ignores
those sequences on which the online algorithm incurs a cost less than a cer-
tain threshold. This results in a weaker adversary and gives rise to paging
algorithms of constant performance ratio. The diffuse adversary model by
Koutsoupias and Papadimitriou [5] as well as Young [19, 15] refines the com-
petitive ratio by restricting the set of legal request sequences to those derived
from a class (family) of probability distributions. This restriction follows
from the observation that although a good performance measure could in
fact use the actual distribution over the request sequences, determining the
exact distribution of real-life phenomena is a difficult task (e.g., depending on
the intended application different distributions might arise). By restricting
the input to a class A, of distributions, they are able to show more realistic
ratios for the performance of well known paging algorithms. The Maz/Max
ratio, introduced by Borodin and Ben-David [3] compares online algorithms
based on their amortized worst-case behaviour (here the amortization arises
by dividing the cost of the algorithm over the length of the request sequence).
This measure is based on directed comparison of online algorithms and re-
flects the influence of lookahead. However, it does not provide better sepa-
ration results than competitive analysis of paging algorithms. The relative
worst order ratio [7, 16, 20] combines some of the desirable properties of
the Max/Max ratio and the random order ratio (this last introduced in [21]
in the context of the online bin packing problem). As with the Max/Max
ratio, it allows for direct comparison of two online algorithms. Informally,
this measure compares the performance of two algorithms on a given re-
quest sequence by considering the worst-case ordering (permutation) of the
sequence, for each algorithm. It then selects among all possible sequences



the one that maximizes this worst-case performance. This measure reflects
the influence of lookahead for paging and separates the performance of LRU
from FWF [16]. More recently, Panagiotou and Souza proposed a model that
explains the efficiency of LRU in practice [8]. In their work, they classified
request sequences according to some parameters and proved an upper bound
on the competitive ratio of LRU as a function of these parameters. Then they
argued that, in practice, typical request sequences have parameters that lead
to a constant competitive ratio for LRU.

It is well known that “real-life” sequences for paging usually exhibit a high
degree of locality of reference [11]. This means that the currently requested
page is likely to be requested again in the near future. Several theoretical
models and techniques have been proposed in order to capture and exploit
locality of reference. Borodin, Raghavan, Irani, and Schieber [22] proposed
the access graph model in which the universe of possible request sequences
is reduced to reflect the fact that actual sequences depend heavily on the
structure of the program being executed. The space of request sequences
can then be modeled by a graph in which paths between vertices correspond
to request sequences. Chrobak and Noga showed that the competitive ratio
of LRU is at least as good as FIFO on every access graph [23]. In a gen-
eralization of the access graph model, Karlin, Phillips, and Raghavan [24]
proposed a model in which the space of request sequences has a distribution
induced by a Markov chain process. In other work, Becchetti [14] refined the
diffuse adversary model of Koutsoupias and Papadimitriou described earlier
by considering only probabilistic distributions in which locality of reference is
present. Using this model he proves that the performance of LRU improves as
locality increases while the reverse is true for FWF. Torng [12] considered the
decomposition of request sequences to phases in the same manner as marking
algorithms. He then modeled locality of reference by restricting the input to
sequences with long average phase length. Using the full access cost model,
he computed the performance of several paging algorithms on sequences with
high locality of reference. He showed that this model reflects the influence of
lookahead and also gives constant performance ratios for LRU on sequences
with significant locality of reference. However, all conservative and marking
algorithms have the same performance in this model.

Albers, Favrholdt, and Giel [13] introduced a model in which request
sequences are classified according to a measure of locality of reference. The
measure is based on Denning’s working set concept [25] which is supported
by extensive experimental results. The technique used reflects the fact that
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efficient algorithms must perform competitively in each class of inputs of
similar locality of reference, as opposed to the worst case alone. Using this
model, they showed that LRU has better performance than FWF and FIFO.

These measures achieve different degrees of partial separation between
well known algorithms for paging. Recently, Angelopoulos et al. introduced
bijective Analysis and average Analysis [26] which combined with the locality
model of Albers et al. [13], shows that LRU is the sole optimal paging algo-
rithm on sequences with locality of reference. They also applied these models
to list update algorithms [27]. This resolved an important disparity between
theory and practice of online paging algorithms, namely the superiority in
practice of LRU.

