
Online Routing in Convex Subdivisions?Prosenjit Bose1, Andrej Brodnik2, Svante Carlsson3, Erik D. Demaine4, RudolfFleis
her4, Alejandro L�opez-Ortiz5, Pat Morin1, and J. Ian Munro41 S
hool of Computer S
ien
e, Carleton University,1125 Colonel By Dr., Ottawa, Ontario, Canada, K1S 5B6,fjit,moring�s
s.
arleton.
a2 IMFM, University of Ljubljana,Jadranska 11, SI-1111 Ljubljana, SloveniaAndrej.Brodnik�IMFM.Uni-Lj.SI3 University of Karlskona/Ronneby,371 41 KARLSKRONA, Sweden,svante.
arlsson�sm.luth.se4 Department of Computer S
ien
e,University of Waterloo,Waterloo, Ontario, Canada, N2L 3G1,feddemain,rudolf,imunrog�uwaterloo.
a5 Fa
ulty of Computer S
ien
e, University of New Brunswi
k,Frederi
ton, New Brunswi
k, Canada, E3B 4A1,alopez-o�unb.
aAbstra
t. We 
onsider online routing algorithms for �nding paths be-tween the verti
es of plane graphs. We show (1) there exists a routingalgorithm for arbitrary triangulations that has no memory and uses norandomization, (2) no equivalent result is possible for 
onvex subdivi-sions, (3) there is no 
ompetitive online routing algorithm under theEu
lidean distan
e metri
 in arbitrary triangulations, and (4) there isno 
ompetitive online routing algorithm under the link distan
e metri
even when the input graph is restri
ted to be a Delaunay, greedy, orminimum-weight triangulation.1 Introdu
tionPath �nding, or routing, is 
entral to a number of �elds in
luding geographi
information systems, urban planning, roboti
s, and 
ommuni
ation networks. Inmany 
ases, knowledge about the environment in whi
h routing takes pla
e is notavailable beforehand, and the vehi
le/robot/pa
ket must learn this informationthrough exploration. Algorithms for routing in these types of environments arereferred to as online [2℄ routing algorithms.In this paper we 
onsider online routing in the following abstra
t setting [3℄:The environment is a plane graph, G (i.e., the planar embedding of G) with? This resear
h was partly funded by the Natural S
ien
es and Engineering Resear
hCoun
il of Canada.



n verti
es. The sour
e s and destination t are verti
es of G, and a pa
ket 
anonly travel on edges of G. Initially, a pa
ket only knows the 
oordinates of s, t,and N(s), where N(v) denotes the set of verti
es adja
ent to a node v. When apa
ket visits a node v, it learns the 
oordinates of N(v).Bose and Morin [3℄ 
lassify routing algorithms based on their use of mem-ory and/or randomization. A deterministi
 routing algorithm is memoryless oroblivious if, given a pa
ket 
urrently at vertex v and destined for node t, thealgorithm de
ides where to forward the pa
ket based only on the 
oordinates ofv, t and N(v). A randomized algorithm is oblivious if it de
ides where to move apa
ket based only on the 
oordinates of v, t, N(v), and the output of a randomora
le. An algorithm A is defeated by a graph G if there exists a pair of verti
ess; t 2 G su
h that a pa
ket stored at s will never rea
h t when being routedusing A. Otherwise, we say that A works for G.Let A(G; s; t) denote the length of the walk taken by routing algorithm Awhen travelling from vertex s to vertex t of G, and let SP(G; s; t) denote thelength of the shortest path between s and t. We say that A is 
-
ompetitive fora 
lass of graphs G if A(G; s; t)SP(G; s; t) � 
for all graphs G 2 G and all s; t 2 G, s 6= t. We say that A is simply 
ompetitiveif A is 
-
ompetitive for some 
onstant 
.Re
ently, several papers have dealt with online routing and related problemsin geometri
 settings. Kalyanasundaram and Pruhs [7℄ give a 16-
ompetitivealgorithm to explore any unknown plane graph, i.e., visit all of its nodes. Thisonline exploration problem makes the same assumptions as those made here, butthe goal of the problem is to visit all verti
es of G, not just t. This di�eren
eleads to inherently di�erent solutions.Kranakis et al. [8℄ give a deterministi
 oblivious routing algorithm that worksfor any Delaunay triangulation, and give a deterministi
 non-oblivious algorithmthat works for any 
onne
ted plane graph.Bose and Morin [3℄ also study online routing in geometri
 settings, parti
ular-ly triangulations. They give a randomized oblivious routing algorithm that worksfor any triangulation, and ask whether there is a deterministi
 oblivious rout-ing algorithm for all triangulations. They also give a 
ompetitive non-obliviousrouting algorithm for Delaunay triangulations.Cu
ka et al. [5℄ experimentally evaluate the performan
e of routing algorithm-s very similar to those des
ribed by Kranakis et al. [8℄ and Bose and Morin [3℄.When 
onsidering the Eu
lidean distan
e travelled during point-to-point rout-ing, their results show that the greedy routing algorithm [3℄ performs betterthan the 
ompass routing algorithm [3, 8℄ on random graphs, but does not doas well on Delaunay triangulations of random point sets.1 However, when one
onsiders not the Eu
lidean distan
e, but the number of edges traversed (link1 Cu
ka et al. 
all these algorithms p-dfs and d-dfs, respe
tively.



