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Abstract. Given a set P of n points and a set D of m unit disks on a
2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i)
to check whether each point in P is covered by at least one disk in D or
not and (ii) if so, then find a minimum cardinality subset D∗ ⊆ D such
that unit disks in D∗ cover all the points in P . The discrete unit disk
cover problem is a geometric version of the general set cover problem
which is NP-hard [14]. The general set cover problem is not approx-
imable within c log |P|, for some constant c, but the DUDC problem was
shown to admit a constant factor approximation. In this paper, we pro-
vide an algorithm with constant approximation factor 18. The running
time of the proposed algorithm is O(n log n+m log m+mn). The previ-
ous best known tractable solution for the same problem was a 22-factor
approximation algorithm with running time O(m2n4).

1 Introduction

Research on geometric set cover problems is often motivated by applications in
wireless networking or facility location problems. Our interest in the problem
arose from data management problems upon terrains, in bathymetric applica-
tions in particular. Suppose that we have a survey of a terrain with data repre-
sented as points in the xy-plane, and the height data is stored as an attribute of
each point. Call this point set P . Given a new survey of the same area, we obtain
a new point set Q. We wish to update our data set by treating the new data set
Q as the standard, but we wish to maintain some of the old data for complete-
ness. Our restrictions are that each new point in Q must have at least one old
point from P within unit distance, and that a minimum number of points from
P are maintained. This problem is an instance of the discrete unit disk cover
(DUDC) problem.

Other applications of DUDC that are commonly used are selecting locations
for wireless servers from a set of candidate locations to cover a set of wireless
clients, or positioning emergency service centres (i.e. fire stations) from a set of
candidate sites so that all points of interest (houses, etc.) are within a predefined
maximum distance of the service centres.



1.1 Our Results

Given a set P of n points and a set D of m unit disks in a 2-dimensional plane,
we first check the feasibility of the DUDC problem i.e., check whether each point
in P is covered by at least one disk in D or not. If the answer to the first step
is yes, then we propose an 18-approximation algorithm for the DUDC problem.
The running time of the proposed algorithm is O(n log n + m log m + mn).

1.2 Related Work

The DUDC problem is a geometric version of the general set cover problem
which is NP-hard [14]. The general set cover problem is not approximable within
c log |P|, for some constant c [18]. Obviously the general approximation algo-
rithms for set cover apply to DUDC to get an easy O(log n) approximation (i.e.
[8]), but a series of constant factor approximation algorithms and a PTAS have
been presented for DUDC, mostly published within the past few years:

– O(1)-approximation, Brönnimann and Goodrich, 1995 [4];
– 108-approximation, Calinescu et al., 2004 [6];
– 72-approximation, Narayanappa amd Voytechovsky, 2006 [17];
– 38-approximation, Carmi et al., 2007 [7];
– 22-approximation, Claude et al., 2010 [5];
– (1+ε)-approximation, Mustafa and Ray, 2010 [16].

Using local search, Mustafa and Ray [16] developed a PTAS for the DUDC

problem. Their algorithm runs in O(m2(c/ε)2+1n) time, where c ≤ 4γ [16], and
γ can be bounded from above by 2

√
2 [10, 15]. The fastest worst-case run-

ning time is obtained by setting ε = 1 for a 2-approximation, which runs in

O(m2·(8
√

2)2+1n) = O(m257n) time. Clearly, this algorithm is not practical for
m ≥ 2. Our present work is directed towards finding approximation algorithms
for DUDC that are tractable.

Minimum Geometric Disk Cover. In the minimum geometric disk cover
problem, the input consists of a set of points in the plane, and the problem
is to find a set of unit disks of minimum cardinality whose union covers the
points. Unlike DUDC, disk centers are not constrained to be selected from a
given discrete set, but rather may be centered at arbitrary points in the plane.
Again, this problem is NP-hard [9] and has a PTAS solution [11, 12].

Discrete k-Center. Given two sets of points in the plane P and Q and an
integer k, find a set of k disks centered on points in P whose union covers Q
such that the radius of the largest disk is minimized. Observe that set Q has
a discrete unit disk cover consisting of k disks centered on points in P if and
only if Q has a discrete k-center centered on points in P with radius at most
one. This problem is NP-hard if k is an input variable [2], but when k is fixed, a

solution can be found in mO(
√

k) time [13], or mO(k1−1/d) time for points in R
d

[1].