A remaining question however, is how to characterize the full spectrum of
performance of the various known paging algorithms. As discussed above, the
competitive ratio focuses on the worst case which in this setting is known
to be the same for all algorithms. In this paper we compare instead the
performance of two algorithms across the entire range of inputs; in that
comparison we use the fault rate measure instead of the competitive ratio.
Aside from artifacts introduced by the comparison to an offline algorithm,
practitioners find the fault rate a better indicator of performance. Formally,
the fault rate of a paging algorithm A on a sequence ¢ of length n is the
number of faults that A incurs on A divided by n. The fault rate of A on
a set of sequences is the worst (maximum) fault rate of A on any of those
sequences. The idea behind the fault rate is that sequences on which A incurs
very few faults compared to the number of requests are not that important,
even if the number of faults happens to be much higher than what can be
achieved by an offline (or even online) optimum. We show this using an
example. Let A and B two online paging algorithms so that A incurs less
faults than B on most sequences. Suppose that the fault rate of A is generally
much lower than that of B, so clearly A is preferable to B. However, if there
happens to be an “easy” sequence o of length 1000000 on which A incurs 100
faults, B incurs 10 faults and optimal offline algorithm can serve ¢ by only
2 faults, then the competitive ratio of A is 50 while that of B is 5 suggesting
the opposite of the logical conclusion. Note that the fault rate of A and B on
o is 0.01 and 0.001, respectively, which is miniscule and thus of no relevance
to the actual performance of a system using either algorithm.

Our results. In this paper we aim to provide a tool for finer study and sepa-
ration of the relative performance characteristics of online paging algorithms.



Table 1: Summary of the results for relative intervals of several paging algorithms.

LRU FWF FIFO LIFO | LRU-2
LRU
FWE |
e
LRU-2 | O [-&2, ] =
2k 7 k+1

We propose the relative interval which directly compares two online paging
algorithms A and B, without any reference to the optimal offline algorithm.
They are compared across their entire performance spectrum (rather than
on the worst case alone) using a normalized measure of performance, similar
to the fault rate. Informally the relative interval of two algorithms reflects
the range of the difference between the fault rate of those algorithms. For
every two online paging algorithm A and B we define a relative interval
Z(A,B) = |, 5], where =1 < a<land 0 < <1. f> —q, shows that B
is better than A according to the relative interval. The more the difference,
the better B is compared to A. Table 1 shows the summary of our results
about the relative intervals of well-known paging algorithms. These results
show that LRU and FIFO are better than FWF, a result expected from prac-
tice and experience, yet not fully reflected by the competitive ration model.
We also show that the relative interval has another good feature, namely we
prove that it reflects the influence of lookahead.

Comparison to other measures. We can directly compare two online algo-
rithms using the relative interval. Other measures that provide direct com-
parison between online algorithms are the Max/Max ratio, the relative worst
order ratio, bijective analysis, and average analysis. The Max/Max ratio
reflects the influence of lookahead, but it does not provide better separation
than the competitive ratio, e.g., LRU and FWF are equivalent under this
measure. The relative worst order ratio reflects the advantage of lookahead
and separates the performance of LRU and FWF. Thus this measure gives
results comparable to the relative interval. However, it is not intuitive why
we should consider all permutations of a sequence for comparing two online
paging algorithms (this might be more straightforward for other problems,
e.g., bin packing.). Furthermore, the relative interval provides a more com-



prehensive measure by considering the whole range of possible differences
between the performance of two algorithms. Note that in the Max/Max ra-
tio and the relative worst order ratio we only consider the worst case sequence
(among all sequences of the same length and all permutations of a sequence,
respectively).

Influence of lookahead is reflected by bijective analysis and average anal-
ysis. These measures also separate the performance of LRU and FWF. How-
ever, all demand paging algorithms are equivalent according to bijective anal-
ysis and average analysis. A demand paging algorithm does not evict a page
on a hit and evicts at most one page on a fault [11]. Thus LRU, FIFO, LRU-
2, and LIFO are demand paging algorithms, while FWF is not. Therefore
most paging algorithms have the same performance under these measures.
However, under the locality of reference model of [13] LRU is the unique
optimal deterministic online algorithm under average analysis. This is con-
sistent with the well known fact that LRU is the superior paging algorithm
in practice. The relative interval does not reflect the unique optimality of
LRU, but this also applies to all other measures that do not incorporate the
locality of reference assumption. An interesting extension to this work would
be to combine the relative interval with models for locality of reference. We
believe that this will lead to better separation results. For example, although
LRU beats LIFO under the relative interval, they have close performance.
This is not consistent with practice, where LRU behaves much better than
LIFO. However, note that LIFO and LRU are equivalent under plain bijec-
tive analysis and average analysis. Their performances are only separated
when we assume locality of reference. We believe that this would be the case
for the relative interval as well.

