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n vertices. The source s and destination t are vertices of G, and a packet canonly travel on edges of G. Initially, a packet only knows the coordinates of s, t,and N(s), where N(v) denotes the set of vertices adjacent to a node v. When apacket visits a node v, it learns the coordinates of N(v).Bose and Morin [3] classify routing algorithms based on their use of mem-ory and/or randomization. A deterministic routing algorithm is memoryless oroblivious if, given a packet currently at vertex v and destined for node t, thealgorithm decides where to forward the packet based only on the coordinates ofv, t and N(v). A randomized algorithm is oblivious if it decides where to move apacket based only on the coordinates of v, t, N(v), and the output of a randomoracle. An algorithm A is defeated by a graph G if there exists a pair of verticess; t 2 G such that a packet stored at s will never reach t when being routedusing A. Otherwise, we say that A works for G.Let A(G; s; t) denote the length of the walk taken by routing algorithm Awhen travelling from vertex s to vertex t of G, and let SP(G; s; t) denote thelength of the shortest path between s and t. We say that A is c-competitive fora class of graphs G if A(G; s; t)SP(G; s; t) � cfor all graphs G 2 G and all s; t 2 G, s 6= t. We say that A is simply competitiveif A is c-competitive for some constant c.Recently, several papers have dealt with online routing and related problemsin geometric settings. Kalyanasundaram and Pruhs [7] give a 16-competitivealgorithm to explore any unknown plane graph, i.e., visit all of its nodes. Thisonline exploration problem makes the same assumptions as those made here, butthe goal of the problem is to visit all vertices of G, not just t. This di�erenceleads to inherently di�erent solutions.Kranakis et al. [8] give a deterministic oblivious routing algorithm that worksfor any Delaunay triangulation, and give a deterministic non-oblivious algorithmthat works for any connected plane graph.Bose and Morin [3] also study online routing in geometric settings, particular-ly triangulations. They give a randomized oblivious routing algorithm that worksfor any triangulation, and ask whether there is a deterministic oblivious rout-ing algorithm for all triangulations. They also give a competitive non-obliviousrouting algorithm for Delaunay triangulations.Cucka et al. [5] experimentally evaluate the performance of routing algorithm-s very similar to those described by Kranakis et al. [8] and Bose and Morin [3].When considering the Euclidean distance travelled during point-to-point rout-ing, their results show that the greedy routing algorithm [3] performs betterthan the compass routing algorithm [3, 8] on random graphs, but does not doas well on Delaunay triangulations of random point sets.1 However, when oneconsiders not the Euclidean distance, but the number of edges traversed (link1 Cucka et al. call these algorithms p-dfs and d-dfs, respectively.



distance), then the compass routing algorithm is slightly more eÆcient for bothrandom graphs and Delaunay triangulations.In this paper we present a number of new fundamental theoretical resultsthat help further the understanding of online routing in plane graphs.1. We give a deterministic oblivious routing algorithm for all triangulations,solving the open problem posed by Bose and Morin [3].2. We prove that no deterministic oblivious routing algorithm works for all con-vex subdivisions, showing some limitations of deterministic oblivious routingalgorithms.3. We prove that the randomized oblivious routing algorithm random-compassdescribed by Bose and Morin [3] works for any convex subdivision.4. We show that, under the Euclidean metric, no routing algorithm exists thatis competitive for all triangulations, and under the link distance metric,no routing algorithm exists that is competitive for all Delaunay, greedy, orminimum-weight triangulations.The remainder of the paper is organized as follows: In Section 2 we giveour deterministic oblivious algorithm for routing in triangulations. Section 3presents our results for routing in convex subdivisions. Section 4 describes ourimpossibility results for competitive algorithms. Finally, Section 5 summarizesand concludes with open problems.2 Oblivious Routing in TriangulationsA triangulation T is a plane graph for which every face is a triangle, exceptthe outer face, which is the complement of a convex polygon. In this section wedescribe a deterministic oblivious routing algorithm that works for all triangu-lations.We use the notation 6 a; b; c to denote the angle formed by a b and c asmeasured in the counterclockwise direction. Let cw(v) be the vertex in N(v)which minimizes the angle 6 cw(v); v; t and let ccw(v) be the vertex in N(v)which minimizes the angle 6 t; v; ccw(v). If v has a neighbour w on the linesegment (v; t), then cw(v) = ccw(v) = w. In particular, the vertex t is containedin the wedge cw(v); v; ccw(v). Refer to Fig. 1 for an illustration.The greedy-compass algorithm always moves to the vertex among fcw(v); ccw(v)gthat minimizes the distance to t. If the two distances are equal, or if cw(v) =ccw(v), then greedy-compass chooses one of fcw(v); ccw(v)g arbitrarily.Theorem 1 Algorithm greedy-compass works for any triangulation.Proof. Suppose, by way of contradiction that a triangulation T and a pair ofvertices s and t exist such that greedy-compass does not �nd a path from sto t.