2 Preliminaries

Here, we describe two restricted discrete unit disk cover problems. The first
problem is called the Restricted Line Separable Discrete Unit Disk Cover (RLS-
DUDC) problem and the second one is called the Line Separable Discrete Unit
Disk Cover (LSDUDC) problem. Both problems are defined on the 2-dimensional
plane, and depend on the plane being divided into two half-planes ℓ+ and ℓ−

defined by a line ℓ. The definition of RLSDUDC and LSDUDC are given below:

RLSDUDC: Given a set of n points P and a set D of m unit disks such that
the points in P and the center of disks in D are separated by the line ℓ, and
each point in P is covered by at least one disk in D, find a minimum size set
D∗ ⊆ D such that each point in P is covered by at least one disk in D∗.

LSDUDC: Given a set of n points P in ℓ+ and a set D of m unit disks with
centers in ℓ+ ∪ ℓ− such that each point in P is covered by at least one disk
centered in ℓ−, find a minimum size set D∗ ⊆ D such that each point in P
is covered by at least one disk in D∗.

Theorem 1. [5] The RLSDUDC problem can be solved optimally whereas we
solve the LSDUDC problem with a 2-factor approximation. The running time
for both solutions is O(n log n + mn) where m = |D| and n = |P|.

3 Testing Feasibility

Historically, discussions of set cover problems typically assume that a feasible
solution exists, both to simplify the presentation and because the test is simple.
We include a brief discussion here for completeness, but furthermore to demon-
strate that the incorporation of a feasibility test does not affect the final running
time of our algorithm.

For the feasibility check, given a point set P and a unit disk set D, the test that
all points in P are covered by at least one disk in D can be done in O(m log m+
n log m) time as follows:

Let Dcenter be the set of centers of the unit disks in D. Draw the Voronoi diagram
V D(Dcenter) of the points in Dcenter [3]. For each point p ∈ P , find its nearest
point qp ∈ Dcenter using the point location algorithm in the planar subdivision
V D(Dcenter). If δ(p, qp) ≤ 1 for all p ∈ P we can say that all the points in P are
covered by at least one unit disk in D where δ(a, b) = the Euclidean distance
between points a and b. The time complexity follows from the following facts:

(i) constructing the Voronoi diagram needs O(m log m) time, and (ii) for each
point p ∈ P , the planar point location algorithm needs O(log m) time.

Thus, we have the following lemma:

Lemma 1. The feasibility of the DUDC problem can be determined in O(m log m+
n log m) time.



4 Discrete Unit Disk Cover Problem

Given the feasibility test, for the remainder of the discussion we will assume
that all points in P are covered by at least one disk in D. Let R be the axis
aligned rectangle such that all points in P and all centers of the disks in D are
inside R. In the DUDC algorithm, we first divide R by horizontal line segments
ℓ1, ℓ2, . . . , ℓt−1 from top to bottom such that δ(ℓi, ℓi+1) = 1√

2
for i = 0, 1, . . . , t−1

where ℓ0 and ℓt are the top and bottom boundary of the rectangle R and δ(a, b)
is the distance between two horizontal line segments a and b. We denote the
horizontal strip bounded by the lines ℓi and ℓi+1 as [ℓi, ℓi+1].

The algorithm for the discrete unit disk cover problem is a two step algorithm.
In the first step, we propose an algorithm for covering points in P ∩ [ℓi, ℓi+1]
which are covered only by the disks centered inside the strip [ℓi, ℓi+1] for each
i = 0, 1, . . . , t − 1. We denote this problem as the within strip problem. In the
second step, we describe an algorithm for covering the remaining points in P .
We denote this problem as the outside strip problem.

