
Optimal Scheduling of Contract Algorithms with Soft Deadlines

Spyros Angelopoulos
Max-Planck-Institut für Informatik

Campus E1 4
Saarbrücken 66123, Germany

sangelop@mpi-inf.mpg.de

Alejandro López-Ortiz
David R. Cheriton School

of Computer Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
alopez-o@uwaterloo.ca

Angèle M. Hamel
Dept. of Physics and Computer Science

Wilfrid Laurier University
Waterloo, Ontario, Canada, N2L 3C5

ahamel@wlu.ca

Abstract

A contract algorithm is an algorithm which is given, as
part of its input, a specified amount of allowable com-
putation time. In contrast, interruptible algorithms may
be interrupted throughout their execution, at which point
they must report their current solution. Simulating inter-
ruptible algorithms by means of schedules of executions
of contract algorithms in parallel processors is a well-
studied problem with significant applications in AI.

In the classical case, the interruptions are hard deadlines
in which a solution must be reported immediately at the
time the interruption occurs. In this paper we study the
more general setting of scheduling contract algorithms
at the presence of soft deadlines. This is motivated by
the observation of practitioners that soft deadlines are as
common an occurrence as hard deadlines, if not more
common. In our setting, at the time t of interruption
the algorithm is given an additional window of time
w(t) ≤ c · t to continue the contract or, indeed, start
a new contract (for some fixed constant c). We explore
this variation using the acceleration ratio, which is the
canonical measure of performance for these schedules,
and derive schedules of optimal acceleration ratio for all
functions w.

Introduction
Anytime algorithms, which were introduced and devel-
oped by Horvitz (Horvitz 1987) (Horvitz 1998) and
Dean and Boddy (Dean and Boddy 1998), arise in situa-
tions where the available computation time is uncertain.
Such algorithms will produce solutions of varying qual-
ity, depending on how much computation time they are
allowed.

One can distinguish between two main types of any-
time algorithms. Interruptible algorithms are algo-
rithms whose allowable running time is not known a pri-
ori, and can be interrupted (queried) at any point during
their execution. Contract algorithms, on the other hand,
are algorithms whose allotted execution time is known
beforehand as part of the algorithm’s input. Such al-
gorithms are thus less flexible than interruptible algo-
rithms, however they tend to be simpler to implement.

Copyright c© 2008, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

Hence the following problem arises: We are given
a set of n problem instances and a machine consisting
of m identical parallel processors, and we seek an ef-
ficient strategy for scheduling multiple executions of n
contract algorithms (one for each problem) on the pro-
cessors. At any point of time an interruption may occur,
during which a solution may be requested for any of
the n problems. The performance of the algorithm at
interruption time is related to the length (duration) of
the longest completed execution of a contract algorithm
for the requested problem: Specifically, we would like
this length to be as large as possible, under the intu-
itive assumption that the longer the available computa-
tion time, the better the solution will be. This problem
has been extensively studied in the literature, and we
refer to it as the (classical) hard deadline problem.

However, in practice, it has been observed that of-
ten the time of interruption does not define an abso-
lute hard deadline at which time a solution has to be
produced. Instead, the specifications of the application
may be such that a “grace period” may be desirable, es-
pecially if there are concerns about the quality of the
solution. Consider the example of a medical diagnostic
system: the doctor may query the system for a diagno-
sis, but if the diagnosis is not satisfactory, the doctor
may allow the system some additional time, at the end
of which she may reconsult. The amount of additional
time should depend on the application: a hospital in-
tensive care unit system should allow smaller windows
of additional computation time than a system run by a
consultation diagnostic center. To this goal, Zilberstein
et al. (Zilberstein, Charpillet, and Chassaing 2003) con-
sider the case in which there is a time dependent utility
function which indicates the decrease in the value of
the solution as time elapses. In our work, we consider
the case in which the interruption marks a point in time
from which a solution must be produced shortly. More
precisely, at interruption time t, the interruptible algo-
rithm is given a window w(t) of additional time, and
within which a solution must be reported for the queried
problem. There is no penalty for using this time; on the
other hand, the algorithm has to report a solution by
time t + w(t). This is similar to the work of Manolache



et al. in which they consider the expected completion
time in a setting where the deadlines are soft, all prob-
lems must be solved and there is a maximum global
deadline which cannot be exceeded (Manolache, Eles,
and Peng 2004).

