
On-line Parallel Heuristics, Processor Scheduling and RobotSearching under the Competitive Framework�Alejandro L�opez-Ortizy Sven SchuiererzAugust 7, 2003AbstractIn this paper we investigate parallel searches on m concurrent rays for a point targett located at some unknown distance along one of the rays. A group of p agents or robotsmoving at unit speed searches for t. The search succeeds when an agent reaches the pointt. Given a strategy S the competitive ratio is the ratio of the time needed by the agentsto �nd t using S and the time needed if the location of t had been known in advance. Weprovide a strategy with competitive ratio of 1 + 2(m=p� 1)(m=(m � p))m=p and prove thatthis is optimal. This problem has applications in multiple heuristic searches in AI as well asrobot motion planning. The case p = 1 is known in the literature as the cow path problem.1 IntroductionSearching for a target is an important and well studied problem in robotics. In many realisticsituations such as navigation in an unknown terrain or a search and rescue operation the robotdoes not possess complete knowledge about its environment. In the earlier case the robot maynot have a map of its surroundings and in the latter the location of the target may be unknown[4, 13, 14, 19, 20].The competitive ratio [22, 13] of a search strategy S is de�ned as the maximum of the ratioof the search cost using S and the optimal distance from the starting point to the target, overall possible positions of the target.Consider an exhaustive search on m concurrent rays. Here, a point robot or|as in ourcase|a group of point robots is assumed to stand at the origin of m concurrent rays. One ofthe rays contains the target t whose distance to the origin is unknown. The robot can onlydetect t if it stands on top of it. It can be shown that an optimal strategy for one robot is tovisit the rays in cyclic order, increasing the step length each time by a factor of m=(m� 1) if itstarts with a step length of 1. The competitive ratio Cm achieved by this strategy is given byCm = 1 + 2mm=(m� 1)m�1 which can be shown to be optimal [2, 7, 11, 17]. The lower bound�This research is partially supported by the DFG-Project \Diskrete Probleme", No. Ot 64/8-2.yDepartment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1.alopez-o@uwaterloo.cazInstitut f�ur Informatik, Am Flughafen 17, Geb. 051, D-79110, Freiburg, Germany.schuiere@informatik.uni-freiburg.de 1



in this case has proven to be a useful tool for proving lower bounds for searching in a number ofclasses of simple polygons, such as star-shaped polygons [15], G-streets [6, 16], HV-streets [5],and �-streets [5, 9].Parallel searching on m concurrent rays has been addressed before in two contexts. In the�rst context a group of p point robots searches for the target. Neither the ray containing thetarget nor the distance to the target are known. The robots can communicate only when theymeet. The search concludes when the target is found and all robots are noti�ed thus. Baeza-Yates and Schott investigated searching on the real line [3] and Hammar, Nilsson and Schuiererconsidered the same case for m concurrent rays [8].The second context is the on-line construction of hybrid algorithms. In this setting we aregiven a problem Q and m heuristics or approaches to solving it. The implementation of eachapproach is called a basic algorithm. We are given a computer with k < m disjoint memoryareas which can be used to run one basic algorithm and to store the results of its computation.Only a single basic algorithm can be run on the computer at a given time. It is not knownin advance which of the algorithms solves the problem Q|although we assume that there isat least one|or how much time it takes to compute a solution. In the worst case only onealgorithm solves Q whereas the others do not even halt on Q. One way to solve Q is toconstruct a hybrid algorithm in the following way. A basic algorithm is run for some time, andthen a computer switches to another basic algorithm for some time and so on until Q is solved.If k < m, then there is not enough memory to save all of the intermediate results. Hence,the current intermediate results have to be discarded and later recomputed from scratch. Analternative way to look at this problem is to assume that we are given k robots searching onm rays for a target. Each ray corresponds to a basic algorithm and a robot corresponds to amemory area, with only one robot moving at any given time. Discarding intermediate resultsfor an algorithm A is equivalent to moving the robot on the ray corresponding to A back to theorigin. Kao et al. [10, 23] gave a hybrid algorithm that achieves an optimal competitive ratioof k + 2(m� k + 1)m�k+1=(m� k)m�k:A generalization of this context is to consider a distributed setting in which more than onecomputer or robot perform a simultaneous search. In this case at least one of the robots mustreach the target, at which time the search is considered complete. The robots move at unitspeed and the competitive ratio is de�ned as the ratio between the search time and the shortestdistance to the target. Under this framework L�opez-Ortiz and Sweet show that the integerlattice on the plane can be searched eÆciently in parallel [18].In this paper we study searches in m concurrent rays which also correspond to anm heuristicproblem with k = p memory states and p processors or computers. The \terminate-on-success"framework models search and rescue operations as well as multiple heuristic searches. Weprovide an optimal strategy with competitive ratio of 1+2(m=p�1)(m=(m�p))m=p for searchingm rays with p < m robots in parallel. The case p = 1 is sometimes referred in the literature asthe cow path problem [11].A variation of the strategy proposed in this paper can be applied to other graphs such astrees, resulting in an iterative deepening scheme which is optimal to within a constant factor.This shows that neither Bread First Search (BFS) nor Depth First Search (DFS) are optimal|absent any other information. This has relevance in distributed computing searches in gamespaces and automated theorem proving. 2