distan
e), then the 
ompass routing algorithm is slightly more eÆ
ient for bothrandom graphs and Delaunay triangulations.In this paper we present a number of new fundamental theoreti
al resultsthat help further the understanding of online routing in plane graphs.1. We give a deterministi
 oblivious routing algorithm for all triangulations,solving the open problem posed by Bose and Morin [3℄.2. We prove that no deterministi
 oblivious routing algorithm works for all 
on-vex subdivisions, showing some limitations of deterministi
 oblivious routingalgorithms.3. We prove that the randomized oblivious routing algorithm random-
ompassdes
ribed by Bose and Morin [3℄ works for any 
onvex subdivision.4. We show that, under the Eu
lidean metri
, no routing algorithm exists thatis 
ompetitive for all triangulations, and under the link distan
e metri
,no routing algorithm exists that is 
ompetitive for all Delaunay, greedy, orminimum-weight triangulations.The remainder of the paper is organized as follows: In Se
tion 2 we giveour deterministi
 oblivious algorithm for routing in triangulations. Se
tion 3presents our results for routing in 
onvex subdivisions. Se
tion 4 des
ribes ourimpossibility results for 
ompetitive algorithms. Finally, Se
tion 5 summarizesand 
on
ludes with open problems.2 Oblivious Routing in TriangulationsA triangulation T is a plane graph for whi
h every fa
e is a triangle, ex
eptthe outer fa
e, whi
h is the 
omplement of a 
onvex polygon. In this se
tion wedes
ribe a deterministi
 oblivious routing algorithm that works for all triangu-lations.We use the notation 6 a; b; 
 to denote the angle formed by a b and 
 asmeasured in the 
ounter
lo
kwise dire
tion. Let 
w(v) be the vertex in N(v)whi
h minimizes the angle 6 
w(v); v; t and let 

w(v) be the vertex in N(v)whi
h minimizes the angle 6 t; v; 

w(v). If v has a neighbour w on the linesegment (v; t), then 
w(v) = 

w(v) = w. In parti
ular, the vertex t is 
ontainedin the wedge 
w(v); v; 

w(v). Refer to Fig. 1 for an illustration.The greedy-
ompass algorithm always moves to the vertex among f
w(v); 

w(v)gthat minimizes the distan
e to t. If the two distan
es are equal, or if 
w(v) =

w(v), then greedy-
ompass 
hooses one of f
w(v); 