We focus on window functions which are upper-
bounded by linear functions of time: namely, w(t) ≤
c · t for some constant c. This is motivated by the obser-
vation that it would be unrealistic to allow larger win-
dows, since otherwise the algorithm could hardly qual-
ify as “interruptible”. We also assume that w(t) is a
continuous, increasing function of time, and that the
function is known to the algorithm in advance. Note
that if w(t) is not known in advance, but rather revealed
at the time of interruption, in the worst case the prob-
lem degenerates to the problem of hard deadlines, if the
window is too small.

For the classical problem, the standard measure of the
efficiency of an interruptible algorithm is the accelera-
tion ratio. Informally, the acceleration ratio measures
the increase in processor speed required for the simu-
lation to produce a solution of the same quality as the
optimal solution. Here, by optimal solution we refer
to an algorithm which knows beforehand both the exact
interruption time and the queried problem; such an opti-
mal, ideal algorithm can dedicate a single processor and
run a single contract of length equal to the interruption
time for the problem in question.

Simulating interruptible algorithms using contract al-
gorithms has been studied under several variants. Ex-
amples include the case of one problem and one pro-
cessor, in work by Russell and Zilberstein (Russell and
Zilberstein 1991) and Zilberstein et al. (Zilberstein,
Charpillet, and Chassaing 1999), many problems and
one processor by Zilberstein et al. (Zilberstein, Charpil-
let, and Chassaing 1999), and one problem and many
processors by Bernstein et al. (Bernstein et al. 2002).
For all of these problems, schedules of optimal ac-
celeration ratio were derived. For the most general
case, namely solving many problems using many pro-
cessors, Bernstein et al.(Bernstein, Finkelstein, and Zil-
berstein 2003) showed an optimal simulation under the
restrictive, but natural assumption that the schedule has
a cyclic format. In subsequent work, López-Ortiz et
al. (Lopez-Ortiz, Angelopoulos, and Hamel 2006) re-
moved the assumption of cyclicality, and showed that
the schedule of (Bernstein, Finkelstein, and Zilberstein
2003) is optimal among all possible schedules. The ac-
celeration ratio of the optimal schedule is a function of
n and m, and is equal to (1 + n

m )(1 + m
n )

n
m .

The main contribution of this paper is a schedule of
contract algorithms which guarantees optimal accelera-
tion ratio under no restrictive assumptions (c.f. Corol-
lary 2 and Theorem 4). To simplify exposition and anal-
ysis, in what follows we concentrate on the the case of
linear windows, namely w(t) = ǫ·t for some constant ǫ.
It turns out that this is the most challenging case: a very
similar analysis can be applied to a much wider class

of window functions, namely for all increasing func-
tions w such that w(t) ≤ c · t, for some constant c: in
this more general case, ǫ is defined as limt→∞(w(t)/t)
(which always exists), and the same bounds apply w.r.t.
ǫ as in the case of a linear function.

Due to space limitation, certain technical proofs are
either omitted or only sketched in this paper.