In particular, computer chess gives two interesting applications for parallel searches. The�rst is the three hirn heuristic pioneered by Ingo Alth�ofer (see for example [1]). This heuristicuses three independent sources of advice, namely two computer programs and a person, to playa game such as chess. The goal of the three hirn team, as it is to be expected, is to �nd agood move for the current position. Each computer program uses its own heuristics to proposethe best possible move in the time alloted. Then the person acts as an arbiter to determinewhich of the two programs seems to have gotten closer to the target of �nding a good move andchoses the best of the two [1]. A natural generalization is to use m heuristics on p processors,for p < m, with the processor scheduling as indicated by the strategies proposed in the presentwork. This results in the optimal use of computing resources, absent other information.A second application is in the use of massively parallel chess computers, such as IBM's DeeperBlue. This computer, which defeated World Champion G. Kasparov in 1997, was equipped with512 dedicated chess processors [12]. At a �rst glance one might posit that this gives a factor of512 speed up in computations over a single processor computer. However if the exploration ofthe game search space tree involves iterative deepening {as it often does{ our results imply thatthe speed advantage is in reality a multiplicative factor on the order of 2781, which is over �vetimes higher than expected. Indeed, a parallel m ray solution would have a speed-up advantageof approximately 2 e � 5:436 above and beyond that expected from the increase in processorcount alone.The paper is organized as follows. In the next section we present some de�nitions andpreliminary results. In Section 3 we characterize the nature of a subfamily of optimal strategiesand present a lower bound for the problem of searching on m rays with p robots. In Section 4we then present an algorithm that achieves this bound, which is optimal.2 PreliminariesIn the following we consider the problem of a group of p robots searching for a target of unknownlocation on m rays in parallel. The competitive ratio is de�ned as the quotient of the searchtime over the shortest distance to the target. In this case we consider robots that have the samemaximal speed, which is assumed to be, without loss of generality, one unit of distance per unitof time.Given a strategy S, at a time T the snapshot of S is given bym+2p values (s1; : : : ; sm; d1; I1;d2; I2; : : : ; dp; Ip) where si is the distance up to which ray i is explored, di is the distance of roboti to the origin, and Ii is the index of the ray that robot i is located on. Consider now a strategyS to search on m rays with p robots, in which the robots repeatedly travel one ray for a certaindistance and then return to the origin to choose another ray. Let XS = (x0; x1; : : :) be thecollection of distances at which the robots change direction to return to the origin, ordered bythe time at which the robots turn around.Let ri be the ray on which the robot that turns at xi is located and Ti be the �rst timethat a robot passes xi on ray ri again. Assume that this robot turns around again after havingtraveled a distance of xk , where k > i. If the target is placed on ri between xi and xk , say at3



