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Abstract

We explore the natural question of whether all NP-
complete problems have a common restriction under
which they are polynomially solvable. More precisely,
we study what languages are universally easy in that
their intersection with any NP-complete problem is in
P. In particular, we give a polynomial-time algorithm
to determine whether a regular language is universally
easy. While our approach is language-theoretic, the re-
sults bear directly on finding polynomial-time solutions
to very broad and useful classes of problems.

1 Introduction and Overview

Empirically, it has been observed that some classes of
instances result in polynomial-time algorithms for what
are otherwise NP-complete problems. For example,
COLOURING, CLIQUE and INDEPENDENT SET are well-
known NP-complete problems that have polynomial-
time solutions when restricted to interval graphs [7].
But this property is not universal: list coloring in graphs
and determining the existence of k vertex-disjoint paths
(where k is part of the input) remain NP-complete for
interval graphs [1, 6].

This leads to a natural question about the existence
of universally easy classes for NP-complete problems.
It turns out that such languages exist, and it seems
difficult to give a complete characterization. Thus
we focus on two natural classes of languages: regular
languages and context-free languages. In particular,
we characterize precisely which regular languages are
universally easy in the sense defined in Section 2.

Various particular restrictions have been studied
before; see for example Brandstadt, Le, and Spinrad [8]
for a detailed survey of graph classes.

2 Definitions

For simplicity of exposition, assume that the alphabet
Y = {0,1}. We use interchangably the notions of a
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language, a decision problem, and a class of instances.

DEFINITION 2.1. The restriction of a problem P to a
class of instances C' is the intersection PN C.

DEFINITION 2.2. Given an NP-complete problem P, a
class C' is a simplifying restriction if the restriction of
P to C is not NP-complete, and C is a polynomial
restriction if there is a polynomial-time Turing machine
that recognizes the restriction of P to C.

Of course this definition is vacuous if P = NP

DEFINITION 2.3. A language C € NP is universally
simplifying if it is a simplifying restriction of all NP-
complete problems.

DEFINITION 2.4. A language C € P 1is universally
polynomial if it is a polynomial restriction of all NP-
complete problems.

3 Easy Languages

A natural question is whether there exist universally
simplifying languages if P # NP. This can be readily
answered in the affirmative by noticing that all finite
languages are universally polynomially, which is not
very enlightening. A more general class to consider is
regular languages, which can be characterized according
to their simplicity.

DEFINITION 3.1. The growth function of a language L
is the function yp(n) = |{z € L :|z| < n}|. A language
is sparse if its growth function is bounded from above by
a polynomial, and is exponentially dense if the growth
function is bounded from below by 22(").

THEOREM 3.1. A sparse language L is either univer-
sally simplifying or universally polynomial.

Proof. Consider a sparse language L. If it is universally
simple, there is nothing to show. If it is not universally
simple, there is a problem P C X* such that the
restriction P N L is NP-complete. Because PN L C L,
this restriction is also a sparse set, and it is NP-
complete. Mahaney [5] proved that if a language is
sparse and NP-complete, then P = NP. Therefore
P = NP and consequently PN L € P for all NP-
complete languages L. m



DEFINITION 3.2. A loop in a DFA A is a directed cycle
in the state graph of A.

DEFINITION 3.3. Let C7 and Cy be two DFA loops such
that neither is a subgraph of the other. We say that Cy
and Cy interlace if there is an accepting computation
path in the DFA containing the sequence Cy ---Cy -+ - C
or the sequence Cy---Cq---Cy.

The following theorem was proved by Flajolet [2].
Our proof uses a constructive argument needed for
Theorem 3.3.

THEOREM 3.2. FEvery reqular language is either sparse
or exponentially dense.

Proof. Consider L C ¥* recognized by a DFA A. If L is
finite, then it is trivially sparse; otherwise, and contains
strings of arbitrary length. The pumping lemma states
that any DFA accepting a sufficiently large string has at
least one loop in its state graph, which can be traversed
(pumped) zero or more times.

If A has no interlacing loops, then each ac-
cepting computation 7} can be written as T} =
(51,t17527t27. ...,Cf./Si,ti.,. ,C;, ..,Qf)7 where the
si’s are states, t;’s are transition symbols, C;’s are dis-
joint loops, g5 is a final state of A, and s; # s; for
all i # j. Notice that, apart from the actual value
represented by the Kleene star, there are only finitely
many such orderings of states and loops, and thus the
language L can be written as the finite union of T}’s.
Let j; denote the number of loops and r; the number
of states in Tj. Then the total number of strings of
length n generated by 7}, is at most (";k”‘) = O(n*).
A union of finitely many such sets, each with a polyno-
mially bounded number of strings of length n, is itself
polynomially bounded and therefore sparse.

We now proceed to show that a DFA A

with interlacing loops accepts an exponentially
dense language. Consider an accepting com-
putation path T, of A with interlacing loops,
that iS7 Tk = (Sl,tl,...7017...702,...7017...7qf).
Now we pump a subsequence, obtaining T, =
(s1,t1,...,[CF....,C5, .. ]%,C1,...,q¢). We replace

with a special character w; the sequence of transitions
taken in the (C4,...) portion of T} above, and with ws
the transitions in (Csq,...). Then T} can be rewritten
as the regular expression ¢y - - - {w1, w2 }*wy - - - t¢. From
this it follows that there are at least 2"~ "% strings of
length n in (X U {wy,wy})*. Thus vz (n) > 200-7)/m
where m = max{|w;|,|ws|}, which implies vz (n) =
2Q(n) O

THEOREM 3.3. No exponentially dense reqular lan-
guage L is universally simplifying.

Proof. From the proof of Theorem 3.2 we know that a
DFA accepting L necessarily contains interlacing loops.
We define an injective polynomial-time transformation
F: Y% —» L as follows. Let T} be a computation path
with interlacing loops, i.e., Ty, = (t1 - - {w1,wa}* - - - ty).
Now we map 0 to wy, and 1 to wy. So a string
T1T2- x5 € X is mapped tO Wy, 11Wryt1* Wa,41-
Note that F' and its inverse can be computed in poly-
nomial time.

Given any NP-complete language P, we define
P={zelL:x = F()forsomey € P}. P is
NP-complete, because the y’s together with polynomial
length certificates from P serve as certificates for P, and
F is a reduction from P to P. Because P C L, we have
PNnL = 13, which is NP-complete. Thus L is not
universally simplifying. m|

COROLLARY 3.1. If an exponentially dense regular lan-
guage is universally polynomial, then P = NP.

Note that the property of interlacing loops for
regular languages, and hence “easiness,” can be tested
in polynomial time.

4 Open Problems

Recently the sparse/exponential-density property in
Theorem 3.2 has been generalized to context-free lan-
guages [3, 4]. We conjecture that our results also gen-
eralize to CFLs; the main obstruction is in finding a
polynomially constructive proof.
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