w(v)g arbitrarily.Theorem 1 Algorithm greedy-
ompass works for any triangulation.Proof. Suppose, by way of 
ontradi
tion that a triangulation T and a pair ofverti
es s and t exist su
h that greedy-
ompass does not �nd a path from sto t.
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Fig. 1. De�nition of 
w(v) and 

w(v).In this 
ase there must be a 
y
le of verti
es C = hv0; : : : ; vk�1i of T su
hthat greedy-
ompass moves from vi to vi+1 for all 0 � i � k, i.e., greedy-
ompass gets trapped 
y
ling through the verti
es of C (see also Lemma 1of [3℄).2 Furthermore, it follows from Lemma 2 of [3℄ that the destination t is
ontained in the interior of C.Claim 1 All verti
es of C must lie on the boundary of a disk D 
entered at t.Proof (Proof (of 
laim)). Suppose, by way of 
ontradi
tion, that there is no su
hdisk D. Then let D be the disk 
entered at t and having the furthest vertex of Cfrom t on its boundary. Consider a vertex vi in the interior of D su
h that vi+1 ison the boundary of D. (Refer to Fig. 2.) Assume, w.l.o.g., that vi+1 = 

w(vi).Then it must be that 
w(vi) is not in the interior of D, otherwise greedy-
ompass would not have moved to vi+1. But then the edge (
w(vi); 

w(vi))
uts D into two regions, R1 
ontaining vi and R2 
ontaining t. Sin
e C passesthrough both R1 and R2 and is 
ontained in D then it must be that C entersregion R1 at 
w(vi) and leaves R1 at vi+1 = 

w(vi). However, this 
annothappen be
ause both 
w(
w(vi)) and 

w(
w(vi)) are 
ontained in the halfspa
ebounded by the supporting line of (
w(vi); 

w(vi)) and 
ontaining t, and aretherefore not 
ontained in R1.Thus, we have established that all verti
es of C are on the boundary of D.However, sin
e C 
ontains t in its interior and the triangulation T is 
onne
ted,it must be that for some vertex vj of C, 
w(vj) or 

w(vj) is in the interiorof D. Suppose that it is 
w(vj). But then we have a 
ontradi
tion, sin
e thegreedy-
ompass algorithm would have gone to 
w(vj) rather than vj+1.3 Oblivious Routing in Convex SubdivisionsA 
onvex subdivision is an embedded plane graph su
h that ea
h fa
e of thegraph is a 
onvex polygon, ex
ept the outer fa
e whi
h is the 
omplement of2 Here, and in the remainder of this proof, all subs
ripts are taken mod k.
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Fig. 2. The proof of Theorem 1.a 
onvex polygon. Triangulations are a spe
ial 
ase of 
onvex subdivisions inwhi
h ea
h fa
e is a triangle; thus it is natural to ask whether the greedy-
ompass algorithm 
an be generalized to 
onvex subdivisions. In this se
tion,we show that there is no deterministi
 oblivious routing algorithm for 
onvexsubdivisions. However, there is a randomized oblivious routing algorithm thatuses only one random bit per step.3.1 Deterministi
 AlgorithmsTheorem 2 Every deterministi
 oblivious routing algorithm is defeated by some
onvex subdivision.Proof. We exhibit a �nite 
olle
tion of 
onvex subdivisions su
h that any deter-ministi
 oblivious routing algorithm is defeated by at least one of them.There are 17 verti
es that are 
ommon to all of our subdivisions. The destina-tion vertex t is lo
ated at the origin. The other 16 verti
es V = fv0; : : : ; v15g arethe verti
es of a regular 16-gon 
entered at the origin and listed in 
ounter
lo
k-wise order.3 In all our subdivisions, the even-numbered verti
es v0; v2; : : : ; v14have degree 2. The degree of the other verti
es varies. All of our subdivisions
ontain the edges of the regular 16-gon.Assume, by way of 
ontradi
tion, that there exists a routing algorithmA thatworks for any 
onvex subdivision. Sin
e the even-numbered verti
es in our subdi-visions always have the same two neighbours in all subdivisions, A always makesthe same de
ision at a parti
ular even-numbered vertex. Thus, it makes senseto ask what A does when it visits an even-numbered vertex, without knowinganything else about the parti
ular subdivision that A is routing on.For ea
h vertex vi 2 V , we 
olor vi bla
k or white depending on the a
tion ofA upon visiting vi, spe
i�
ally, bla
k for moving 
ounter
lo
kwise and white for3 In the remainder of this proof, all subs
ripts are impli
itly taken mod 16.