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Fig. 1. De�nition of cw(v) and ccw(v).In this case there must be a cycle of vertices C = hv0; : : : ; vk�1i of T suchthat greedy-compass moves from vi to vi+1 for all 0 � i � k, i.e., greedy-compass gets trapped cycling through the vertices of C (see also Lemma 1of [3]).2 Furthermore, it follows from Lemma 2 of [3] that the destination t iscontained in the interior of C.Claim 1 All vertices of C must lie on the boundary of a disk D centered at t.Proof (Proof (of claim)). Suppose, by way of contradiction, that there is no suchdisk D. Then let D be the disk centered at t and having the furthest vertex of Cfrom t on its boundary. Consider a vertex vi in the interior of D such that vi+1 ison the boundary of D. (Refer to Fig. 2.) Assume, w.l.o.g., that vi+1 = ccw(vi).Then it must be that cw(vi) is not in the interior of D, otherwise greedy-compass would not have moved to vi+1. But then the edge (cw(vi); ccw(vi))cuts D into two regions, R1 containing vi and R2 containing t. Since C passesthrough both R1 and R2 and is contained in D then it must be that C entersregion R1 at cw(vi) and leaves R1 at vi+1 = ccw(vi). However, this cannothappen because both cw(cw(vi)) and ccw(cw(vi)) are contained in the halfspacebounded by the supporting line of (cw(vi); ccw(vi)) and containing t, and aretherefore not contained in R1.Thus, we have established that all vertices of C are on the boundary of D.However, since C contains t in its interior and the triangulation T is connected,it must be that for some vertex vj of C, cw(vj) or ccw(vj) is in the interiorof D. Suppose that it is cw(vj). But then we have a contradiction, since thegreedy-compass algorithm would have gone to cw(vj) rather than vj+1.3 Oblivious Routing in Convex SubdivisionsA convex subdivision is an embedded plane graph such that each face of thegraph is a convex polygon, except the outer face which is the complement of2 Here, and in the remainder of this proof, all subscripts are taken mod k.
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Fig. 2. The proof of Theorem 1.a convex polygon. Triangulations are a special case of convex subdivisions inwhich each face is a triangle; thus it is natural to ask whether the greedy-compass algorithm can be generalized to convex subdivisions. In this section,we show that there is no deterministic oblivious routing algorithm for convexsubdivisions. However, there is a randomized oblivious routing algorithm thatuses only one random bit per step.3.1 Deterministic AlgorithmsTheorem 2 Every deterministic oblivious routing algorithm is defeated by someconvex subdivision.Proof. We exhibit a �nite collection of convex subdivisions such that any deter-ministic oblivious routing algorithm is defeated by at least one of them.There are 17 vertices that are common to all of our subdivisions. The destina-tion vertex t is located at the origin. The other 16 vertices V = fv0; : : : ; v15g arethe vertices of a regular 16-gon centered at the origin and listed in counterclock-wise order.3 In all our subdivisions, the even-numbered vertices v0; v2; : : : ; v14have degree 2. The degree of the other vertices varies. All of our subdivisionscontain the edges of the regular 16-gon.Assume, by way of contradiction, that there exists a routing algorithmA thatworks for any convex subdivision. Since the even-numbered vertices in our subdi-visions always have the same two neighbours in all subdivisions, A always makesthe same decision at a particular even-numbered vertex. Thus, it makes senseto ask what A does when it visits an even-numbered vertex, without knowinganything else about the particular subdivision that A is routing on.For each vertex vi 2 V , we color vi black or white depending on the action ofA upon visiting vi, speci�cally, black for moving counterclockwise and white for3 In the remainder of this proof, all subscripts are implicitly taken mod 16.



