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Abstract. In this paper we investigate parallel searches on m concur-
rent rays for a point target ¢ located at some unknown distance along one
of the rays. A group of p agents or robots moving at unit speed searches
for t. The search succeeds when an agent reaches the point ¢. Given a
strategy S the competitive ratio is the ratio of the time needed by the
agents to find ¢ using S and the time needed if the location of ¢ had
been known in advance. We provide a strategy with competitive ratio
of 1 +2(m/p—1)(m/(m — p))m/p and prove that this is optimal. This
problem has applications in multiple heuristic searches in Al as well as
robot motion planning. The case p = 1 is known in the literature as the
cow path problem.

1 Introduction

Searching for a target is an important and well studied problem in robotics. In
many realistic situations such as navigation in an unknown terrain or a search
and rescue operation the robot does not possess complete knowledge about its
environment. In the earlier case the robot may not have a map of its surroundings
and in the latter the location of the target may be unknown [3,11,12,17,18].

The competitive ratio [20,11] of a strategy S is defined as the maximum of
the ratio of the search cost using S and the optimal distance from the starting
point to the target, over all possible positions of the target.

Consider an exhaustive search on m concurrent rays. Here, a point robot
or—as in our case—a group of point robots is assumed to stand at the origin
of m concurrent rays. One of the rays contains the target ¢ whose distance to
the origin is unknown. The robot can only detect ¢ if it stands on top of it. It
can be shown that an optimal strategy for one robot is to visit the rays in cyclic
order, increasing the step length each time by a factor of m/(m — 1) if it starts
with a step length of 1. The competitive ratio C, achieved by this strategy is
given by Cy, = 1+ 2m™/(m — 1)™~! which can be shown to be optimal [1,6,
10,15]. The lower bound in this case has proven to be a useful tool for proving
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lower bounds for searching in a number of classes of simple polygons, such as
star-shaped polygons [13], G-streets [5, 14], HV-streets [4], and #-streets [4, 8].

Parallel searching on m concurrent rays has been addressed before in two
contexts. In the first context a group of p point robots searches for the target.
Neither the ray containing the target nor the distance to the target are known.
The robots can communicate only when they meet. The search concludes when
the target is found and all robots are notified thus. Baeza-Yates and Schott
investigated searching on the real line [2] and Hammar, Nilsson and Schuierer
considered the same case for m concurrent rays [7].

The second context is the on-line construction of hybrid algorithms. In this
setting we are given a problem @) and m heuristics or approaches to solving it.
The implementation of each approach is called a basic algorithm. We are given
a computer with & < m disjoint memory areas which can be used to run one
basic algorithm and to store the results of its computation. Only a single basic
algorithm can be run on the computer at a given time. It is not known in advance
which of the algorithms solves the problem Q—although we assume that there
is at least one—or how much time it takes to compute a solution. In the worst
case only one algorithm solves () whereas the others do not even halt on ). One
way to solve () is to construct a hybrid algorithm in the following way. A basic
algorithm is run for some time, and then a computer switches to another basic
algorithm for some time and so on until @ is solved. If k& < m, then there is
not enough memory to save all of the intermediate results. Hence, the current
intermediate results have to be discarded and later recomputed from scratch. An
alternative way to look at this problem is to assume that we are given k robots
searching on m rays for a target. Each ray corresponds to a basic algorithm
and a robot corresponds to a memory area, with only one robot moving at any
given time. Discarding intermediate results for an algorithm A is equivalent to
moving the robot on the ray corresponding to A back to the origin. Kao et
al. [9,21] gave a hybrid algorithm that achieves an optimal competitive ratio of
kE+2(m—k+ )" L/ (m — k)ym=*,

A generalization of this context is to consider a distributed setting in which
more than one computer or robot perform a simultaneous search. In this case
at least one of the robots must reach the target, at which time the search is
considered complete. The robots move at unit speed and the competitive ratio
is defined as the ratio between the search time and the shortest distance to
the target. Under this framework Lépez-Ortiz and Sweet show that the integer
lattice on the plane can be searched efficiently in parallel [16].