2. Relative Interval

We introduce a new model for comparing online algorithms. In this model
we directly compare two online algorithms, i.e., we do not use the optimal
offline algorithm as the baseline of our comparisons. Let A and B be two
online algorithms for the same minimization problem, e.g., paging. Denote
the cost of A on a sequence o by A(c). We define the following two functions:

Minap(n) = |{7I\11213L{A(O-) — B(o)},
and
Maz 4 5(n) = max{A(c) — B(o)}.

lo|=n
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Using these functions we define

Mi
Min(A, B) = liminf M, and Max(A, B) = limsup

n

Maz 4 5(n)

Note that Min(A, B) = —Max(B,A) and Maz(A,B) = —Min(B, A). Now
we are ready to define the relative interval of A and B as

T(A, B) = [Min(A, B), Maz(A, B)).

This interval gives useful information about the relative performance of A
and B. If Max(A,B) > |Min(A,B)| then B has better performance than
A in this model. In particular, if Z(A, B) = [0, 5] for § > 0 we say that B
dominates A. Note that in this case A does not have better performance
than B on any sequence (asymptotivcally), while B outperforms .4 on some
sequences. Also if Max (A, B) is close to 0 then we can conclude that A is
not much worse than B on any sequences. We can interpret other situations
in an analogous way.

We compute the value of Min(A, B) and Max(A, B) for various choices
of A and B. In some cases we obtained bounds or approximation of these
values instead. We say that |« ] approximates the relative interval of A and
B if Min(A,B) < «a and f < Max(A, B). We show this by Z(A, B) 2 [a, 3.

3. Relative Interval Applied to Paging Algorithms

In this section we compare some well known paging algorithms using
the new model. First we define some other paging algorithms. On a fault,
Last-In-First-Out (LIFO) evicts the page that is most recently brought to
the cache. LIFO does not have a constant competitive ratio [11]. A paging
algorithm is called conservative if it incurs at most k faults on any sequence
that contains at most k distinct pages. It can be shown [11] that LRU and
FIFO are conservative algorithms and FWF is not. Another class of online
paging algorithms are marking algorithms. A marking algorithm A works
in phases. Each phase starts right after the last request of the previous
phase and consists of the maximal sequence of requests that contains at
most k distinct pages. All the pages in the cache are unmarked at the
beginning of each phase. We mark any page just after the first request
to it. When an eviction is necessary, A should evict an unmarked page. It
is easy to show that LRU and FWF are marking algorithms while FIFO is
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not. It is known that the competitive ratio of any conservative or marking
paging algorithm is k& and this is the best possible among deterministic online
algorithms [11]. Therefore LRU, FIFO, and FWF all have the competitive
ratio k. LRU-2 is another paging algorithm proposed by O’Neil et al. for
database disk buffering [28]. On a fault, LRU-2 evicts the page whose second
to the last request is least recent. If there are pages in the cache that have
been requested only once so far, LRU-2 evicts the least recently used among
them. Boyar et al. proved that LRU-2 has competitive ratio 2k [29].

Theorem 1. For any two online paging algorithms A and B,

0 < Max(A,B) <1.

PROOF. For any n, there is a sequence o of length n so that A(n) = n, i.e.,
A incurs a fault on every request of o. This sequence can be obtained by
requesting, at each step, the page that is evicted by A in the previous step.
B incurs at most n faults on every sequence of length n. Therefore B(c) < n
and A(o) —B(o) > 0. Thus max|s|—,{.A(0) —B(c)} > 0. Since this holds for
every n, we have Max(A,B) > 0. For the upper bound, note that for every
sequence o of length n, we have

An)<n = A(n)—B(n) <n =
Therefore Maz(A,B) < 1.

Corollary 1. For any two online paging algorithms A and B,

—1 < Min(A,B) <0.