Preliminaries

We follow the notation of Bernstein et al. (Bernstein,
Finkelstein, and Zilberstein 2003) and Lopez-Ortiz et
al. (Lopez-Ortiz, Angelopoulos, and Hamel 2006). Let
P denote a set of n problems. A contract c is a pair
(p, L), where p ∈ P is the problem c is working on and
L is the length of time (duration) the contract is desig-
nated to work on p. Let C denote a potentially infinite
set of contracts. Then a schedule X of contracts is a
feasible assignment of contracts to processors. More
formally, X = {(ci,mi, xi) : ci ∈ C}, where mi is the
processor to which ci is scheduled and xi is the length
of contract ci. For a contract ci we denote by Tci

, Gci

and Lci
its start time, its completion or finish time and

its length or duration, respectively. Since idle time in
the schedule leads to suboptimal solutions, it will al-
ways be the case that Lci

= Gci
− Tci

. Define by ℓp,t

the length of the longest contract for problem p that has
been completed by time t in X , and by cp,t the contract
of length ℓp,t (we can assume without loss of general-
ity that no two contracts in the schedule are of the same
length). We use the notation t+ (resp. t−) to denote
time infinitesimally bigger (resp. smaller) than t.

Given a time t of interruption and a problem p that an
answer is required for, we define an interruption as the
pair i = 〈t, p〉. As it is common in the field we assume
that interruptions occur only after one contract for each
problem has been completed.

Bernstein et al. (Bernstein, Finkelstein, and Zilber-
stein 2003) define the class of cyclic schedules as sched-
ules which have the following natural properties: Let
Pci

be the problem instance worked on by contract ci.

1. Property 1 (Problem Round Robin) If ci is the ith
contract, the problem instance Pci

is such that Pci
=

i mod n.

2. Property 2 (Length Increasing) For all ci, cj if Pci
=

Pcj
and i < j, then Li < Lj .

3. Property 3 (Processor Round Robin) mi = i mod m
for all i.

An exponential schedule is a cyclic schedule in which
the lengths of contracts in the round-robin order in-
crease exponentially. More formally, the i-th contract
in the order has length bi for some fixed number b.

Definition 1 Given a set P of n problem instances and
a set M of m processors of identical speed, the accel-
eration ratio of a schedule X for P , denoted by α(X)
(or simply α when X is implied from context) is defined



as the maximum ratio (over all problems p ∈ P and in-
terruption times t) of the ratio of the interruption time
over the longest contract length completed by the in-
terruption. Formally: α(X) = maxp,t

t
ℓp,t

. Then the

acceleration ratio for P and a set M of processors of
identical speed is defined as α∗ = infX α(X). A sched-
ule X is optimal if α(X) = α∗.

Lemma 1 (Bernstein et al. 2003) For all cyclic sched-

ules X , α(X) = supk
Gk+n

Lk
, where k denotes a con-

tract index in the cyclic schedule, and Gk+n denotes
the completion time of contract ck+n.

Since exponential schedules are also cyclic, the
above holds also for exponential schedules.

Acceleration ratio for the soft-deadline

problem

In this section we propose expressions for the acceler-
ation ratio for the soft deadline problem and we prove
a first lower-bound on the quality of any schedule of
contract algorithms with respect to these measures.

First of all, it is easy to observe that the accelera-
tion ratio α as defined for the classical case (see Def-
inition 1) is not appropriate for the version we study.
This is due to the fact that α does not take into account
the additional window of time, nor the progress the in-
terruptible algorithm could make within the additional
window (for instance ℓp,(1+ǫ)t could be much bigger
than ℓp,t). We thus need to adapt the measure to the
requirements of the problem.

The algorithm may perform one of several actions in
the additional window of time. Suppose that at inter-
ruption time t the algorithm is queried for a solution to
problem p. If the algorithm is working on a contract
for p, then the algorithm may choose to continue work-
ing on the contract (e.g., if it can finish the contract by
time t(1 + ǫ)). A further possibility is for the algorithm
to start a new contract for problem p at time t: this is
a situation in which the algorithm ignores the schedule
altogether and dedicates its resources to a new contract
which may run for a total duration of ǫt.