In this paper we study searches in m concurrent rays which also correspond to
an m heuristic problem with & = p memory states and p processors or computers.
The “terminate-on-success” framework models search and rescue operations as
well as the multiple heuristic searches. We provide an optimal strategy with
competitive ratio of 1 + 2(m/p — 1)(m/(m — p))"™/P for searching m rays with
p < m robots in parallel. The case p = 1 is sometimes referred in the literature
as the cow path problem [10]. A variation of the newly proposed strategy can
be applied to other graphs such as trees, resulting in an iterative deepening



scheme which is optimal to within a constant factor. This shows that neither
BFS nor DFS are optimal —absent any other information. This has relevance in
distributed computing searches in game spaces and automated theorem proving.

The paper is organized as follows. In the next section we present some def-
initions and preliminary results. In Section 3 we present a lower bound for the
problem of searching on m rays with p robots. In Section 4 we then present an
algorithm that achieves this bound.

2 Preliminaries

In the following we consider the problem of a group of p robots searching for a
target of unknown location on m rays in parallel. The competitive ratio is defined
as the quotient of the search time over the shortest distance to the target. In this
case we consider robots that have the same maximal speed, which is assumed to
be, without loss of generality, one unit of distance per unit of time.

Given a strategy 9, at a time T the snapshot of S is given by m + 2p values
(1, vy 8mydr, 1, day Doy ... dp, I,) where s; is the distance up to which ray 7 is
explored, d; is the distance of robot ¢ to the origin, and I; is the index of the ray
that robot 7 is located on. Consider now a strategy X to search on m rays with
p robots, in which the robots repeatedly travel one ray for a certain distance
and then return to the origin to choose another ray. Let Xg = (29, #1,...) be
the collection of distances at which the robots change direction to return to the
origin, ordered by the time at which the robots turn around.

Let r; be the ray on which the robot that turns at z; is located and T; be the
first time that a robot passes x; on ray r; again. Assume that this robot turns
around again after having traveled a distance of xg, where k& > i. If the target is
placed on r; between z; and xj, say at distance d after x;, then the competitive
ratio of the strategy for this placement is

T, +d

Since the competitive ratio is a worst case measure, we see that the competitive

ratio C's of S is at least
T+ d T;
> = —. 1
CS_ZE%{M-I—CI} x; (1)

As the target is necessarily found at some point along a step, we obtain

T;
Cs = sup{—}.
i>0 (&

We say a ray r is occupied at time T if there is a robot on r at this time.
We say a ray r is busy at time T if there is a robot on r that is moving away
from the origin at this time. Let the schedule of robot R be the sequence of
rays in the order in which they are explored by R together with the distance



to which they are explored, i.e. Schr = (d1, I1,d3, I3, . ..). Given two strategies
we say that Sy is contained in Sy up to time T, denoted S71 Cp 53, if the
snapshots of both strategies coincide for all £ <T. Given a sequence of strategies
V = (51, 592,...), we say that the sequence V converges to a limit strategy S if
there is a strictly increasing function T'(n) with lim,_c T(n) = oo such that
for each n, Sy Cr(n) Sm+1 for all m > n. The limit strategy S is defined in the
obvious way.

3 A Lower Bound

We are interested in proving a lower bound on Cg for any strategy S.

Lemma 1. Let S be a strategy to search on m rays with p robots. Then there
exist a strateqy S’ with the same competitive ratio or better such that

1. At any time t, there is at most one robot on a given ray.

2. If a robot moves towards the origin on some ray, then it continues until it
has reached the origin.

3. All robots are moving at all times.

Proof. Assume that there are at least two robots on a given ray. Fither the paths
of these two robots cross in opposing directions along the ray or not. In the latter
case, this means that one robot trails the other along that ray and, hence, has no
net effect in the exploration. Clearly a modified strategy S’ in which the trailing
robot stays put in the origin has the same competitive ratio as S. Alternatively,
if the robot paths cross in opposing directions consider a strategy S” which
replaces the cross-paths with a “bounce”, in which both robots change direction
at the point of intersection of their paths. The robots also exchange schedules
from that point onwards. 5" is now a strategy in which the robots never properly
cross in opposing directions, and hence itself can be replaced with a strategy S’
in which one of the robots stays in the origin. S’ is a strategy with the same
competitive ratio as S in which robots do not change direction away from the
origin.