moving clockwise around the regular 16-gon. We claim that all even-numberedvertices in V must have the same color. If not, then there exists two verticesvi and vi+2 such that vi is black and vi+2 is white. Then, if we take s = viin the convex subdivision shown in Fig. 3.a, the algorithm becomes trapped onone of the edges (vi; vi+1) or (vi+1; vi+2) and never reaches the destination t,contradicting the assumption that A works for any convex subdivision.vivi+2t vi+1 v1 v0 v15v14v13v12xtv2v3v4v5v6 v7 v8 v9 v10 v11
v1 v0 v15v14v13v12v2v3v4v5v6 v7 v8 v9 v10 v11(a) (b) (c)Fig. 3. The proof of Theorem 2.Therefore, assume w.l.o.g. that all even-numbered vertices of V are black,and consider the convex subdivision shown in Fig. 3.b. From this �gure it isclear that, if we take s = v1, A cannot visit x after v1, since then it gets trappedamong the vertices fv12; v13; v14; v15; v0; v1; xg and never reaches t.Note that we can rotate Fig. 3.b by integral multiples of �=4 while leavingthe vertex labels in place and make similar arguments for v3, v5, v7, v9, v11,v13 and v15. However, this implies that A is defeated by the convex subdivisionshown in Fig. 3.c since if it begins at any vertex of the regular 16-gon, it neverenters the interior of the 16-gon. We conclude that no oblivious online routingalgorithm works for all convex subdivisions.We note that, although our proof uses subdivisions in which some of the facesare not strictly convex (i.e., have vertices with interior angle �), it is possible tomodify the proof to use only strictly convex subdivisions, but doing so leads tomore cluttered diagrams.3.2 Randomized AlgorithmsBose and Morin [3] describe the random-compass algorithm and show thatit works for any triangulation. For a packet stored at node v, the random-compass algorithm selects a vertex from fcw(v); ccw(v)g uniformly at randomand moves to it. In this section we show that random-compass works for anyconvex subdivision.



Although it is well known that a random walk on any graph G will eventuallyvisit all vertices of G, the random-compass algorithm has two advantages overa random walk. The �rst advantage is that the random-compass algorithm ismore eÆcient in its use of randomization than a random walk. It requires onlyone random bit per step, whereas a random walk requires log k random bits for avertex of degree k. The second advantage is that the random-compass algorith-m makes use of geometry to guide it, and the result is that random-compassgenerally arrives at t much more quickly than a random walk. Nevertheless, itcan be helpful to think of random-compass as a random walk on a directedgraph in which every node has out-degree 1 or 2 except for t which is a sink.Before we can make statements about which graphs defeat random-compass,we must de�ne what it means for a graph to defeat a randomized algorithm. Wesay that a graph G defeats a (randomized) routing algorithm if there exists apair of vertices s and t of G such that a packet originating at s with destinationt has probability 0 of reaching t in any �nite number of steps. Note that, foroblivious algorithms, proving that a graph does not defeat an algorithm impliesthat the algorithm will reach its destination with probability 1.Theorem 3 Algorithm random-compass works for any convex subdivision.Proof. Assume, by way of contradiction, that there is a convex subdivision Gwith two vertices s and t such that the probability of reaching s from t usingrandom-compass is 0. Then there is a subgraph H of G containing s, but notcontaining t, such that for all vertices v 2 H , cw(v) 2 H and ccw(v) 2 H .The vertex t is contained in some face f of H . We claim that this face mustbe convex. For the sake of contradiction, assume otherwise. Then there is a re
exvertex v on the boundary of f such that the line segment (t; v) does not intersectany edge of H . However, this cannot happen, since ccw(v) and cw(v) are in H ,and hence v would not be re
ex.Since G is connected, it must be that for some vertex u on the boundaryof f , cw(u) or ccw(u) is contained in the interior of f . But this vertex in theinterior of f is also in H , contradicting the fact that f is a convex face of H . Weconclude that there is no convex subdivision that defeats random-compass.4 Competitive Routing AlgorithmsIf we are willing to accept more sophisticated routing algorithms that make useof memory, then it is sometimes possible to �nd competitive routing algorithms.Bose and Morin [3] give a competitive algorithm for Delaunay triangulationsunder the Euclidean distance metric. Two questions arise from this: (1) Canthis result be generalized to arbitrary triangulations? and (2) Can this result beduplicated for the link distance metric? In this section we show that the answerto both these questions is negative.