Note that the requirements of the problem allow the
algorithm to work for as much time as it deems nec-
essary within the interval [t, (1 + ǫ)t]. This means the
algorithm may stop, and return a solution, at any time in
[t, (1+ ǫ)t]. With this requirement in mind, we propose
the following definition for the acceleration ratio:

β(X) = max
t,p

min

{

1 +
1

ǫ
, r(p, t)

}

, (1)

where r(p, t) is equal to t/ℓp,t, if no contract
for p terminates within (t, (1 + ǫ)t], and equal to
GCp,(1+ǫ)t

/ℓp,(1+ǫ)t, otherwise.
In words, if at time t an interruption occurs concern-

ing problem p, then the interruptible algorithm has two
options (and will choose the best). The first option is to
start a new contract for p at time t and of total duration

t(1 + ǫ), in which case its acceleration ratio should be
defined as (t(1+ǫ))/(ǫt) = 1+1/ǫ. The second option
is to consider whether some contract for p is bound to
terminate within the additional window of time: if this
is the case, the algorithm will wait until the longest con-
tract for p finishes, at which point it returns the solution,
otherwise it will not take any further action and termi-
nate at time t. The function r(p, t) is meant to reflect the
ratio of the total elapsed time over the progress made by
the algorithm on problem p (largest contract finished),
in a manner similar to the definition of the acceleration
ratio for hard interruptions. Note that we assume, with-
out loss of generality, that the schedule does not start a
contract that is smaller than the one that is already com-
pleted, for any given problem.

In accordance with the notation for the hard dead-
line problem, we will denote by β∗ the optimum ac-
celeration ratio for the soft deadline problem, namely
β∗ = minX β(X). We will also be using β instead of
β(X) when X is implied from context.

It should be mentioned that there is a second natural
way of defining the acceleration ratio for soft contracts,
namely one which involves restricting the algorithm to
wait until the end of the window to return the result.
This gives rise to the following measure.

γ := max
t,p

min

{

t(1 + ǫ)

ℓp,t(1+ǫ)
,
(1 + ǫ)t

ǫt

}

.

It is straightforward to show that γ = min
{

α, 1 + 1
ǫ

}

(essentially, it suffices to substitute t(1 + ǫ) with a new
variable t′) and thus an optimal algorithm for this mea-
sure is the (known) optimal schedule with respect to
measure α (with the possibility of starting a new con-
tract at the time of the interruption).

Note, however, that the definition of γ reflects that the
algorithm will be using the entire additional window,
even though it may have completed the longest contract
for the queried problem long before the window elapses.
Instead, one should expect that the algorithm anticipates
this situation and promptly returns after the contract in
question terminates, thus saving time. This situation is
captured only by β, and hence from this point on we
focus on β as the performance measure of the interrupt-
ible algorithm. For instance, going back to the example
of the diagnostic system, a system that notifies the ex-
pert right after the best diagnosis is derived will have
the same performance w.r.t. γ as a system that waits
until the whole window expires. This is not desirable of
course, since the former system should be far superior
than the latter, and β is a measure which can make this
distinction.

Lemma 2 For every X , β(X) ≥ min{α(X)
1+ǫ , 1 +

1
ǫ } hence β∗ ≥ min{ α∗

1+ǫ , 1 + 1
ǫ }.

The exponential schedule
In this section we propose an exponential schedule of
length base b, for some appropriate value of b. In the



subsequent section we will prove that this schedule is
optimal. Recall that we denote by Lk and Gk the length
and finish times of the k-th contract in round-robin or-
der, respectively. By definition, Lk = bk. It is known
(see (Bernstein, Finkelstein, and Zilberstein 2003)) that

Gk =
bk+m − b(k+m) mod m

bm−1
.

Given interruption 〈ti, pi〉, denote by ci the first con-
tract for pi in the schedule which is completed after time
t. Let also Gi denote the finish time of contract ci. We
consider two cases concerning the nature of interrup-
tion:

• ti(1 + ǫ) < Gi, namely no contract for problem pi

can finish within the additional time window.

• ti(1 + ǫ) ≥ Gi, namely the schedule is such that the
interruptible algorithm can complete a contract for pi

within the additional window of time.