Similarly, if the robot is moving towards the origin and then changes direc-
tion, we can create a strategy S’ in which the robot stays put rather than moving
toward the origin and then backtracking its steps. The strategy S’ has the same
competitive ratio as .S, but no changes in direction away from the origin along
a ray.

Lastly if we consider a robot whose sequence of moves includes a stand-still
period, clearly removing those idle periods can only decrease the competitive
ratio. Let R be a robot that is idle at step ¢:. Then R moves ahead to explore
ray I; in its schedule Schgr. However this ray might presently be occupied in
which case R exchanges schedule with the robot R’ occupying the ray and moves
ahead to the next ray in Schg/. In turn, this ray might also be occupied, and
the robot exchanges schedules yet again, and so on. Note that a swap on a
given ray monotonically increases the distance to be traversed on that ray by



it’s occupant. Hence this defines a sequence of strategies whose limit strategy 5"
is well defined. Moreover, S’ satisfies all three properties required in the lemma
and has competitive ratio no larger than the original strategy S. a

Lemma 2. There is an optimal strateqy to search on m rays with p robots that
satisfies Lemma 1 such that if a robot is located at the origin at time T, then it
chooses to explore the ray that has been explored the least among all non-busy
rays.

Proof. Let S be an optimal strategy to search on m rays with p robots that
satisfies Lemma 1. Assume that robot R is located at the origin at time T and
chooses to explore ray r which is explored up to distance d,.. Assume that there
is a non-busy ray r’ that is explored up to distance d,s < d,. Now consider the
strategy S’ where the robot chooses to explore the ray r’ and the robot that
explores ray ' after T in S explores ray r in S’. Each of these rays is explored in
S’ to its originally scheduled distance in S, only the order changes. Everything
else remains the same.

The only difference in competitive ratio between the strategies S and 5’ is
the time when the point located at a distance d, on ray r is passed the first time
by a robot and the time when d,: is passed the first time by a robot on ray r’.

Assume that in Strategy S a robot passes d, on ray 7’ at time 7" +d,. Since
r is explored before ray r’, we have T’ > T. Hence, the competitive ratio of S
for those two steps is

{T+dT T’+dw} {T T’}
max —— > =1+ max

dr ’ dr’ d_r’ d_r’

whereas the competitive ratio of S’ for those two steps is

T+d. T +d, -, T T
max = max - .
do ' d, d’ d,

Since 7" > T and d, > dyr, T'/dyr > max{T/d,,T'/d,} and the competitive
ratio of S’ is no greater than the competitive ratio of S.

This shows that switching the searching order to favour the least explored ray
has no negative effect on the competitive ratio. However if the non-busy ray r’
was occupied, then S’ violates condition (1) of Lemma 1. In this case, rather than
R exploring the occupied ray r’ it exchanges schedule from that point onwards
with the occupant of v’ as in the proof of Lemma 1. First we observe that after
the exchange of schedules, 7’ is no longer the least explored non-busy ray as it
either has been explored to a distance d > d, > d. which is further than ray
r or it is in the process of being explored to that distance and hence is busy.
In this case, we have a new strategy S’ in which robot R is about to explore
a ray v’ which might or might not be non-busy and occupied. We apply the
same procedure to what would be the least explored ray r’ in the new strategy
S’ and we obtain a new strategy S” in which ray 7’ is about to be explored.
Note that the distance to which ' is explored increased. Hence this creates a



sequence of strategies (S5,5,5",...) whose limit strategy has competitive ratio
no larger than S. Moreover this new strategy satisfies the properties of Lemma 1
and robots explore the least explored non-busy ray in sequence. a

Corollary 1. There is an optimal strategy to search on m rays with p robots
such that at any time the explored distances of all occupied, but not busy rays
are larger than the minimum of the explored distances of all unoccupied rays.