Theorem 2. Let A be an arbitrary demand conservative or demand marking
algorithm. Then we have Z(FWF, A) = [0, &)

PROOF. Let o be an arbitrary sequence and ¢ be an arbitrary marking
phase of o. Any marking algorithm incurs at most & faults on . Also since
@ contains k distinct pages, any conservative algorithm incurs at most k
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faults in this phase as well. Thus A incurs at most k& faults on . Since
FWF incurs exactly k faults on ¢ we have Min(FW F, A) > 0. Then we get
Min(FWF, A) = 0 by applying Corollary 1. Now we prove Max(FWF, A) >
% by constructing the following sequence o which contains k + 1 distinct
pages and starts by pips - - - ppprr1. After this the sequence contains several
blocks of size k. At the beginning of each block B the cache of FWF contains
only one page, say p. Also since A is a demand paging algorithm its cache
contains all of these pages save one (say ¢). B consists of requests to each
of these distinct pages with the exception of p, thus it has length exactly
k. In addition, we make sure that the request to ¢ is the last request in B.
Thus the last request of B is a fault for both algorithms on which A evicts
one page while FWF flushes its cache and brings only that last request to
its cache. Now we can construct a new block in a similar way. Therefore on
each block of length &, FWF and A incur cost k£ and 1, respectively and we
have Max(FWF,A) > % At each marking phase ¢, FWF incurs k faults
and A incurs at least one fault. Also ¢ has length at least k. Therefore
Maz(FWF,A) < &1L

Theorem 3. For any conservative algorithm A and any online algorithm B,
we have Maz(A,B) < 21

PRrROOF. Let o be an arbitrary sequence of length n and partition ¢ into
blocks so that B incurs a fault only on the first request of each block. There-
fore each block has at most k distinct pages and A incurs at most k faults
in each block. Let by, bo,--- , by be the sizes of blocks of . Then we have
B(o) =dand A(o) <>, . bi + >, o k. Therefore

A(") — B(U) < Zbigk bi + Zbi>k k—d < Zb,-gk(bi - 1) + prk(k' - 1)
n N Zbigk bi + prk; bi — Zbigk bi + Zbi>k k

bi—1
If b; < k, we have bigl < % and thus % < k—;l Also we have
i b; <k i
Zbi>k(k_1)

S < % Therefore w < % Since this is true for any o, we
I
have Max(A, B) < L.

Theorem 4. Z(LIFO,LRU) = [-51 1].

Proor. Since LRU is conservative, according to Theorem 3 we have
k—1

—1
Max(LRU, LIFO) < kT = Min(LIFO, LRU) > ———.

10



Now consider the sequence o = {p1ps - prprs+1}™. LRU incurs a fault on
every request of o while LIFO incurs a fault on every kth request. Thus
. E—1 , k—1

Min(LIFO,LRU) < i = Min(LIFO,LRU) = -
For the other direction consider the sequence o = pips -+ PrPrr1{PrkPr+1}"-
LIFO incurs a fault on every request while LRU only incurs a fault on the first
k+1 pages. Since m can be arbitrarily large, we have Max(LIFO, LRU) > 1.
According to Theorem 1 we have Maxz(LIFO,LRU) = 1.

A similar argument on the same sequences implies the following theorem.

Theorem 5. Z(LIFO, FIFO) = [-%2 1].

Kk
Theorem 6. Z(FIFO, LRU) D [ k=11,

PrROOF. Max(FIFO,LRU): Consider the following sequence o that con-
sists of k + 1 distinct pages: o starts with oy = p1ps ... pg. After this initial
subsequence, o consists of several blocks. Each block starts right after the
previous block and contains 2k — 1 requests to k distinct pages. The first
k blocks of o are shown in Fig. 1. The blocks repeat after this, i.e., the
(k + 1)th block is the same as the first block, the (k + 2)th block is the
same as the second block and so on. It is easy to verify that FIFO incurs
a fault on the last k requests of each block while LRU only incurs a fault
on the middle request of every block. Let o have m blocks. Then we have
FIFO(o) =k+m x k and LRU(0) = k + m. Therefore

FIFO(o) — LRU(0)  m(k—1)

o] Tkt m(2k—1)

and for sufficiently large values of m, this value becomes arbitrarily close to
k—1

JQ\Z Z’}L(F IFO,LRU): Consider the following sequence ¢’ that consists of k41
distinct pages: o' starts with of, = pi1p2 ... pkPr—1DPk—2 - . . p1. After this initial
subsequence, ¢’ consists of m blocks. The first & blocks of ¢’ are shown in
Fig. 2. The blocks repeat after this, e.g., the (k + 1)th block is the same as
the first block. It is easy to verify that LRU incurs a fault on all k requests of
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Pk-1 DPk-2 - D2 P1 Px+1 DN b2 - Pk—1

Pk—2 DPk-3 - P1r Pk+1 Px  Pk+1 P11 Pk-2
Pk—-3 DPk—4a ' Pk+1 Pk  Pxk-1 Pk Pk+1 " Pk-3
Pt DPk-1 - b3 b2 P1 D2 p3 - Pk

Figure 1: Blocks of sequence o in the proof of Theorem 6; each row of the matrix represents
a block.