4.1 Within Strip Problem

In this subsection, we propose a 6-approximation algorithm for the discrete unit
disk cover problem with a restricted configuration. The points in P are inside
a horizontal strip H with height 1√

2
and the centers of the unit disks in D are

also inside the same strip. The objective is to cover all the points in P using
the minimum number of disks in D. Without loss of generality, assume that the
width of H is k√

2
for some positive integer k. Before describing the covering

algorithm we partition the rectangle H into k squares of equal size 1√
2
× 1√

2
by

introducing vertical line segments L0, L1, . . . , Lk. Assume L0 and Lk are the left
and right vertical boundary of the rectangle. Let the squares be σ1, σ2, . . . , σk

in left to right order. Let Dσ
i (⊆ D) be the set of disks centered in the square

σi, and Pσ
i (⊆ P) be the set of points in the square σi. The within strip discrete

unit disk cover (WSDUDC) algorithm for P is described in Algorithm 1.

Lemma 2. Algorithm 1 produces a 6-approximation result in O(n log n + mn)
time.

Proof. For analysis of the approximation factor consider a disk d ∈ D. Without
loss of generality, assume that the center of d is inside the square σi. Since the
size of all the squares σj (1 ≤ j ≤ k) is 1√

2
× 1√

2
, one disk centered in σj is

sufficient to cover all the points in Pσ
j .

To analyze the approximation factor consider the following 11 different cases as
shown in Fig. 2. All other cases are similar to one of these cases. In Fig. 2, each
square σi is bounded by dark vertical line segments and a square σi is partitioned
into σ1

i and σ2
i of equal size by a dotted vertical line segment.



Algorithm 1 WSDUDC(P ,D)

1: Input: Set P of points in a horizontal strip H of height 1√
2
, and set D of unit disks

centered in H.
2: Output: Set D∗

1 ⊆ D of disks covering all the points in P .
3: Dσ

−1 ← ∅, D
σ
0 ← ∅, P

σ
−1 ← ∅, P

σ
0 ← ∅, P

σ
k+1 ← ∅, P

σ
k+2 ← ∅ and D∗

1 ← ∅.
4: for (i = 1, 2, . . . , k) do

5: Compute the sets Dσ
i and Pσ

i

6: end for

7: Set i← 1
8: while (i ≤ k) do

9: while ((i ≤ k) and (Dσ
i = ∅)) do

10: i = i + 1
11: end while

12: if Dσ
i−2 = ∅ then

13: let Qleft be the subset of Pσ
i−2∪P

σ
i−1 such that each point in Qleft is covered

by at least one disk in Dσ
i ∪ D

σ
i+1 (see Fig. 1(a));

14: else

15: let Qleft be the subset of Pσ
i−1 such that each point in Qleft is covered by at

least one disk in Dσ
i ∪ D

σ
i+1 (see Fig. 1(b)).

16: end if

17: Apply the RLSDUDC algorithm based on the line Li−1 to cover the points in
Qleft. Let D′ be the set of disks in this solution.

18: Set D∗
1 = D∗

1 ∪ D
′ and i = i + 1.

19: while ((i ≤ k) and (Dσ
i 6= ∅)) do

20: i = i + 1
21: end while

22: Let Qright be the subset of Pσ
i ∪ P

σ
i+1 such that each point in Qright is covered

by at least one disk in Dσ
i−2∪D

σ
i−1 (see Fig. 1(c)). Apply the LSDUDC algorithm

based on the line Li−1 to cover the points in Qright. Let D′ be the set of disks
in this solution. Set D∗

1 = D∗
1 ∪ D

′ and i = i + 1.
23: end while

24: Set j ← 1
25: while (j ≤ k) do

26: If Dσ
j 6= ∅,P

σ
j 6= ∅ but Dσ

j ∩ D
∗
1 = ∅ then add an arbitrary disk from Dσ

j to D∗
1 .

Set j = j + 1.
27: end while

28: return D∗
1
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...
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Fig. 1. Demonstration of Algorithm 1. Shaded circles indicate the points in P and
empty circles indicate disk centers.

