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tWe explore the natural question of whether all NP-
omplete problems have a 
ommon restri
tion underwhi
h they are polynomially solvable. More pre
isely,we study what languages are universally easy in thattheir interse
tion with any NP-
omplete problem is inP. In parti
ular, we give a polynomial-time algorithmto determine whether a regular language is universallyeasy. While our approa
h is language-theoreti
, the re-sults bear dire
tly on �nding polynomial-time solutionsto very broad and useful 
lasses of problems.1 Introdu
tion and OverviewEmpiri
ally, it has been observed that some 
lasses ofinstan
es result in polynomial-time algorithms for whatare otherwise NP-
omplete problems. For example,
olouring, 
lique and independent set are well-known NP-
omplete problems that have polynomial-time solutions when restri
ted to interval graphs [7℄.But this property is not universal: list 
oloring in graphsand determining the existen
e of k vertex-disjoint paths(where k is part of the input) remain NP-
omplete forinterval graphs [1, 6℄.This leads to a natural question about the existen
eof universally easy 
lasses for NP-
omplete problems.It turns out that su
h languages exist, and it seemsdiÆ
ult to give a 
omplete 
hara
terization. Thuswe fo
us on two natural 
lasses of languages: regularlanguages and 
ontext-free languages. In parti
ular,we 
hara
terize pre
isely whi
h regular languages areuniversally easy in the sense de�ned in Se
tion 2.Various parti
ular restri
tions have been studiedbefore; see for example Brandstadt, Le, and Spinrad [8℄for a detailed survey of graph 
lasses.2 De�nitionsFor simpli
ity of exposition, assume that the alphabet� = f0; 1g. We use inter
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language, a de
ision problem, and a 
lass of instan
es.Definition 2.1. The restri
tion of a problem P to a
lass of instan
es C is the interse
tion P \ C.Definition 2.2. Given an NP-
omplete problem P , a
lass C is a simplifying restri
tion if the restri
tion ofP to C is not NP-
omplete, and C is a polynomialrestri
tion if there is a polynomial-time Turing ma
hinethat re
ognizes the restri
tion of P to C.Of 
ourse this de�nition is va
uous if P = NPDefinition 2.3. A language C 2 NP is universallysimplifying if it is a simplifying restri
tion of all NP-
omplete problems.Definition 2.4. A language C 2 P is universallypolynomial if it is a polynomial restri
tion of all NP-
omplete problems.3 Easy LanguagesA natural question is whether there exist universallysimplifying languages if P 6= NP. This 
an be readilyanswered in the aÆrmative by noti
ing that all �nitelanguages are universally polynomially, whi
h is notvery enlightening. A more general 
lass to 
onsider isregular languages, whi
h 
an be 
hara
terized a

ordingto their simpli
ity.Definition 3.1. The growth fun
tion of a language Lis the fun
tion 
L(n) = jfx 2 L : jxj � ngj. A languageis sparse if its growth fun
tion is bounded from above bya polynomial, and is exponentially dense if the growthfun
tion is bounded from below by 2
(n).Theorem 3.1. A sparse language L is either univer-sally simplifying or universally polynomial.Proof. Consider a sparse language L. If it is universallysimple, there is nothing to show. If it is not universallysimple, there is a problem P � �� su
h that therestri
tion P \ L is NP-
omplete. Be
ause P \ L � L,this restri
tion is also a sparse set, and it is NP-
omplete. Mahaney [5℄ proved that if a language issparse and NP-
omplete, then P = NP. ThereforeP = NP and 
onsequently P \ L 2 P for all NP-
omplete languages L. 21