distance d after xi, then the competitive ratio of the strategy for this placement isTi + dxi + d:Since the competitive ratio is a worst case measure, we see that the competitive ratio CS of Sis at least CS � supd>0�Ti + dxi + d� = Tixi : (1)As the target is necessarily found at some point along a step, we obtainCS = supi�0 �Tixi� :We say a ray r is occupied at time T if there is a robot on r at this time. We say a ray ris busy at time T if there is a robot on r that is moving away from the origin at this time. Letthe schedule of robot R be the sequence of rays in the order in which they are explored by Rtogether with the distance to which they are explored, i.e. SchR = (d1; I1; d2; I2; : : :). Given twostrategies we say that S1 is contained in S2 up to time T , denoted S1 �T S2, if the snapshotsof both strategies coincide for all t � T . Given a sequence of strategies V = (S1; S2; : : :), wesay that the sequence V converges to a limit strategy S if there is a strictly increasing functionT (n) with limn!1 T (n) = 1 such that for each n, Sm �T (n) Sm+1 for all m � n. The limitstrategy S is de�ned in the obvious way.3 A Lower BoundWe are interested in proving a lower bound on CS for any on-line strategy S.Lemma 1 Let S be a strategy to search on m rays with p robots. Then there exist a strategy S 0with the same competitive ratio or better such that1. At any time t, there is at most one robot on a given ray.2. If a robot moves towards the origin on some ray, then it continues until it has reached theorigin.3. All robots are moving at all times.Proof. Assume that there are at least two robots on a given ray. Either the paths of these tworobots cross in opposing directions along the ray or not. In the latter case, this means that onerobot trails the other along that ray and, hence, has no net e�ect in the exploration. Clearly amodi�ed strategy S0 in which the trailing robot stays put in the origin has the same competitiveratio as S. Alternatively, if the robot paths cross in opposing directions consider a strategyS00 which replaces the cross-paths with a \bounce", in which both robots change direction atthe point of intersection of their paths. The robots also exchange schedules from that pointonwards. S00 is now a strategy in which the robots never properly cross in opposing directions,4



and hence itself can be replaced with a strategy S 0 in which one of the robots stays in the origin.S0 is a strategy with the same competitive ratio as S in which robots do not change directionaway from the origin.Similarly, if the robot is moving towards the origin and then changes direction, we cancreate a strategy S0 in which the robot stays put rather than moving toward the origin and thenbacktracking its steps. The strategy S0 has the same competitive ratio as S, but no changes indirection away from the origin along a ray.Lastly if we consider a robot whose sequence of moves includes a stand-still period, clearlyremoving those idle periods can only decrease the competitive ratio. Let R be a robot that isidle at step i. Then R moves ahead to explore ray Ii in its schedule SchR. However this raymight presently be occupied in which case R exchanges schedule with the robot R0 occupyingthe ray and moves ahead to the next ray in SchR0. In turn, this ray might also be occupied,and the robot exchanges schedules yet again, and so on. Note that a swap on a given raymonotonically increases the distance to be traversed on that ray by it's occupant. Hence thisde�nes a sequence of strategies whose limit strategy S0 is well de�ned. Moreover, S 0 satis�esall three properties required in the lemma and has competitive ratio no larger than the originalstrategy S. 2Lemma 2 There is an optimal on-line strategy to search on m rays with p robots that satis�esLemma 1 such that if a robot is located at the origin at time T , then it chooses to explore theray that has been explored the least among all non-busy rays.Proof. Let S be an optimal strategy to search on m rays with p robots that satis�es Lemma 1.Assume that robot R is located at the origin at time T and chooses to explore ray r whichis explored up to distance dr. Assume that there is a non-busy ray r0 that is explored up todistance dr0 < dr. Now consider the strategy S 0 where the robot chooses to explore the rayr0 and the robot that explores ray r0 after T in S explores ray r in S 0. Each of these rays isexplored in S0 to its originally scheduled distance in S, only the order changes. Everything elseremains the same.The only di�erence in competitive ratio between the strategies S and S 0 is the time whenthe point located at a distance dr on ray r is passed the �rst time by a robot and the time whendr0 is passed the �rst time by a robot on ray r0.Assume that in Strategy S a robot passes dr0 on ray r0 at time T 0 + dr0. Since r is exploredbefore ray r0, we have T 0 > T . Hence, the competitive ratio of S for those two steps ismax�T + drdr ; T 0 + dr0dr0 � = 1 +max� Tdr ; T 0dr0�whereas the competitive ratio of S0 for those two steps ismax�T + dr0dr0 ; T 0 + drdr � = 1 +max� Tdr0 ; T 0dr� :Since T 0 > T and dr > dr0 , T 0=dr0 > max fT=dr0; T 0=drg and the competitive ratio of S 0 is nogreater than the competitive ratio of S. 5