moving 
lo
kwise around the regular 16-gon. We 
laim that all even-numberedverti
es in V must have the same 
olor. If not, then there exists two verti
esvi and vi+2 su
h that vi is bla
k and vi+2 is white. Then, if we take s = viin the 
onvex subdivision shown in Fig. 3.a, the algorithm be
omes trapped onone of the edges (vi; vi+1) or (vi+1; vi+2) and never rea
hes the destination t,
ontradi
ting the assumption that A works for any 
onvex subdivision.vivi+2t vi+1 v1 v0 v15v14v13v12xtv2v3v4v5v6 v7 v8 v9 v10 v11
v1 v0 v15v14v13v12v2v3v4v5v6 v7 v8 v9 v10 v11(a) (b) (
)Fig. 3. The proof of Theorem 2.Therefore, assume w.l.o.g. that all even-numbered verti
es of V are bla
k,and 
onsider the 
onvex subdivision shown in Fig. 3.b. From this �gure it is
lear that, if we take s = v1, A 
annot visit x after v1, sin
e then it gets trappedamong the verti
es fv12; v13; v14; v15; v0; v1; xg and never rea
hes t.Note that we 
an rotate Fig. 3.b by integral multiples of �=4 while leavingthe vertex labels in pla
e and make similar arguments for v3, v5, v7, v9, v11,v13 and v15. However, this implies that A is defeated by the 
onvex subdivisionshown in Fig. 3.
 sin
e if it begins at any vertex of the regular 16-gon, it neverenters the interior of the 16-gon. We 
on
lude that no oblivious online routingalgorithm works for all 
onvex subdivisions.We note that, although our proof uses subdivisions in whi
h some of the fa
esare not stri
tly 
onvex (i.e., have verti
es with interior angle �), it is possible tomodify the proof to use only stri
tly 
onvex subdivisions, but doing so leads tomore 
luttered diagrams.3.2 Randomized AlgorithmsBose and Morin [3℄ des
ribe the random-
ompass algorithm and show thatit works for any triangulation. For a pa
ket stored at node v, the random-
ompass algorithm sele
ts a vertex from f
w(v); 

w(v)g uniformly at randomand moves to it. In this se
tion we show that random-
ompass works for any
onvex subdivision.



Although it is well known that a random walk on any graph G will eventuallyvisit all verti
es of G, the random-
ompass algorithm has two advantages overa random walk. The �rst advantage is that the random-
ompass algorithm ismore eÆ
ient in its use of randomization than a random walk. It requires onlyone random bit per step, whereas a random walk requires log k random bits for avertex of degree k. The se
ond advantage is that the random-
ompass algorith-m makes use of geometry to guide it, and the result is that random-
ompassgenerally arrives at t mu
h more qui
kly than a random walk. Nevertheless, it
an be helpful to think of random-
ompass as a random walk on a dire
tedgraph in whi
h every node has out-degree 1 or 2 ex
ept for t whi
h is a sink.Before we 
an make statements about whi
h graphs defeat random-
ompass,we must de�ne what it means for a graph to defeat a randomized algorithm. Wesay that a graph G defeats a (randomized) routing algorithm if there exists apair of verti
es s and t of G su
h that a pa
ket originating at s with destinationt has probability 0 of rea
hing t in any �nite number of steps. Note that, foroblivious algorithms, proving that a graph does not defeat an algorithm impliesthat the algorithm will rea
h its destination with probability 1.Theorem 3 Algorithm random-
ompass works for any 
onvex subdivision.Proof. Assume, by way of 
ontradi
tion, that there is a 
onvex subdivision Gwith two verti
es s and t su
h that the probability of rea
hing s from t usingrandom-
ompass is 0. Then there is a subgraph H of G 
ontaining s, but not
ontaining t, su
h that for all verti
es v 2 H , 
w(v) 2 H and 