4.1 Euclidean DistanceIn this section we show that, under the Euclidean metric, no deterministic rout-ing algorithm is o(pn)-competitive for all triangulations. Our proof is a modi�-cation of that used by Papadimitriou and Yannakakis [9] to show that no onlinealgorithm for �nding a destination point among n axis-oriented rectangular ob-stacles in the plane is o(pn)-competitive.Theorem 4 Under the Euclidean distance metric, no deterministic routing al-gorithm is o(pn) competitive for all triangulations.
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vb (b)Fig. 4. (a) The triangulation T with the path found by A indicated. (b) The resultingtriangulation T 0 with the \almost-vertical" path shown in bold.Proof. Consider an n�n hexagonal lattice with the following modi�cations. Thelattice has had its x-coordinates scaled so that each edge is of length �(n). Thelattice also has two additional vertices, s and t, centered horizontally, at one unitbelow the bottom row and one unit above the top row, respectively. Finally, allvertices of the lattice and s and t have been completed to a triangulation T . SeeFig. 4.a for an illustration.Let A be any deterministic routing algorithm and observe the actions of Aas it routes from s to t. In particular, consider the �rst n+ 1 steps taken by Aas it routes from s to t. Then A visits at most n + 1 vertices of T , and these



vertices induce a subgraph Tvis consisting of all vertices visited by A and alledges adjacent to these vertices.For any vertex v of T not equal to s or t, de�ne the x-span of v as theinterval between the rightmost and leftmost x-coordinate of N(v). The length ofany x-span is �(n), and the width of the original triangulation T is �(n2). Thisimplies that there is some vertex vb on the bottom row of T whose x-coordinateis at most npn from the x-coordinate of s and is contained in O(pn) x-spansof the vertices visited in the �rst n+ 1 steps of A.We now create the triangulation T 0 that contains all vertices and edges ofTvis. Additionally, T 0 contains the set of edges forming an \almost vertical"path from vb to the top row of T 0. This almost vertical path is a path that isvertical wherever possible, but uses minimal detours to avoid edges of Tvis. Sinceonly O(pn) detours are required, the length of this path is O(npn). Finally, wecomplete T 0 to a triangulation in some arbitrary way that does not increase thedegrees of vertices on the �rst n+ 1 steps of A. See Fig. 4.b for an example.Now, since A is deterministic, the �rst n+ 1 steps taken by A on T 0 will bethe same as the �rst n + 1 steps taken by A on T , and will therefore travel adistance of �(n2). However, there is a path in T 0 from s to t that �rst visits vb(at a cost of O(npn)), then uses the \almost-vertical" path to the top row of T 0(at a cost of O(npn)) and then travels directly to t (at a cost of O(npn)). Thus,the total cost of this path, and hence the shortest path, from s to t is O(npn).We conclude that A is not o(pn)-competitive for T 0. Since the choice ofA is arbitary, and T 0 contains O(n) vertices, this implies that no deterministicrouting algorithm is o(pn) competitive for all triangulations with n vertices.4.2 Link DistanceThe link distance metric simply measures the number of edges traversed by arouting algorithm. For many networking applications, this metric is more mean-ingful than Euclidean distance. In this section we show that competitive algo-rithms under the link distance metric are harder to come by than under theEuclidean distance metric. Throughout this section we assume that the readeris familiar with the de�nitions of Delaunay, greedy and minimum-weight trian-gulations (cf. Preparata and Shamos [10]).We obtain this result by constructing a \bad" family of point sets as follows.Let Ci be the set of pn points f(ipn; 1); (ipn; 2); : : : ; (ipn;pn)g. We call Cithe ith column. Let Di = f(ipn; 1); (ipn;pn)g, and de�ne a family of point setsS = S1j=1fSj2g where Sn = fSn;1; : : : ; Sn;png andSn;i = i�1[j=1Cj [Di [ pn[j=i+1Cj [ f(pn=2; 0); (pn=2;pn+ 1)g (1)Two members of the set S49 are shown in Fig. 5.



