
On Universally Easy Classes for NP-complete ProblemsErik D. Demaine� Alejandro L�opez-Ortizy J. Ian Munro�AbstractWe explore the natural question of whether all NP-complete problems have a common restriction underwhich they are polynomially solvable. More precisely,we study what languages are universally easy in thattheir intersection with any NP-complete problem is inP. In particular, we give a polynomial-time algorithmto determine whether a regular language is universallyeasy. While our approach is language-theoretic, the re-sults bear directly on �nding polynomial-time solutionsto very broad and useful classes of problems.1 Introduction and OverviewEmpirically, it has been observed that some classes ofinstances result in polynomial-time algorithms for whatare otherwise NP-complete problems. For example,colouring, clique and independent set are well-known NP-complete problems that have polynomial-time solutions when restricted to interval graphs [7].But this property is not universal: list coloring in graphsand determining the existence of k vertex-disjoint paths(where k is part of the input) remain NP-complete forinterval graphs [1, 6].This leads to a natural question about the existenceof universally easy classes for NP-complete problems.It turns out that such languages exist, and it seemsdiÆcult to give a complete characterization. Thuswe focus on two natural classes of languages: regularlanguages and context-free languages. In particular,we characterize precisely which regular languages areuniversally easy in the sense de�ned in Section 2.Various particular restrictions have been studiedbefore; see for example Brandstadt, Le, and Spinrad [8]for a detailed survey of graph classes.2 De�nitionsFor simplicity of exposition, assume that the alphabet� = f0; 1g. We use interchangably the notions of a�Department of Computer Science, University of Water-loo, Waterloo, Ontario N2L 3G1, Canada, email: feddemaine,imunrog@uwaterloo.cayFaculty of Computer Science, University of New Brunswick,P. O. Box 4400, Fredericton, N. B. E3B 5A3, Canada, email:alopezo@unb.ca

language, a decision problem, and a class of instances.Definition 2.1. The restriction of a problem P to aclass of instances C is the intersection P \ C.Definition 2.2. Given an NP-complete problem P , aclass C is a simplifying restriction if the restriction ofP to C is not NP-complete, and C is a polynomialrestriction if there is a polynomial-time Turing machinethat recognizes the restriction of P to C.Of course this de�nition is vacuous if P = NPDefinition 2.3. A language C 2 NP is universallysimplifying if it is a simplifying restriction of all NP-complete problems.Definition 2.4. A language C 2 P is universallypolynomial if it is a polynomial restriction of all NP-complete problems.3 Easy LanguagesA natural question is whether there exist universallysimplifying languages if P 6= NP. This can be readilyanswered in the aÆrmative by noticing that all �nitelanguages are universally polynomially, which is notvery enlightening. A more general class to consider isregular languages, which can be characterized accordingto their simplicity.Definition 3.1. The growth function of a language Lis the function 
L(n) = jfx 2 L : jxj � ngj. A languageis sparse if its growth function is bounded from above bya polynomial, and is exponentially dense if the growthfunction is bounded from below by 2
(n).Theorem 3.1. A sparse language L is either univer-sally simplifying or universally polynomial.Proof. Consider a sparse language L. If it is universallysimple, there is nothing to show. If it is not universallysimple, there is a problem P � �� such that therestriction P \ L is NP-complete. Because P \ L � L,this restriction is also a sparse set, and it is NP-complete. Mahaney [5] proved that if a language issparse and NP-complete, then P = NP. ThereforeP = NP and consequently P \ L 2 P for all NP-complete languages L. 21