This shows that switching the searching order to favour the least explored ray has no negativee�ect on the competitive ratio. However if the non-busy ray r0 was occupied, then S0 violatescondition (1) of Lemma 1. In this case, rather than R exploring the occupied ray r0 it exchangesschedule from that point onwards with the occupant of r0 as in the proof of Lemma 1. Firstwe observe that after the exchange of schedules, r0 is no longer the least explored non-busy rayas it either has been explored to a distance d > dr > d0r which is further than ray r or it is inthe process of being explored to that distance and hence is busy. In this case, we have a newstrategy S0 in which robot R is about to explore a ray r0 which might or might not be non-busyand occupied. We apply the same procedure to what would be the least explored ray r00 in thenew strategy S0 and we obtain a new strategy S 00 in which ray r00 is about to be explored. Notethat the distance to which r0 is explored increased. Hence this creates a sequence of strategies(S; S0; S 00; : : :) whose limit strategy has competitive ratio no larger than S. Moreover this newstrategy satis�es the properties of Lemma 1 and robots explore the least explored non-busy rayin sequence. 2Corollary 1 There is an optimal strategy to search on m rays with p robots such that at anytime the explored distances of all occupied, but not busy rays are larger than the minimum ofthe explored distances of all unoccupied rays.Proof. By Lemma 2 there is an optimal strategy such that a robot at the origin always choosesto explore the non-busy ray that is explored the least. If this ray is occupied, then there is atime at which two robots are on the same ray|a contradiction to Lemma 1. 2A strategy satisfying Lemmas 1 and 2 is termed a normalized strategy. The next lemmaprovides a lower bound for normalized optimal strategies.Lemma 3 The competitive ratio CS of an optimal normalized strategy S with turn point se-quence X = (x0; x1; : : :) is at leastCS � supk�08<:1 + 2k+m�pXi=0 xsi� kXi=k�p+1 xsi9=; (2)where Xs = (xs0; xs1; : : :) is the sequence of the sorted values of Xand xsi := 0 if i < 0.Proof. Let S be an optimal normalized strategy. Consider a time T such that robot R0 islocated at the origin. Since S is a normalized strategy, R0 will explore the ray r0 that has beenexplored the least among all occupied rays at time T . In general, let rj be the current ray ofrobot Rj at time T , for 0 � j � p� 1.Now consider the sequence of turn points taken by a robot Rj up to|but not including|time T . These turn points are elements in the sequence Xs; let Ij be the set of indices in Xs ofthese turn points of robot Rj .Let the distance up to which ray r0 is explored at time T be d0. Note that d0 = xsk0 , forsome k0 � 0. Furthermore, let dj be the distance up to which ray rj was explored before therobot Rj entered ray rj . Note that dj = xskj , for some 0 � kj where kj < k0 by Lemma 2. Hence6



dj � d0. When the robot Rj passes dj at time Tj � T + dj � T + d0 and the target is placedright after dj on ray rj , then the competitive ratio for this placement of the target is given by2Pi2Ij xsi + xskjxskj = 1 + 2Pi2Ij xsixskj ;according to Equation 1, for 0 � j � p� 1. The factor 2 comes from the fact that the robot hastraveled to and from the origin to each turn point. Hence, the competitive ratio at time T + d0is at least CS � max0�j�p�1(1 + 2Pi2Ij xsixskj ) � 1 + 2Pp�1j=0Pi2Ij xsiPp�1j=0 xskj :Here, we make use of the fact that max fa=c; b=dg � (a+ b)=(c+ d), for all a; b; c; d > 0. Notethat the sum A = Pp�1j=0Pi2Ij xsi contains as summands all xsi that have been explored up totime T . In particular, A includes all xsi that are smaller than xsk0 , as otherwise the robot R0would have explored a ray di�erent from r0 by Lemma 2. Similarly, there are at least m� p+1unoccupied rays at time T , one of which is r0. These rays have each been explored to a distancexli � xk0 , for 1 � i � m � p since otherwise robot R0 would have chosen one of these forexploration at time T . The smallest choice for these m� p values is xsk0+1; : : : ; xsk0+m�p. Hence,p�1Xj=0Xi2Ij xsi � k0+m�pXi=0 xsi :Now consider the values dj , for 1 � j � p � 1. The value dj is the distance up to whichray rj was explored before robot Rj entered it. Since robot Rj chose ray rj and not ray r0,Lemma 2 implies that dj � d0 = xsk0 . The p� 1 largest such values are xsk�p+1; : : :xsk�1 andp�1Xj=1 dj � k0Xi=k0�p+1 xsi :Hence, CS � 1 + 2Pp�1j=0Pi2Ij xsiPp�1j=0 xskj � 1 + 2 k0+m�pPi=0 xsik0Pi=k0�p+1 xsi ;for all k � p. 2In order to prove a lower bound on Expression 2 we make use of the results by Gal [7] andSchuierer [21] which we state here without proof and in a simpli�ed form for completeness. LetGa = (1; a; a2; : : :) be the geometric sequence in a and X+i = (xi; xi+1; : : :) the suÆx of sequenceX starting at xi.Theorem 1 ([21]) Let X = (x0; x1; : : :) be a sequence of positive numbers, r an integer, anda = limn!1(xn)1=n, for a 2 R[ f+1g. If Fk, k � 0, is a sequence of functionals which satisfy7