(a) (b)Fig. 5. The point sets (a) S49;2 and (b) S49;5 along with their Delaunay triangulations.Theorem 5 Under the link distance metric, no routing algorithm is o(pn)-competitive for all Delaunay triangulations.Proof. We use the notation DT (Sn;i) to denote the Delaunay triangulation ofSn;i. Although the Delaunay triangulation of Sn;i is not unique, we will assumeDT (Sn;i) is triangulated as in Fig. 5. Note that, in DT (Sn;i), the shortest pathbetween the topmost vertex s and bottom-most vertex t is of length 3, indepen-dent of n and i. Furthermore, any path from s to t whose length is less than pnmust visit vertices from one of the columns Ci�1, Ci, or Ci+1.The rest of the proof is based on the following observation: If we choose anelement i uniformly at random from f1; : : : ;png, then the probability that arouting algorithm A has visited a vertex of Ci�1, Ci, or Ci+1 after k steps isat most 3k=pn. Letting k = pn=6, we see that the probability that A visits avertex of Ci�1, Ci, or Ci+1 after pn=6 steps is at most 1=2.Letting di denote the (expected, in the case of randomized algorithms) num-ber of steps when routing from s to t in Sn;i using routing algorithm A, wehave 1pn � pnXi=1 di � pn=12 : (2)Since, for any Sn;i, the shortest path from s to t is 3 there must be some i forwhich the competitive ratio of A for Sn;i is at least pn=36 2 
(pn).Theorem 6 Under the link distance metric, no routing algorithm is o(pn)-competitive for all greedy triangulations.Proof. This follows immediately from the observation that for any Sn;i, a De-launay triangulation of Sn;i is also a greedy triangulation of Sn;i.Theorem 7 Under the link distance metric, no routing algorithm is o(pn)-competitive for all minimum-weight triangulations.Proof. We claim that for members of S, any greedy triangulation is also aminimum-weight triangulation. To prove this, we use a result on minimum-weight triangulations due to Aichholzer et al. [1]. Let Kn;i be the complete



graph on Sn;i. Then an edge e of Kn;i is said to be a light edge if every edge ofKn;i that crosses e is not shorter than e. Aichholzer et al. prove that if the setof light edges contains the edges of a triangulation then that triangulation is aminimum-weight triangulation.There are only 5 di�erent types of edges in the greedy triangulation of Sn;i;(1) vertical edges within a column, (2) horizonal edges between adjacent column-s, (3) diagonal edges between adjacent columns, (4) edges used to triangulatecolumn i, and (5) edges used to join s and t to the rest of the graph. It isstraightforward to verify that all of these types of edges are indeed light edges.5 ConclusionsWe have presented a number of results concerning online routing in plane graph-s. Table 1 summarizes what is currently known about online routing in planegraphs. An arrow in a reference indicates that the result is implied by the moregeneral result pointed to by the arrow. An F indicates that the result is trivialand/or folklore.Class of Deterministic Randomized Euclidean Linkgraphs oblivious oblivious4 competitive competitiveDT Yes [3, 8, #] Yes [ ] Yes [3] No [here]GT/MWT Yes [#] Yes [#] Yes [4] No [here]Triangulations Yes [here] Yes [3,  ] No [here] No ["]Conv. Subdv. No [here] Yes [here] No ["] No ["]Plane graphs No [F] No [F] No [F] No [F]Table 1. A summary of known results for online routing in plane graphs.We have also implemented a simulation of the greedy-compass algorithmas well as the algorithms described by Bose and Morin [3] and compared themunder the Euclidean distance metric. These results will be presented in the fullversion of the paper. Here we only summarize our main observations.For Delaunay triangulations of random point sets, we found that the perfor-mance of greedy-compass is comparable to that of the compass and greedyalgorithms [3, 5, 8]. For triangulations obtained by performing Graham's scan [6]on random point sets, the greedy-compass algorithm does signi�cantly betterthan the compass or greedy algorithms.We also implemented a variant of greedy-compass that we call greedy-compass-2 that, when located at a vertex v, moves to the vertex u 2 fcw(v); ccw(v)g4 In this column, we consider only algorithms that use a constant number of randombits per step. Otherwise, it is well known that a random walk on any graph G willeventually visit all vertices of G.
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