Definition 3.2. A loop in a DFA A is a directed cyclein the state graph of A.Definition 3.3. Let C1 and C2 be two DFA loops suchthat neither is a subgraph of the other. We say that C1and C2 interlace if there is an accepting computationpath in the DFA containing the sequence C1 � � �C2 � � �C1or the sequence C2 � � �C1 � � �C2.The following theorem was proved by Flajolet [2].Our proof uses a constructive argument needed forTheorem 3.3.Theorem 3.2. Every regular language is either sparseor exponentially dense.Proof. Consider L � �� recognized by a DFA A. If L is�nite, then it is trivially sparse; otherwise, and containsstrings of arbitrary length. The pumping lemma statesthat any DFA accepting a suÆciently large string has atleast one loop in its state graph, which can be traversed(pumped) zero or more times.If A has no interlacing loops, then each ac-cepting computation Tk can be written as Tk =(s1; t1; s2; t2; : : : ; C�1 ; si; ti; : : : ; C�j ; : : : ; qf ), where thesi's are states, ti's are transition symbols, Ci's are dis-joint loops, qf is a �nal state of A, and si 6= sj forall i 6= j. Notice that, apart from the actual valuerepresented by the Kleene star, there are only �nitelymany such orderings of states and loops, and thus thelanguage L can be written as the �nite union of Tk's.Let jk denote the number of loops and rk the numberof states in Tk. Then the total number of strings oflength n generated by Tk is at most �n�rkjk � = O(njk ).A union of �nitely many such sets, each with a polyno-mially bounded number of strings of length n, is itselfpolynomially bounded and therefore sparse.We now proceed to show that a DFA Awith interlacing loops accepts an exponentiallydense language. Consider an accepting com-putation path Tk of A with interlacing loops,that is, Tk = (s1; t1; : : : ; C1; : : : ; C2; : : : ; C1; : : : ; qf ).Now we pump a subsequence, obtaining Tk =(s1; t1; : : : ; [C�1 ; : : : ; C�2 ; : : :]�; C1; : : : ; qf ). We replacewith a special character w1 the sequence of transitionstaken in the (C1; : : :) portion of Tk above, and with w2the transitions in (C2; : : :). Then Tk can be rewrittenas the regular expression t1 � � � fw1; w2g�w1 � � � tf . Fromthis it follows that there are at least 2n�rk strings oflength n in (� [ fw1; w2g)�. Thus 
L(n) � 2(n�rk)=m,where m = maxfjw1j; jw2jg, which implies 
L(n) =2
(n) 2Theorem 3.3. No exponentially dense regular lan-guage L is universally simplifying.

Proof. From the proof of Theorem 3.2 we know that aDFA accepting L necessarily contains interlacing loops.We de�ne an injective polynomial-time transformationF : �� ! L as follows. Let Tk be a computation pathwith interlacing loops, i.e., Tk = (t1 � � � fw1; w2g� � � � tf ).Now we map 0 to w1, and 1 to w2. So a stringx1x2 � � �xj 2 �� is mapped to wx1+1wx2+1 � � �wxj+1.Note that F and its inverse can be computed in poly-nomial time.Given any NP-complete language P , we de�neP̂ = fx 2 L : x = F (y) for some y 2 Pg. P̂ isNP-complete, because the y's together with polynomiallength certi�cates from P serve as certi�cates for P̂ , andF is a reduction from P to P̂ . Because P̂ � L, we haveP̂ \ L = P̂ , which is NP-complete. Thus L is notuniversally simplifying. 2Corollary 3.1. If an exponentially dense regular lan-guage is universally polynomial, then P = NP.Note that the property of interlacing loops forregular languages, and hence \easiness," can be testedin polynomial time.4 Open ProblemsRecently the sparse/exponential-density property inTheorem 3.2 has been generalized to context-free lan-guages [3, 4]. We conjecture that our results also gen-eralize to CFLs; the main obstruction is in �nding apolynomially constructive proof.References[1] E. M. Arkin, E. B. Silverberg. Scheduling jobs with�xed start and end times. DAM, 18(1):1{8, 1987.[2] P. Flajolet. Analytic models and ambiguity of context-free languages. TCS, 49:283{309, 1987.[3] L. Ilie, G. Rozenberg, and A. Salomaa. A characteri-zation of poly-slender context-free languages. Theoret.Informatics Appl., 34(1):77{86, 2000.[4] R. Incitti. The growth function of context-free lan-guages. To appear in TCS, 2000.[5] S. R. Mahaney. Sparse complete sets for NP: Solutionof a conjecture of Berman and Hartmanis. JCSS,25(2):130{143, 1982.[6] S. Natarajan and A. P. Sprague. Disjoint Paths inCircular Arc Graphs. Nordic J. Comput., 3(3):256{270, Fall 1996.[7] C. H. Papadimitrou. Computational Complexity.Addison-Wesley, 1994.[8] A. Brandstadt, V. B. Le and J. P. Spinrad. GraphClasses: A Survey. SIAM Monographs on DiscreteMathematics and Applications, 1999.2