1. Fk(X) only depends on x0; x1; : : : ; xk+r,2. Fk(X) is continuous, for all xi > 0, with 0 � i � k + r,3. Fk(�X) = Fk(X), for all � > 0,4. Fk(X + Y ) � max(Fk(X); Fk(Y )), and5. Fk+i(X) � Fk(X+i), for all i � 1,then sup0�k<1 Fk(X) � sup0�k<1Fk(Ga):In particular, in our case it is easy to see that, if we setFk(Xs) = 1 + 2k+m�pXi=0 xsi� kXi=k�p+1 xsi ;then Fk satis�es all conditions of Theorem 1. Hence,CS � sup0�k<1Fk(Xs) � sup0�k<1Fk(Ga) = sup0�k<18<:1 + 2 k+m�pXi=0 ai� kXi=k�p+1 ai9=; :Note that if a � 1, then the above ratio tends to in�nity as k!1. Hence, we can assume thata > 1 and obtain CS � sup0�k<1�1 + 2 (ak+m�p+1 � 1)=(a� 1)(ak+1 � ak�p+1)=(a� 1)�= sup0�k<1�1 + 2 ak+m�p+1 � 1ak+1 � ak�p+1�(a>1)= 1 + 2 am�p1� a�p = 1 + 2 amap � 1 :The above expression is minimized for a = (m=(m�p))1=p and the competitive ratio is boundedfrom below by CS � 1 + 2� mm�p�m=pmm�p � 1 = 1 + 2�mp � 1�� mm� p�m=p :Theorem 2 There is no search strategy for a target on m rays using p robots with a competitiveratio of less than 1 + 2�mp � 1�� mm� p�m=p :8



Note that the above expression interpolates nicely between the various special cases that mayoccur. For instance, if p = 1, then we obtain 1 + 2mm=(m� 1)m�1 as previously shown [2, 7].If there is an integer number of rays per robot, say m = kp for some integer constant k, thenwe obtain 1 + 2�kpp � 1�� kpkp� p�kp=p = 1+ 2(k � 1) kk(k� 1)k = 1 + 2 kk(k � 1)k�1 ;that is, the same competitive ratio as if each of the robots searches on a separate subset of krays.4 An Optimal StrategyWe now present a strategy that achieves a competitive ratio matching the lower bound we haveshown above. The strategy works as follows. The robots explore the rays in a �xed cyclic order.Let a = (m=(m � p))1=p. The sequence of return distances of the robots is given by xi = aifor i = 0; 1; 2; : : :. The kth time that robot R returns to the origin it chooses to explore ray(kp + R) mod m up to distance xkp+R. Obviously, the ith time ray r is explored, the robotexplores it up to distance xim+r.So let r be a ray that is explored by robot R after it has returned the kth time to the origin.Hence, kp + R = r mod m, or equivalently kp+ R = im+ r. The total distance traveled thusfar by robot R is 2Pk�1j=0 xjp+R. Clearly, the robot that explored ray r up to distance x(i�1)m+rreached the origin before robot R. Hence, r has been explored up to distance x(i�1)m+r whenrobot R travels on it and the competitive ratio in this step is given by1 + 2Pk�1j=0 xjp+Rxkp+R�m = 1 + 2aRPk�1j=0(ap)jaRakp�m = 1 + 2 akp � 1(ap � 1)akp�m� 1 + 2 amap � 1 = 1+ 2�mp � 1�� mm� p�m=p :Since the bound is independent of the robot R, the ray r and the number of times the raywas visited, we obtain the following theorem.Theorem 3 There exists an on-line strategy for searching for a target on m rays using p robotswith a competitive ratio of 1 + 2�mp � 1�� mm� p�m=pwhich is optimal.5 ConclusionsWe present an optimal strategy for searching for a target on m concurrent rays in parallel usingp robots. This strategy has a competitive ratio of1 + 2�mp � 1�� mm� p�m=p :9



This is a generalization of the on-line construction of on-line heuristics to a distributed model.It also extends the cow path problem to multiple searchers on m concurrent rays, which hasproven to be a basic primitive in the exploration of certain classes of polygons. Furthermore, itexpands the �eld of target searching to multiple robots; a setting that more closely re
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