Px+1 Pk  DPk-1 - P3 D2
Pr Prk+1 Pk - P4 P3
P2 P1 Pky1 v Ds P4
Px DPk-1 Pk—2 -+ P2 N

Figure 2: Blocks of sequence ¢’ in the proof of Theorem 6.

each block while FIFO only incurs a fault on the first request of every block.
Then we have LRU(0) = k+m x k and FIFO(o) = k + m. Therefore

FIFO(c) — LRU(0)  —m(k — 1)

lo|  k+mk

Y

and for sufficiently large values of m, this value becomes arbitrarily close to
k—1
%

Theorem 7. Max(LRU-2, LRU) > {=.
Proor. Consider the sequence o obtained by m times repetition of the block
P1P2 - - - Pk—1PkPkPk—1 - - - D1Pk+1Pk+1- In the first block, LRU incurs k+1 faults.
In every other block, it only incurs two faults, one on the first request to
pr, and one on the first request to pyyi. Therefore we have LRU (o) =
k4+14+2(m—1)=2m+k—1. LRU-2 incurs k + 1 faults in the first block
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and 2k faults in every other block; it has a hit only on the second requests
to pr and pgyq in each block (other than the first block). Therefore we have
LRU-2(c) =k+1+2k(m —1) = 2km — k+ 1. Thus

LRU-2(0) — LRU(0) 2km—k+1—2m—k+1 m(2k—2) —2k+2
|o| B m(2k + 2) B m(2k + 2) ’

and for sufficiently large values of m, this value becomes arbitrarily close to
2%k—2 _ k—1
2%k+2 ~ kt1

Theorem 8. Maz(LRU-2,LRU) < L.

PRrROOF. Let o be an arbitrary sequence of length n and partition o to blocks
so that LRU incurs a fault only on the first request of each block. Let
By, Bs, ..., By be the blocks of o, and b; be the size of block B;. Then we
have LRU(0) = d and LRU-2(0) < >, _,.4b;. We show that LRU-2 incurs
at most k faults in each block. We first show B; contains at most k distinct
pages. Bj; contains requests to one page and LRU-2 incurs one fault on it.
Consider an arbitrary block B; for ¢ > 1, let p be the first request of B;,
and let p1, po, ..., pr_1 be the k£ — 1 most recently used pages before the
block B; in this order. We have p € P = {p1,p2,...,pr_1}, because LRU
incurs a fault on p. We claim that each request of B; is either to p or to a
page of P. Assume for the sake of contradiction that B; contains a request
to a page ¢ € {p} U P and consider the first request to ¢ in B;. All pages
D, P1,P2,---,Pk—1 are requested since the previous request to q. Therefore
at least k distinct pages are requested since the last request to ¢ and LRU
incurs a fault on ¢q. This contradicts the definition of a block. Therefore B;
contains at most k distinct pages.

We claim that LRU-2 incurs at most one fault on every page ¢ in block
B;. Assume that this is not true and LRU-2 incurs two faults on a page ¢
in B;. Therefore q is evicted after the first request to it in B;. Assume that
this eviction happened on a fault on a request to page r and consider the
pages that are in LRU-2’s cache just before that request. Since r € {p} U P
is not in the cache and |[{p} U P| = k, there is a page s ¢ {p} U P in the
cache. Let t be the time of the last request to p,_; before the block B;. The
last request to s is before ¢, while the second to last request to ¢ is at time
t or afterwards. Therefore LRU-2 does not evict ¢ on this fault, which is
a contradiction. Hence LRU-2 incurs at most k faults in each block of o.
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Therefore
LRU-2(c) — LRU(0) < Zbigk b; + Zbi>k k—d
n T D anbi D b
< Zbigk(bi - 1) + prk(k - 1)
- Dok Uit 2o K

If b; < k, we have biml < % and thus

b;
> pi<kbi — 1) < E—1
Zbigk bi -k

Also we have

> k(b —1) < k—1
Zb¢>kk B k

LRU-2(0) — LRU (o) < k—1
n - k-
Since this is true for any o, we have Max(LRU-2, LRU) < %

Therefore

Theorem 9. Min(LRU-2, LRU) < —%-1L.