Case 1: Dσ
i−2 = ∅,Dσ

i−1 = ∅,Dσ
i+1 = ∅ (see Fig. 2(a) where σi = C)

Case 2: Dσ
i−1 = ∅,Dσ

i+1 = ∅ (see Fig. 2(b) where σi = C)
Case 3: Dσ

i−1 = ∅,Dσ
i+1 6= ∅,Dσ

i+2 = ∅ (see Fig. 2(c) where σi = C)
Case 4: Dσ

i−2 = ∅,Dσ
i−1 6= ∅,Dσ

i+1 = ∅ (see Fig. 2(c) where σi = D)
Case 5: Dσ

i−1 = ∅,Dσ
i+1 6= ∅,Dσ

i+2 6= ∅,Dσ
i+3 = ∅ (see Fig. 2(d) where σi = C)

Case 6: Dσ
i−2 = ∅,Dσ

i−1 6= ∅,Dσ
i+1 6= ∅,Dσ

i+2 = ∅ (see Fig. 2(d) where σi = D)
Case 7: Dσ

i−3 = ∅,Dσ
i−2 6= ∅,Dσ

i−1 6= ∅,Dσ
i+1 = ∅ (see Fig. 2(d) where σi = E)

Case 8: Dσ
i−1 = ∅,Dσ

i+1 6= ∅,Dσ
i+2 6= ∅,Dσ

i+3 6= ∅,Dσ
i+4 = ∅ (see Fig. 2(e) where

σi = C)
Case 9: Dσ

i−2 = ∅,Dσ
i−1 6= ∅,Dσ

i+1 6= ∅,Dσ
i+2 6= ∅,Dσ

i+3 = ∅ (see Fig. 2(e) where
σi = D)

Case 10: Dσ
i−3 = ∅,Dσ

i−2 6= ∅,Dσ
i−1 6= ∅,Dσ

i+1 6= ∅,Dσ
i+2 = ∅ (see Fig. 2(e)

where σi = E)
Case 11: Dσ

i−4 = ∅,Dσ
i−3 6= ∅,Dσ

i−2 6= ∅,Dσ
i−1 6= ∅,Dσ

i+1 = ∅ (see Fig. 2(e)
where σi = F )

Now we describe the number of appearances of d in the proposed algorithm for
the Cases 1, 2, 3 and 4. The other cases are handled similarly.

Case 1 (Dσ
i−2 = ∅,Dσ

i−1 = ∅,Dσ
i+1 = ∅ (see Fig. 2(a) where σi = C)):

Disk d may appear in the solution of the LSDUDC algorithm with respect to
vertical line Li (line 22 of Algorithm 1). Also d may appear in the solution of the
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Fig. 2. Different cases in the proof of Lemma 2. Dots inside squares are points in P .

RLSDUDC algorithm with respect to the line Li−1 (line 17 of Algorithm 1). If
no disk in Dσ

i appears in the solution at the time of running the LSDUDC and
RLSDUDC algorithms, then d may appear in the solution (line 26 of Algorithm
1) to cover the points in Pσ

i . Therefore, d may appear at most 2 × 1 + 1 = 3
times in Algorithm 1 for this case.

Case 2 (Dσ
i−1 = ∅,Dσ

i+1 = ∅ (see Fig. 2(b) where σi = C)): Disk d may
appear in the solution of the LSDUDC algorithm with respect to vertical lines
Li−2 and Li (line 22 of Algorithm 1). Also d may appear in the solution of
the RLSDUDC algorithm with respect to the line Li−1 (line 17 of Algorithm
1). Again, if no disk in Dσ

i appears in the solution at the time of running the
LSDUDC and RLSDUDC algorithms, then d may appear in the solution (line
26 of Algorithm 1) to cover the points in Pσ

i or in Pσ
i−2. In this case Algorithm

1 may choose at most 2 × 2 + 1 + 1 = 6 disks instead of d.

Case 3 (Dσ
i−1 = ∅,Dσ

i+1 6= ∅,Dσ
i+2 = ∅ (see Fig. 2(c) where σi = C)): If

d ∈ σ1
i (see Fig. 2(c) where σi = C and σ1

i = C1) then d may appear in the
solutions of (i) the LSDUDC algorithm with respect to a vertical line Li−2 (line
22 of Algorithm 1) and (ii) the RLSDUDC algorithm with respect to the line
Li−1 (line 17 of Algorithm 1). In the optimum solution d may cover some points
in Pσ

i−2 and some points in Pσ
i+1. In Algorithm 1, we choose one disk in Dσ

i−2



and one disk in Dσ
i+1 to cover all the points in Pσ

i−2 and Pσ
i+1, respectively. If

no disk in Dσ
i appears in the solution at the time of running the LSDUDC and

RLSDUDC algorithms, then d may appear in the solution (line 26 of Algorithm
1) to cover the points in Pσ

i . Algorithm 1 thus chooses at most 2 + 1 + 1 + 1 = 5
disks instead of d in this case.