We can thus partition I into disjoint sets A or B, de-
pending on which of the above cases applies. More
formally, A = {〈ti, pi〉 | ti(1 + ǫ) < Gi} and B =
{〈ti, pi〉 |ti(1 + ǫ) ≥ Gi}.

Given an interruption i = 〈ti, pi〉 ∈ A define βA
i =

ti

ℓpi,ti

, whereas if i ∈ B define βB
i =

GCpi,(1+ǫ)ti

ℓpi,(1+ǫ)t
.

In addition, define βA = maxi∈A βi and βB =
maxi∈B βi. The following lemma dictates that βA, βB

(and of course ǫ) suffice to bound the acceleration ratio
of the schedule.

Lemma 3 β ≤ min{max{βA, βB}, 1 + 1/ǫ}.

Here is the intuition behind our approach: An effi-
cient schedule must guarantee that both βA and βB at-
tain small values, as suggested by Lemma 3. We will
argue that βA is bounded by α/(1 + ǫ), and thus min-
imized for b chosen as in the classical case (hard dead-
lines). On the other hand, one can think of βB as the
acceleration ratio (again for hard deadlines) assuming
interruptions only right after a contract has finished
(c.f. Lemma 4): the resulting expression is a decreasing
function of b. Hence the two measures are in a trade-off
relation, but still we can choose an appropriate value
of b that minimizes the maximum of βA and βB (c.f.
Corollary 2).

We aim then to provide expressions for βA and βB .
Consider first an interruption i ∈ A. By definition of ci,
ℓpi,ti

= ℓpi,Gi
. Hence

βA =max
i∈A

βi = max
〈ti,pi〉∈A

ti
ℓpi,ti

=
1

1 + ǫ
max
i∈A

Gi

ℓpi,Gi

, (2)

where the last equality follows from the fact that the
value of ti which maximizes the ratio is ti = Gi/(1 +
ǫ) − δ, for arbitrarily small δ.

Note also that that the above equality implies

βA ≤
1

1 + ǫ
max

i

Gi

ℓpi,Gi

=
α

1 + ǫ
. (3)

The following lemma and corollary provide an ex-
pression for βB .

Lemma 4 βB = maxk≥1
Gn+k

Ln+k
.

Corollary 1 βB = α
bn = bm

bm−1 .

We are now ready to determine the appropriate base
of the exponential schedule. Our strategy is to perform
a case–by–case analysis: for each case we find the cor-
responding best value of b. The value chosen by the al-
gorithm is is then the one that guarantees the best accel-
eration ratio, among all cases. Observe that combining
Lemma 3, Corollary 1 and (3) we have that

β ≤ min

{

max

{

bn+m

(1 + ǫ)(bm − 1)
,

bm

bm − 1

}

, 1 +
1

ǫ

}

(4)

More specifically, we consider the following cases:

Case 1: bn > 1 + ǫ. Then (4) gives β ≤

min
{

α
1+ǫ , 1 + 1

ǫ

}

. Since the interruptible algorithm

can always guarantee a ratio of 1 + 1/ǫ (by starting a
new contract at interruption time), we seek the value of
b which minimizes α, subject to bn > 1+ǫ. To this end,

we use the fact that α(b) is minimized at b∗ = (1+m
n )

1
m

(Bernstein, Finkelstein, and Zilberstein 2003). In addi-
tion, since b∗ is the unique local minimum of α(b), α(b)
is a decreasing function of b for b < b∗, and an increas-
ing function of b for b > b∗. Consider the subcases:

Subcase 1a) b∗ > (1 + ǫ)
1
n , then we choose b = b∗

in which case β ≤ min{α∗/(1 + ǫ), 1 + 1/ǫ}, and the
algorithm is optimal from Lemma 2.

Subcase 1b) b∗ ≤ (1 + ǫ)
1
n , then we need to choose

the smallest value of b given the constraints, namely we

will choose b infinitesimally larger than (1 + ǫ)
1
n .