Proof. By Lemma 2 there is an optimal strategy such that a robot at the origin
always chooses to explore the non-busy ray that is explored the least. If this ray
is occupied, then there is a time at which two robots are on the same ray—a
contradiction to Lemma 1. O

A strategy satisfying Lemmas 1 and 2 is termed a normalized strategy. The
next lemma provides a lower bound for normalized optimal strategies.

Lemma 3. The competitive ratio C's of an optimal normalized strategy S with
turn point sequence X = (xo, x1,...) is at least

k+m—p
Cs>sup{ 142 Z / (2)

E>0 P
where X* = (2§, 23, ...) is the sequence of the sorted values of X .

Proof. Let S be an optimal normalized strategy. Consider a time T such that
robot Ry is located at the origin. By Lemma 2 we can assume that it chooses
to explore the ray that has been explored the least among all unoccupied rays,
say this is ray ro. In general, let r; be the current ray of robot R; at time 7, for
0<j<p-1L

Now consider the sequence of turn points taken by a robot R; up to—but
not including—time 7. These turn points are elements in the sequence X?; let
I; be the set of indices in X* of these turn points of robot R;.

Let the distance up to which ray rg is explored at time 7" be dy. Note that
do = zj_, for some ko > 0. Furthermore, let d; be the distance up to which ray
r; was explored before the robot R; entered ray r;. Note that d; = xk , for some
0 < k; where k; < ko by Lemma 2 Hence d; < dg. When the robot’ R; passes
d; at tlme T} S T+ d; <T+dg and the target is placed right after d; on ray
r;, then the competitive ratio for this placement of the target is given by

B3 B3 B3
QZier i+ Zief x;
k] k] _1+2 k]
T, o T, ’
3 3

according to Equation 1, for 0 < j < p — 1. The factor 2 comes from the fact
that the robot has traveled to and fro from the origin to each turn point. Hence,
the competitive ratio at time T + dy is at least

s p—1 s
ZZGI dico Zz’erxi
7} > 1_1_2‘71)—1]_
z lax. z S
<j<p i =0 Tk,

Cs > max {1—1—2
0<j 1 x,



Here, we make use of the fact that max{a/c b/d} > (a+b)/(c+d), for all
a,b,c,d > 0. Note that the sum A = Z -0 ZZE] z! contains as summands all
x; that have been explored up to time 7. In partlcular A includes all z; that are
smaller than zj , as otherwise the robot Ry would have explored a ray different
from ro by Lemma 2. Similarly, there are at least m — p + 1 unoccupied rays
at time 7', one of which is rg. These rays have each been explored to a distance
®, > &g, for 1 < ¢ < m — p since otherwise robot Ry would have chosen one
of these for exploration at time 7. The smallest choice for these m — p values is

5 5
Thot1r s Lhobmep- Hence,

ko+m—p

Zfoz

j=01i€el;

Now consider the values d;, for 1 < j < p—1. The value d; is the distance up
to which ray r; was explored before robot R; entered it. Since robot R; chose
ray r; and not ray ro, Lemma 2 implies that d; < do = ;. The p—1 largest
such values are J:Z_p_l_l, ...xj_y and

p—1 ko
Sa< Y
ij=1 i=ko—p+1
Hence,
ko+m—p
S
>z "
Cs>1+2 12“ >1+2 :
— Pr— s ku
=0 "k; xf
i=ko—p+1
for all k£ > p. O

In order to prove a lower bound on Expression 2 we make use of the results by
Gal [6] and Schuierer [19] which we state here without proof and in a simplified
form for completeness. Let Gy = (1,a,a?,...) be the geometric sequence in a
and Xt = (z;,2;11,...) the suffix of sequence X starting at z;.