Proor. Consider the following sequence o that consists of £ + 1 distinct
pages. o starts with o9 = pipo...pr. After this initial subsequence, o
consists of m blocks. Each block starts right after the previous block. The
1th block consists of one of the subsequences shown in Figure 3, depending
on the parity of 7. It is easy to verify that LRU incurs a fault on the last k
requests of each block while LRU-2 only incurs a fault on the middle request
of every block, i.e., pry1 in Odd blocks and p; in Even blocks. Then we have
LRU (o) =k +m x k and LRU-2(0) = k + m. Therefore

LRU-2(c) — LRU(0) —m(k —1)
lo|  k+m(2k)’

and for sufficiently large values of m, this value becomes arbitrarily close to
k-l

2k -
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Odd: pr prk—1 ... P2 D1 DPr+1 Pk Pk—1 --- D3 D2
Even: p, p3 -vo Pk Pk+1 P1 P2 D3 coo DPk—1 Dk

Figure 3: A block of sequence o in the proof of Theorem 9.

Therefore while Max(LRU-2,LRU) is almost 1, we have proven so far
an upper bound of almost -1/2 for Min(LRU-2,LRU). A natural question
is whether we can improve this bound, i.e., prove that Min(LRU-2,LRU) is
less than -1/2. We believe that this is not true and prove it for the case
that we only have k + 1 distinct pages (note that all our examples are using
k+1 distinct pages). While this is a counterintuitive result, in the sense that
LRU-2 is preferable in practice it adds to our understanding of the relative
advantages of LRU and LRU-2. This results indicates that in the fault rate
model LRU is also preferable to LRU-2 and hence additional assumptions
need to be made in a model (such as the independency of requests model [30])
that would accurately reflect the superiority of LRU-2 observed in practice.

Theorem 10. Ifwe have at most k+1 distinct pages then Min(LRU-2,LRU)>
~1/2.

Proor. We call a request a “disparity” if it is a fault for LRU and a hit
for LRU-2. Note that only a disparity may reduce the value of Min(LRU-
2,LRU). Consider an arbitrary sequence 0 = 0105...0, and an arbitrary
page p. Let S be the set of all k distinct pages other than p. We prove
that between any two request for p in o causing a disparity there should be
a request to p that is not a disparity. Assume for the sake of contradiction
that this is not the case: o, and o, are disparity requests to p, and there is no
request to p between them. Let o, be the last request to p before o,. Since p,
is a fault for LRU, it has evicted p between p, and p,. Therefore all members
of S are requested between p, and p,. Similarly all pages of S are requested
between p, and p,. Since p is at LRU-2’s cache right before p,, there should
be at least one page in S that is not in its cache at that time. As all pages
of S are requested between p, and p,, LRU-2 incurs at least one fault in this
interval. Let p, be the last request between p, and p, on which LRU-2 incurs
a fault. We claim that LRU-2 should evict p on the request p,. Assume that
LRU-2 evicts a page ¢ € S on the fault p,. The next request to ¢ would be
a fault for LRU-2 and since p, is its last fault between p, and p, and ¢ is
requested in this range, we conclude that ¢ has been requested between p,
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and p,. However this means that the second last request to ¢ is after p,, while
the second last request to p is at p,. Thus LRU-2 should evict p at p,, and p,
is a fault for LRU-2 which is a contradiction. Hence corresponding to each
request that may reduce the value of Min(LRU-2,LRU) there is at least one
request that does not. This proves the bound of —1/2 for Min(LRU-2,LRU).

Influence of lookahead

We demonstrate that the relative interval reflects the effects of lookahead.
Let LRU({) be a modification of LRU defined for a lookahead of size ¢ as fol-
lows [31]. On a fault, LRU({) evicts a page in the cache that is least recently
used among the pages that are not in the current lookahead. It is known [26]
that LRU(¢) incurs no more faults than LRU on any sequence. Therefore
Min(LRU, LRU(¢)) = 0. Now consider the sequence o = {p1ps . .. prpr+1}™-
LRU incurs a fault on every request of o while LRU(¢) incurs a fault on every
[th request. Hence

Maz(LRU, LRU(()) > 1 -1/,
and thus LRU(¢) dominates LRU.

4. Conclusions and Open Questions

We introduced a fault rate based metric to compare paging algorithms
and using this metric, we showed the superiority of LRU and FIFO over
FWF. The metric also reflects the beneficial influence of lookahead.

Several natural open questions remain: filling in the remaining entries in
Table 1 as well as refining the bounds that are not tight. Additionally we
believe that the relative interval can be of interest in other online settings
and even perhaps for the comparison of offline algorithms.

Acknowledgements. We thank Spyros Angelopoulos for insightful discussions.
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