Case 2: bn ≤ 1 + ǫ. In this case, (4) becomes

β ≤ min
{

bm

bm−1 , 1 + 1
ǫ

}

. It follows that we need to

minimize bm

bm−1 subject to b < (1 + ǫ)
1
n . The optimal

choice of b is then b = (1 + ǫ)
1
n .

Corollary 2 The strategy defined above chooses a
value b such that the right-hand side of (4) is minimized.

Optimality of the exponential schedule

Let X be a given schedule of contracts. We will fol-
low the convention of denoting by lower case d and
upper case D the lengths of a pair of consecutively
completed contracts of a given problem p, respectively.
More precisely, if (pi, di) denotes a contract of length
di for problem pi, then the earliest contract in X for pi

which is completed after (pi, di) finishes is denoted by
(pi,Di).



Definition 2 For a contract c of length Dc and start
time Tc define αX(c) = (Tc+D−

c )/dc, λX(c) = (Tc+
Dc)/Dc and λ(X) = supc∈X λX(c).

Lemma 5 For every schedule X ,

β(X) ≥ min

{

max

{

α(X)

1 + ǫ
, λ(X)

}

, 1 +
1

ǫ

}

. (5)

The intuition behind our approach is as follows:
α(X)/(1 + ǫ) and λ(X) are related to βA and βB , as
defined in the analysis of the exponential schedule, and
are in the same trade-off relation. We need to quantify
this tradeoff by first providing appropriate lower bounds
for α and λ (c.f. Theorem 1 and Theorem 2), and then
arguing that their contribution is minimized when X is
an appropriate exponential schedule (c.f. the details in
the proof of Theorem 4).

In (Lopez-Ortiz, Angelopoulos, and Hamel 2006) it
is shown that for every schedule X there exists another
schedule X ′ such that α(X ′) ≤ α(X); moreover X ′

satisfies a set of properties (which at an intuitive level
introduce some structure into the schedule). Such a
schedule is called normalized, and to stress that the nor-
malization pertains to the measure α we will call it α-
normalized. The specific properties are not important
for the purpose of our analysis; however, it is impor-
tant to observe that a normalized schedule X ′ is derived
from X by swapping the problem tags of appropriate
pairs of contracts in X . Such swappings do not affect
the λ value of the schedule, or more formally, it is also
the case that λ(X ′) = λ(X). This implies that for ev-
ery optimal schedule w.r.t. β, there exists an optimal
α-normalized schedule of the same λ-value.

Theorem 1 (Lopez-Ortiz et al. 2006)
For any α-normalized schedule X =
((c0,m0, x0), (c1,m1, x1), . . .) for n problems
with m processors

α(X) ≥ sup
k≥0

{

k+n
∑

i=0

xs
i

/ k
∑

i=k−m+1

xs
i

}

, (6)

where Xs = (xs
0, x

s
1, . . .) is the sequence of the sorted

x values of X and xs
i := 0 if i < 0.

We now introduce an additional normalization crite-
rion, this time with respect to measure λ.

Lemma 6 For any schedule X one of the following
hold: i) For any two contracts (pi,Di), (pj ,Dj) sched-
uled to start at times Ti and Tj , respectively, if Ti +
Di > Tj + Dj then Di > Dj , or ii) we can define a
schedule X ′ such that λ(X ′) ≤ λ(X) and, addition-
ally, X ′ observes property (i).

We call a schedule that obeys property (i) of
Lemma 6 λ-normalized. The following is a basic theo-
rem concerning λ-normalized schedules.

Theorem 2 For any λ-normalized schedule X =
((c0,m0, x0), (c1,m1, x1), . . .) for n problems with m
processors

λ(X) ≥ sup
k≥0

{

k+m
∑

i=0

xs
i

/ k+m
∑

i=k+1

xs
i

}

(7)

where Xs = (xs
0, x

s
1, . . .) is the sequence of the sorted

x values of X and xs
i := 0 if i < 0.