w(v) 2 H .The vertex t is 
ontained in some fa
e f of H . We 
laim that this fa
e mustbe 
onvex. For the sake of 
ontradi
tion, assume otherwise. Then there is a re
exvertex v on the boundary of f su
h that the line segment (t; v) does not interse
tany edge of H . However, this 
annot happen, sin
e 

w(v) and 
w(v) are in H ,and hen
e v would not be re
ex.Sin
e G is 
onne
ted, it must be that for some vertex u on the boundaryof f , 
w(u) or 

w(u) is 
ontained in the interior of f . But this vertex in theinterior of f is also in H , 
ontradi
ting the fa
t that f is a 
onvex fa
e of H . We
on
lude that there is no 
onvex subdivision that defeats random-
ompass.4 Competitive Routing AlgorithmsIf we are willing to a

ept more sophisti
ated routing algorithms that make useof memory, then it is sometimes possible to �nd 
ompetitive routing algorithms.Bose and Morin [3℄ give a 
ompetitive algorithm for Delaunay triangulationsunder the Eu
lidean distan
e metri
. Two questions arise from this: (1) Canthis result be generalized to arbitrary triangulations? and (2) Can this result bedupli
ated for the link distan
e metri
? In this se
tion we show that the answerto both these questions is negative.



4.1 Eu
lidean Distan
eIn this se
tion we show that, under the Eu
lidean metri
, no deterministi
 rout-ing algorithm is o(pn)-
ompetitive for all triangulations. Our proof is a modi�-
ation of that used by Papadimitriou and Yannakakis [9℄ to show that no onlinealgorithm for �nding a destination point among n axis-oriented re
tangular ob-sta
les in the plane is o(pn)-
ompetitive.Theorem 4 Under the Eu
lidean distan
e metri
, no deterministi
 routing al-gorithm is o(pn) 
ompetitive for all triangulations.
s
t
(a)
s
t

vb (b)Fig. 4. (a) The triangulation T with the path found by A indi
ated. (b) The resultingtriangulation T 0 with the \almost-verti
al" path shown in bold.Proof. Consider an n�n hexagonal latti
e with the following modi�
ations. Thelatti
e has had its x-
oordinates s
aled so that ea
h edge is of length �(n). Thelatti
e also has two additional verti
es, s and t, 
entered horizontally, at one unitbelow the bottom row and one unit above the top row, respe
tively. Finally, allverti
es of the latti
e and s and t have been 
ompleted to a triangulation T . SeeFig. 4.a for an illustration.Let A be any deterministi
 routing algorithm and observe the a
tions of Aas it routes from s to t. In parti
ular, 
onsider the �rst n+ 1 steps taken by Aas it routes from s to t. Then A visits at most n + 1 verti
es of T , and these