If d ∈ σ2
i (see Fig. 2(c) where σ2

i = C2), then d may appear in the solutions
of (i) the LSDUDC algorithm with respect to a vertical lines Li−2 and Li (line
22 of Algorithm 1) and (ii) the RLSDUDC algorithm with respect to the line
Li−1 (line 17 of Algorithm 1). Again, in the optimum solution d may cover some
points in Pσ

i+1. In Algorithm 1, we choose one disk in Dσ
i+1 to cover all the

points in Pσ
i+1. If no disk in Dσ

i appears in the solution at the time of running
the LSDUDC and RLSDUDC algorithms, then d may appear in the solution
(line 26 of Algorithm 1) to cover the points in Pσ

i . Therefore, Algorithm 1 may
choose at most 2 × 2 + 1 + 1 = 6 disks instead of d in this case.

Case 4 (Dσ
i−2 = ∅,Dσ

i−1 6= ∅,Dσ
i+1 = ∅ (see Fig. 2(c) where σi = D)): If

d ∈ σ1
i (see Fig. 2(c) where σi = D and σ1

i = D1), then d may appear in the
solutions of (i) the LSDUDC algorithm with respect to a vertical lines Li−3 and
Li (line 22 of Algorithm 1) and (ii) the RLSDUDC algorithm with respect to
the line Li−2 (line 17 of Algorithm 1). Again, in the optimum solution d may
cover some points in Pσ

i−1. In the proposed algorithm, we choose one disk in
Dσ

i−1 to cover all the points in Pσ
i−1. Note that, if no disk in Dσ

i appears in the
solution at the time of running the LSDUDC and RLSDUDC algorithms, then
d may appear in the solution (line 26 of Algorithm 1) to cover the points in Pσ

i .
Therefore Algorithm 1 chooses at most 2 × 2 + 1 + 1 = 6 disks instead of d.

If d ∈ σ2
i (see Fig. 2(c) where σ2

i = D2), then d may appear in the solutions
of (i) the LSDUDC algorithm with respect to a vertical lines Li−3 and Li (line
22 of Algorithm 1). Again, in the optimum solution d may cover some points
in Pσ

i−1. In Algorithm 1, we choose one disk in Dσ
i−1 to cover all the points in

Pσ
i−1. If no disk in Dσ

i appears in the solution of above LSDUDC algorithm then
d may appear in the solution (line 26 of Algorithm 1) to cover the points in Pσ

i .
Thus Algorithm 1 chooses at most 2 × 2 + 1 = 5 disks instead of d in this case.

The time complexity of the lemma follows from the fact that each disk in D can
participate a constant number of times in the LSDUDC and RLSDUDC algo-
rithms and the running time of both the LSDUDC and RLSDUDC algorithms
is O(n log n + mn) (see Theorem 1). ⊓⊔

4.2 Outside Strip Point Cover Problem

Let DU
i and DL

i be the set of disks centered above and below the line ℓi (defined
in Section 4) respectively.

Compute the sets PL
1 ,PL

2 , . . . ,PL
t ,PU

t ,PU
t−1, . . . ,PU

1 ⊆ P in order as follows:

Set P ′ = P . For each i = 1, 2, . . . , t compute PL
i = P ′∩DU

i and set P ′ = P ′\PL
i .

For each i = t, t − 1, . . . , 1 compute PU
i = P ′ ∩DL

i and set P ′ = P ′ \ PU
i .



Note that all sets PL
i are covered by the disks centered inside the horizontal

strip [ℓi−1, ℓi]. Similarly, all sets PU
i are covered by the disks in D whose centers

are inside the horizontal strip [ℓi, ℓi+1] but no points in PU
i are covered by a disk

centered above the line ℓi−1, where ℓi+1 is a horizontal line below ℓi.