Proof sketch. Suppose that at time T0 processor M0

is about to start a new contract C0 for problem P0; let
D0 denote its length. Denote by Cj , for all 0 < j ≤
m− 1, the latest contract which is scheduled in Mj and
which is completed by time T0 + D0 (and by Dj its
corresponding length).

Consider now the sequence of contract lengths for
processor Mj completed up to T0 + D0 inclusively.
These time spans are elements in the sequence Xs; let
Rj be the set of indices in Xs of these scheduled time
spans for processor Mj . The λ-value for contract Cj is

then given by λX(Cj) =

P

i∈Rj
xs

i

Dj
.

Note that Dj = xs
lj

for some lj ≥ 0. Hence

λ(X) ≥ max
0≤j≤m−1

{
∑

i∈Rj
xs

i

Dj

}

≥

∑m−1
j=0

∑

i∈Rj
xs

i
∑m−1

j=0 xs
lj

.

(8)
Let N denote the set of contracts completed by T0 +

D0, excluding contracts C0, . . . Cm−1, and C ′ denote
the contract of largest length in N , then the length of
C ′ is equal to xs

k0
, for some k0. The proof is completed

by showing that
∑m−1

j=0

∑

i∈Ij
xs

i ≥
∑k0+m

i=0 xs
i , and

∑m−1
j=0 Dj ≤

∑k0+m
i=k0+1 xs

i . 2

In order to prove a lower bound on the right hand
side of inequality (5) we make use of the results by Gal
(Gal 1980) and Schuierer (Schuierer 2001) which, for
completeness, we state here without proof and in a sim-
plified form. Define Ga = (1, a, a2, . . .) to be the ge-
ometric sequence in a and X+i = (xi, xi+1, . . .) the
suffix of sequence X starting at xi.

Theorem 3 ((Schuierer 2001)) Let X = (x0, x1, . . .)
be a sequence of positive numbers, r an integer, and

a = limn→∞(xn)1/n, for a ∈ R∪{+∞}. If Fk, k ≥ 0,
is a sequence of functionals which satisfy

1. Fk(X) only depends on x0, x1, . . . , xk+r,

2. Fk(X) is continuous, for all xi > 0, with 0 ≤ i ≤
k + r,

3. Fk(αX) = Fk(X), for all α > 0,

4. Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and

5. Fk+i(X) ≥ Fk(X+i), for all i ≥ 1,

then
sup

0≤k<∞
Fk(X) ≥ sup

0≤k<∞
Fk(Ga).

Theorem 4 The exponential schedule which observes
Corollary 2 is optimal.



Proof. Let X = ((c0,m0, x0), (c1,m1, x1), . . .) de-
note an optimal α-normalized schedule (w.r.t. the accel-
eration ratio β), and Xs the sequence of the sorted X
values (as argued earlier, such an optimal schedule ex-
ists). In (Lopez-Ortiz, Angelopoulos, and Hamel 2006),
Theorem 1 can be used to show

α(X) ≥
an+m

am − 1
, (9)

where a = limn→∞(xn)1/n.
Let Y = ((c0,m0, y0), (c1,m1, y1), . . .) denote the

λ-normalized schedule derived from X by applying (if
necessary) the process described in Lemma 6. Then,
from the details of the proof of Lemma 6, the sequence
Y s of the sorted Y values is such that ys

i ≤ xs
i . Thus, if

ã = limn→∞(yn)1/n, we have that ã ≤ a.

Define Fk :=
k+m
∑

i=0

ys
i

/

k+m
∑

i=k+1

ys
i . It is easy to see

that Fk satisfies all the conditions of Theorem 3. Hence

sup
0≤k<∞

Fk(Y s) ≥ sup
0≤k≤∞

{

k+m
∑

i=0

ãi

/ k+m
∑

i=k+1

ãi

}

.