verti
es indu
e a subgraph Tvis 
onsisting of all verti
es visited by A and alledges adja
ent to these verti
es.For any vertex v of T not equal to s or t, de�ne the x-span of v as theinterval between the rightmost and leftmost x-
oordinate of N(v). The length ofany x-span is �(n), and the width of the original triangulation T is �(n2). Thisimplies that there is some vertex vb on the bottom row of T whose x-
oordinateis at most npn from the x-
oordinate of s and is 
ontained in O(pn) x-spansof the verti
es visited in the �rst n+ 1 steps of A.We now 
reate the triangulation T 0 that 
ontains all verti
es and edges ofTvis. Additionally, T 0 
ontains the set of edges forming an \almost verti
al"path from vb to the top row of T 0. This almost verti
al path is a path that isverti
al wherever possible, but uses minimal detours to avoid edges of Tvis. Sin
eonly O(pn) detours are required, the length of this path is O(npn). Finally, we
omplete T 0 to a triangulation in some arbitrary way that does not in
rease thedegrees of verti
es on the �rst n+ 1 steps of A. See Fig. 4.b for an example.Now, sin
e A is deterministi
, the �rst n+ 1 steps taken by A on T 0 will bethe same as the �rst n + 1 steps taken by A on T , and will therefore travel adistan
e of �(n2). However, there is a path in T 0 from s to t that �rst visits vb(at a 
ost of O(npn)), then uses the \almost-verti
al" path to the top row of T 0(at a 
ost of O(npn)) and then travels dire
tly to t (at a 
ost of O(npn)). Thus,the total 
ost of this path, and hen
e the shortest path, from s to t is O(npn).We 
on
lude that A is not o(pn)-
ompetitive for T 0. Sin
e the 
hoi
e ofA is arbitary, and T 0 
ontains O(n) verti
es, this implies that no deterministi
routing algorithm is o(pn) 
ompetitive for all triangulations with n verti
es.4.2 Link Distan
eThe link distan
e metri
 simply measures the number of edges traversed by arouting algorithm. For many networking appli
ations, this metri
 is more mean-ingful than Eu
lidean distan
e. In this se
tion we show that 
ompetitive algo-rithms under the link distan
e metri
 are harder to 
ome by than under theEu
lidean distan
e metri
. Throughout this se
tion we assume that the readeris familiar with the de�nitions of Delaunay, greedy and minimum-weight trian-gulations (
f. Preparata and Shamos [10℄).We obtain this result by 
onstru
ting a \bad" family of point sets as follows.Let Ci be the set of pn points f(ipn; 1); (ipn; 2); : : : ; (ipn;pn)g. We 
all Cithe ith 
olumn. Let Di = f(ipn; 1); (ipn;pn)g, and de�ne a family of point setsS = S1j=1fSj2g where Sn = fSn;1; : : : ; Sn;png andSn;i = i�1[j=1Cj [Di [ pn[j=i+1Cj [ f(pn=2; 0); (pn=2;pn+ 1)g (1)Two members of the set S49 are shown in Fig. 5.



(a) (b)Fig. 5. The point sets (a) S49;2 and (b) S49;5 along with their Delaunay triangulations.Theorem 5 Under the link distan
e metri
, no routing algorithm is o(pn)-
ompetitive for all Delaunay triangulations.Proof. We use the notation DT (Sn;i) to denote the Delaunay triangulation ofSn;i. Although the Delaunay triangulation of Sn;i is not unique, we will assumeDT (Sn;i) is triangulated as in Fig. 5. Note that, in DT (Sn;i), the shortest pathbetween the topmost vertex s and bottom-most vertex t is of length 3, indepen-dent of n and i. Furthermore, any path from s to t whose length is less than pnmust visit verti
es from one of the 
olumns Ci�1, Ci, or Ci+1.The rest of the proof is based on the following observation: If we 
hoose anelement i uniformly at random from f1; : : : ;png, then the probability that arouting algorithm A has visited a vertex of Ci�1, Ci, or Ci+1 after k steps isat most 3k=pn. Letting k = pn=6, we see that the probability that A visits avertex of Ci�1, Ci, or Ci+1 after pn=6 steps is at most 1=2.Letting di denote the (expe
ted, in the 
ase of randomized algorithms) num-ber of steps when routing from s to t in Sn;i using routing algorithm A, wehave 1pn � pnXi=1 di � pn=12 : (2)Sin
e, for any Sn;i, the shortest path from s to t is 3 there must be some i forwhi
h the 
ompetitive ratio of A for Sn;i is at least pn=36 2 
(pn).Theorem 6 Under the link distan
e metri
, no routing algorithm is o(pn)-
ompetitive for all greedy triangulations.Proof. This follows immediately from the observation that for any Sn;i, a De-launay triangulation of Sn;i is also a greedy triangulation of Sn;i.Theorem 7 Under the link distan
e metri
, no routing algorithm is o(pn)-
ompetitive for all minimum-weight triangulations.Proof. We 
laim that for members of S, any greedy triangulation is also aminimum-weight triangulation. To prove this, we use a result on minimum-weight triangulations due to Ai
hholzer et al. [1℄. Let Kn;i be the 
omplete