Without loss of generality assume that t = 4s. Now, consider six sets of sets
related to Pi for i = 1, 2, . . .6 defined below:

S1 = {Q1i(= PL
1+4i)|i = 0, 1, . . . , s − 1}

S2 = {Q2i(= PL
2+4i)|i = 0, 1, . . . , s − 1}

S3 = {Q3i(= PL
3+4i)|i = 0, 1, . . . , s − 1}

S4 = {Q4i(= PL
4+4i)|i = 0, 1, . . . , s − 1}

S5 = {Q5i(= PU
1+2i)|i = 0, 1, . . . , 2s − 2}

S6 = {Q6i(= PU
2+2i)|i = 0, 1, . . . , 2s − 2}

We characterize the elements in each of the sets Si for i = 1, 2, . . . , 6 using the
following lemma:

Lemma 3. If p ∈ Quv and p′ ∈ Quw are two points such that for u = 1, 2, 3, 4,
v 6= w and v, w ∈ {1, 2, . . . s − 1}, and for u = 5, 6, v 6= w and v, w ∈
{1, 2, . . . , 2s − 2}, then a single disk in D cannot cover both the points p and
p′.

Proof. We prove the lemma for u = 1 and u = 5. A proof for the other cases
arises in a similar fashion.

Case u = 1: From the definition of Q1v and Q1w; Q1v = PL
1+4v and Q1w =

PL
1+4w. Now, from the definition of PL

1+4v and PL
1+4w each element of PL

1+4v and
PL

1+4w is covered by the disks centered inside the horizontal strip [ℓ4v, ℓ1+4v]
and [ℓ4w, ℓ1+4w], respectively. Since v 6= w and the height of each horizontal
strip is 1√

2
, so the distance between a point inside the strip [ℓ4v, ℓ1+4v] and a

point inside the strip [ℓ4w, ℓ1+4w] is greater than 2. Thus, in this case the lemma
follows from the fact that the disks are unit radius disks.

Case u = 5: From the definition of Q5v and Q5w; Q5v = PU
1+2v and Q5w =

PU
1+2w. Now, from the definition of PU

1+2v each element of PU
1+2v is covered by

the disks centered inside the horizontal strip [ℓ1+2v, ℓ2+2v], but no points in
PU

1+2v are covered by a disk centered above the line ℓ2v. Similarly, from the
definition of PU

1+2w, each element of PU
1+2w is covered by the disks centered

inside the horizontal strip [ℓ1+2w, ℓ2+2w], but no points in PU
1+2w are covered

by a disk centered above the line ℓ2w. Since v 6= w, there does not exist a disk
which covers one point in P1+2v

L and a point in P1+2w
L . ⊓⊔

We now describe the algorithm for covering the points in PL
1 ,PL

2 , . . . ,PL
t , PU

t ,

PU
t−1, . . . ,PU

1 . The algorithm executes the following steps:

Lemma 4. Algorithm 2 produces a 12-factor approximation result in O(n log n+
mn) time.



Algorithm 2 OSDUDC(P ,D)

1: Input: A points set P and a unit disks set D.
2: Output: A set D∗

2 ⊆ D.
3: D∗

2 ← ∅
4: for (i = 1, 2, . . . , t) do

5: Compute the set PL
i

6: end for

7: for (i = 1, 2, . . . , t) do

8: Run the LSDUDC algorithm on the point set PL
i based on the line ℓi. Let D′ ⊆ D

be the output of the algorithm. Set D∗
2 = D∗

2 ∪ D
′.

9: end for

10: for (i = t, t− 1, . . . , 1) do

11: Compute the set PU
i

12: end for

13: for (i = t, t− 1, . . . , 1) do

14: Run the LSDUDC algorithm on the point set PU
i based on the line ℓi. Let

D′ ⊆ D be the output of the algorithm. Set D∗
2 = D∗

2 ∪ D
′.