(10)
Note that if ã ≤ 1, then the ratio in (10) tends to

infinity as k → ∞, then (5) and Theorem 2 imply
β(X) ≥ 1 + 1/ǫ, which is trivially matched by any
schedule. Hence, we can assume that ã > 1 and obtain

sup
0≤k<∞

Fk(Y s) ≥ sup
0≤k≤∞

{

k+m
∑

i=0

ãi

/ k+m
∑

i=k+1

ãi

}

= sup
0≤k<∞

{

ãm − ã−k+1

ãm − 1

}

(ã>1)
=

ãm

ãm − 1
≥

am

am − 1
, (11)

where the last inequality follows from the fact that the
function f(x) = xm/(xm − 1) is decreasing in x, and
ã ≤ a. Combining (9), (11), with Lemma 5, Theorem 2
and the definition of λ(X) it follows that

β(X)≥min

{

max

{

an+m

(1 + ǫ)(am− 1)
,

am

am− 1

}

,
1 + ǫ

ǫ

}

.

The theorem follows then from Corollary 2. 2

Conclusions and future work

In this paper we formulated and addressed the prob-
lem of designing interruptible algorithms in a setting in
which the interruption is not a hard deadline, but rather
an additional time window is available to the algorithm
to complete its execution. We presented an exponential
schedule of optimal acceleration ratio in this setting.

Several other formulations of a soft deadline are pos-
sible (e.g., by defining a penalty proportional to the
amount of time between the actual interruption and the
time that a solution is returned). It would be interesting

to address such alternative formulations and compare
them in the context of a real-time application. Another
topic of future work includes average-case analysis of
schedules, namely the case in which the interruption
and/or the window are drawn from a known distribu-
tion. Last, the problems of scheduling contract algo-
rithms and parallel ray-searching are surprisingly inter-
related, as shown in (Bernstein, Finkelstein, and Zilber-
stein 2003). Do similar connections arise when dealing
with soft, as opposed to hard, deadlines?

References
Bernstein, D.; Perkins, T. J.; Zilberstein, S.; and
Finkelstein, L. 2002. Scheduling contract algorithms
on multiple processors. In Proceedings of the 18th Na-
tional Conference on Artificial Intelligence, 702–706.

Bernstein, D. S.; Finkelstein, L.; and Zilberstein, S.
2003. Contract algorithms and robots on rays: Uni-
fying two scheduling problems. In Proceedings of the
18th International Joint Conference in Artificial Intel-
ligence, 1211–1217.

Dean, T., and Boddy, M. S. 1998. An analysis of
time-dependent planning. In Proceedings of the 15th
National Conference on Artificial Intelligence, 49–54.

Gal, S. 1980. Search Games. Academic Press.

Horvitz, E. 1987. Reasoning about beliefs and actions
under computational resource constraints. In Proceed-
ings of the 3rd Annual Conference on Uncertainty in
Artificial Intelligence, 301–324.

Horvitz, E. 1998. Reasoning under varying and uncer-
tain resource constraints. In Proceedings of the 15th
National Conference on Artificial Intelligence, 111–
116.

Lopez-Ortiz, A.; Angelopoulos, S.; and Hamel, A.
2006. Optimal scheduling of contract algorithms for
anytime problems. In Proceedings of the 21st National
Conference on Artificial Intelligence.

Manolache, S.; Eles, P.; and Peng, Z. 2004. Opti-
mization of soft real-time systems with deadline miss
ratio constraints. In Proc. 10th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS’04), 562.

Russell, S. J., and Zilberstein, S. 1991. Composing
real-time systems. In Proceedings of the 12th Interna-
tional Joint Conference in Artificial Intelligence, 212–
217.

Schuierer, S. 2001. Lower bounds in online geomet-
ric searching. Computational Geometry: Theory and
Applications 18(1):37–53.

Zilberstein, S.; Charpillet, F.; and Chassaing, P. 1999.
Real-time problem-solving with contract algorithms.
In Proceedings of the 16th International Joint Confer-
ence in Artificial Intelligence, 1008–1015.

Zilberstein, S.; Charpillet, F.; and Chassaing, P. 2003.
Optimal sequencing of contract algorithms. Ann.
Math. Artif. Intell. 39(1-2):1–18.