Definition 3.2. A loop in a DFA A is a dire
ted 
y
lein the state graph of A.Definition 3.3. Let C1 and C2 be two DFA loops su
hthat neither is a subgraph of the other. We say that C1and C2 interla
e if there is an a

epting 
omputationpath in the DFA 
ontaining the sequen
e C1 � � �C2 � � �C1or the sequen
e C2 � � �C1 � � �C2.The following theorem was proved by Flajolet [2℄.Our proof uses a 
onstru
tive argument needed forTheorem 3.3.Theorem 3.2. Every regular language is either sparseor exponentially dense.Proof. Consider L � �� re
ognized by a DFA A. If L is�nite, then it is trivially sparse; otherwise, and 
ontainsstrings of arbitrary length. The pumping lemma statesthat any DFA a

epting a suÆ
iently large string has atleast one loop in its state graph, whi
h 
an be traversed(pumped) zero or more times.If A has no interla
ing loops, then ea
h a
-
epting 
omputation Tk 
an be written as Tk =(s1; t1; s2; t2; : : : ; C�1 ; si; ti; : : : ; C�j ; : : : ; qf ), where thesi's are states, ti's are transition symbols, Ci's are dis-joint loops, qf is a �nal state of A, and si 6= sj forall i 6= j. Noti
e that, apart from the a
tual valuerepresented by the Kleene star, there are only �nitelymany su
h orderings of states and loops, and thus thelanguage L 
an be written as the �nite union of Tk's.Let jk denote the number of loops and rk the numberof states in Tk. Then the total number of strings oflength n generated by Tk is at most �n�rkjk � = O(njk ).A union of �nitely many su
h sets, ea
h with a polyno-mially bounded number of strings of length n, is itselfpolynomially bounded and therefore sparse.We now pro
eed to show that a DFA Awith interla
ing loops a

epts an exponentiallydense language. Consider an a

epting 
om-putation path Tk of A with interla
ing loops,that is, Tk = (s1; t1; : : : ; C1; : : : ; C2; : : : ; C1; : : : ; qf ).Now we pump a subsequen
e, obtaining Tk =(s1; t1; : : : ; [C�1 ; : : : ; C�2 ; : : :℄�; C1; : : : ; qf ). We repla
ewith a spe
ial 
hara
ter w1 the sequen
e of transitionstaken in the (C1; : : :) portion of Tk above, and with w2the transitions in (C2; : : :). Then Tk 
an be rewrittenas the regular expression t1 � � � fw1; w2g�w1 � � � tf . Fromthis it follows that there are at least 2n�rk strings oflength n in (� [ fw1; w2g)�. Thus 
L(n) � 2(n�rk)=m,where m = maxfjw1j; jw2jg, whi
h implies 
L(n) =2
(n) 2Theorem 3.3. No exponentially dense regular lan-guage L is universally simplifying.

Proof. From the proof of Theorem 3.2 we know that aDFA a

epting L ne
essarily 
ontains interla
ing loops.We de�ne an inje
tive polynomial-time transformationF : �� ! L as follows. Let Tk be a 
omputation pathwith interla
ing loops, i.e., Tk = (t1 � � � fw1; w2g� � � � tf ).Now we map 0 to w1, and 1 to w2. So a stringx1x2 � � �xj 2 �� is mapped to wx1+1wx2+1 � � �wxj+1.Note that F and its inverse 
an be 
omputed in poly-nomial time.Given any NP-
omplete language P , we de�neP̂ = fx 2 L : x = F (y) for some y 2 Pg. P̂ isNP-
omplete, be
ause the y's together with polynomiallength 
erti�
ates from P serve as 
erti�
ates for P̂ , andF is a redu
tion from P to P̂ . Be
ause P̂ � L, we haveP̂ \ L = P̂ , whi
h is NP-
omplete. Thus L is notuniversally simplifying. 2Corollary 3.1. If an exponentially dense regular lan-guage is universally polynomial, then P = NP.Note that the property of interla
ing loops forregular languages, and hen
e \easiness," 
an be testedin polynomial time.4 Open ProblemsRe
ently the sparse/exponential-density property inTheorem 3.2 has been generalized to 
ontext-free lan-guages [3, 4℄. We 
onje
ture that our results also gen-eralize to CFLs; the main obstru
tion is in �nding apolynomially 
onstru
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