15: end for

16: return D∗
2

Proof. The set of points in PL
1 ,PL

2 , . . . ,PL
t ,PU

t ,PU
t−1, . . . ,PU

1 can be partitioned
into 6 sets of sets such that a disk cannot cover two points from a set Si such that
the two points are in different subsets Qij′ , Qij′′ , j′ 6= j′′ (see Lemma 3). Since
we can divide the plane into strips such that each strip contains at least one
point in P , t = O(n). Thus, the approximation factor of the lemma follows from
the fact that the LSDUDC algorithm produces a 2-factor approximation result
(see Theorem 1) and can participate in at most 6 sets. The time complexity of
the lemma follows from the fact that (i) each disk in D can participate 6 times
in the LSDUDC algorithm and (ii) the running time of LSDUDC algorithm is
O(n log n + mn) (see Theorem 1). ⊓⊔

Now, we describe the algorithm (Algorithm 3) for the DUDC problem using
Algorithm 1 and Algorithm 2 as follows:

Theorem 2. Algorithm 3 produces an 18-approximation result in O(m log m +
n log n + mn) time for the discrete unit disk cover problem.

Proof. The approximation result follows from Lemma 2 and Lemma 4. The time
complexity follows from the following facts:

(i) In line number 4, feasibility checking of the DUDC problem needs O(m log m+
n log m) time (see Section 4).

(ii) In line number 10, the running time of all WSDUDC(Pi,Di) is O(|Pi| log |Pi|+
|Di||Pi|) (see Lemma 2). Therefore, the running time of the for loop (lines
7-11) is O(n log n + mn).

(iii) In line number 13, the running time of OSDUDC(P ,D) is O(n log n+mn)
(see Lemma 4).



Algorithm 3 DUDC(P ,D)

1: Input: A points set P and a unit disks set D.
2: Output: A set D∗ ⊆ D.
3: D∗ ← ∅ and D∗

1 ← ∅.
4: Check all the points in P is covered by at least one disk in D or not. If the answer

is yes then set flag = true, otherwise set flag = false.
5: if (flag = true) then

6: Let Hi = [ℓi, ℓi+1] for i = 0, 1, . . . , t − 1 be the horizontal strips of width 1√
2

defined in Section 4.
7: for (i=0,1, . . . , t-1) do

8: Let Di ∈ D be the set of disks having centers in Hi.
9: Let Pi ∈ P ∩Hi be the set of points such that each point in Pi is covered by

the disks in Di only.
10: Run the algorithm WSDUDC(Pi,Di) proposed in Algorithm 1. Let Di

1 be the
output of this algorithm.

11: end for

12: D∗
1 = D0

1 ∪ D
1
1 . . . ∪ Dt−1

1

13: Run the algorithm OSDUDC(P ,D) proposed in Algorithm 2. Let D∗
2 be the

output of this algorithm.
14: D∗ = D∗

1 ∪ D
∗
2

15: end if

16: return D∗

5 Conclusion

Here, we have considered the discrete unit disk cover (DUDC) problem where a
set P of n points and a set D of m unit disks in 2-dimensional plane are given, the
objective is (i) to check whether each point in P is covered by at least one disk in
D or not and (ii) if so, then find a minimum cardinality subset D∗ ⊆ D such that
unit disks in D∗ cover all the points in P . We provide an 18-factor approximation
algorithm for the DUDC problem. The running time of the proposed algorithm
is O(n log n + m log m + mn). The previous best known solution for the same
problem was a 22-factor approximation algorithm with running time O(m2n4).
Therefore, our solution is a significant improvement over the best known solution
in terms of approximation factor as well as running time of the algorithm.

Acknowledgements Funding for this project was provided by the Natural
Sciences and Engineering Research Council of Canada (NSERC), partially under
the NSERC Strategic Grant on Optimal Data Structures for Organization and
Retrieval of Spatial Data.

References

1. P. K. Agarwal and C. M. Procopiuc, Exact and approximation algorithms for clus-
tering, Algorithmica, vol 33, pp. 201-226, 2002.



2. P. K. Agarwal and M. Sharir, Efficient algorithms for geometric optimization, ACM

Computing Serveys, vol 30, pp. 412-458, 1998.
3. M. de. Berg, M. V. Kreveld, M. Overmars and O. Schwarzkopf, Computational

Geometry Algorithms and Applications, Springer-Verlag, 1997.
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