graph on Sn;i. Then an edge e of Kn;i is said to be a light edge if every edge ofKn;i that 
rosses e is not shorter than e. Ai
hholzer et al. prove that if the setof light edges 
ontains the edges of a triangulation then that triangulation is aminimum-weight triangulation.There are only 5 di�erent types of edges in the greedy triangulation of Sn;i;(1) verti
al edges within a 
olumn, (2) horizonal edges between adja
ent 
olumn-s, (3) diagonal edges between adja
ent 
olumns, (4) edges used to triangulate
olumn i, and (5) edges used to join s and t to the rest of the graph. It isstraightforward to verify that all of these types of edges are indeed light edges.5 Con
lusionsWe have presented a number of results 
on
erning online routing in plane graph-s. Table 1 summarizes what is 
urrently known about online routing in planegraphs. An arrow in a referen
e indi
ates that the result is implied by the moregeneral result pointed to by the arrow. An F indi
ates that the result is trivialand/or folklore.Class of Deterministi
 Randomized Eu
lidean Linkgraphs oblivious oblivious4 
ompetitive 
ompetitiveDT Yes [3, 8, #℄ Yes [ ℄ Yes [3℄ No [here℄GT/MWT Yes [#℄ Yes [#℄ Yes [4℄ No [here℄Triangulations Yes [here℄ Yes [3,  ℄ No [here℄ No ["℄Conv. Subdv. No [here℄ Yes [here℄ No ["℄ No ["℄Plane graphs No [F℄ No [F℄ No [F℄ No [F℄Table 1. A summary of known results for online routing in plane graphs.We have also implemented a simulation of the greedy-
ompass algorithmas well as the algorithms des
ribed by Bose and Morin [3℄ and 
ompared themunder the Eu
lidean distan
e metri
. These results will be presented in the fullversion of the paper. Here we only summarize our main observations.For Delaunay triangulations of random point sets, we found that the perfor-man
e of greedy-
ompass is 
omparable to that of the 
ompass and greedyalgorithms [3, 5, 8℄. For triangulations obtained by performing Graham's s
an [6℄on random point sets, the greedy-
ompass algorithm does signi�
antly betterthan the 
ompass or greedy algorithms.We also implemented a variant of greedy-
ompass that we 
all greedy-
ompass-2 that, when lo
ated at a vertex v, moves to the vertex u 2 f
w(v); 

w(v)g4 In this 
olumn, we 
onsider only algorithms that use a 
onstant number of randombits per step. Otherwise, it is well known that a random walk on any graph G willeventually visit all verti
es of G.



that minimizes d(v; u)+d(u; t), where d(a; b) denotes the Eu
lidean distan
e be-tween a and b. Although there are triangulations that defeat greedy-
ompass-2, it worked for all our test triangulations, and in fa
t seems to be twi
e aseÆ
ient as greedy-
ompass in terms of the Eu
lidean distan
e travelled.We note that 
urrently, under the link distan
e metri
, there are no 
ompet-itive routing algorithms for any interesting 
lass of geometri
 graphs (meshes donot 
ount). The reason for this seems to be that the properties used in de�ningmany geometri
 graphs make use of properties of Eu
lidean spa
e, and link dis-tan
e in these graphs is often independent of these properties. We 
onsider it anopen problem to �nd 
ompetitive algorithms, under the link distan
e metri
, foran interesting and naturally o

uring 
lass of geometri
 graphs.A
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