Theorem 1 ([19]). Let X = (xo,x1,...) be a sequence of positive numbers, r
an integer, and a = lim,_ () Un, fora € RU {+oc}. If Fy, k > 0, is a
sequence of functionals which satisfy

1. Fi,(X ) only depends on xo,®1,..., Thir,

2. Fy (X ) is continuous, for all x; >0, with 0 < i<k +r,
3. Fr(aX) = Fp(X), for all a > 0,

4. (X +Y) <max(F(X), F,(Y)), and

5. Fk+z(X) Z Fk(X-H), fOT all i Z 1,

then

sup Fip(X) > sup Fip(Ga).
0<k <00 0<k <00



In particular, in our case it is easy to see that, if we set

k+m—p k
Fe(X%)=1+2 Z xf/ Z zi,
i=0 3

i=k—p+1
then Fj satisfies all conditions of Theorem 1. Hence,

k+m-p
>,
Cg > sup Fp(X®) > sup Fip(Gy) = sup 1+2%

0<k <00 0<k <00 0<k <00 ai
i=k—p+1

Note that if @ < 1, then the above ratio tends to infinity as & — oo. Hence, we
can assume that ¢ > 1 and obtain

(atm=rtt —1)/(a 1)

C > 1+2
S OZ ok T — ) fa— )
ak+m—p+1 -1
- ofsllclfool—i_QakH—ak_pH
(a>1) am™™P m
= 1+42——m— =142 .
+ 1—a? + al —1

The above expression is minimized for a = (m/(m — p))*/? and the competitive
ratio is bounded from below by

(L)m/p m/p
0521+2”;L:1+2<T—1>< = > :
m—_p—l P m-—p

Theorem 2. There is no search strategy for a target on m rays using p robots
with a competitive ratio of less than

m/p
1+2<T—1>< m > .
p m—p

Note that the above expression interpolates nicely between the various special
cases that may occur. For instance, if p = 1, then we obtain 1+2m™/(m—1)""!
as previously shown [1,6]. If there is an integer number of rays per robot, say

m = kp for some integer constant k, then we obtain

k’p k’p kP/P k,k k,k
1+21 — -1 =1+2k-1)———=14+2—
* <p ><@—p> Tk )T = e

that is, the same competitive ratio as if each of the robots searches on a separate
subset of k rays.



4 An Optimal Strategy

We now present a strategy that achieves a competitive ratio matching the lower
bound we have shown above. The strategy works as follows. The robots explore
the rays in a fixed cyclic order. Let a = (m/(m — p))*/?. The sequence of return
distances of the robots is given by x; = a'. The kth time that robot R returns
to the origin it chooses to explore ray (kp + R) mod m up to distance zxpir.
Obviously, the ith time ray r is explored, the robot explores it up to distance
Limtr-

So let r be a ray that is explored by robot R after it has returned the kth
time to the origin. Hence, kp+ R = r mod m, or equivalently kp+ R = im + 7.
The total distance traveled thus far by robot R is 225;3 zjp4+r. Clearly, the
robot that explored ray r up to distance x(;_1),,4, reached the origin before
robot R. Hence, r has been explored up to distance (;_1)m4, when robot R
travels on it and the competitive ratio in this step is given by

Y120 TiptR af YiZg(ar) akr — 1
14o=s=" "7 149 =9=2 7 _ 149 - -
+ + + (ap — l)akp—m

Lhp+R—m aBlgkp—m
m m/p
<1422 = 1+2<T—1>< o > .
- a? — 1 p m-—p

Since the bound is independent of the robot R, the ray » and the number of
times the ray was visited, we obtain the following theorem.

Theorem 3. There exists a strategy for searching for a target on m rays using
p robots with a competitive ratio of

m/p
p m_p

which is optimal.

5 Conclusions

We present an optimal strategy for searching for a target on m concurrent rays
in parallel using p robots. This strategy has a competitive ratio of

m/p
1+2<T—1>< m > .
p m—p

This is a generalization of the on-line construction of on-line heuristics to a dis-
tributed model. It also extends the cow path problem to multiple searchers on
m concurrent rays, which has proven to be a basic primitive in the exploration
of certain classes of polygons. Furthermore, it expands the field of target search-
ing to multiple robots; a setting that more closely reflects real-world scenarios.
An open problem is to generalize this algorithm to randomized or average case
strategies. In similar settings, a trade-off theorem between average and worst
case performance of search strategies is known. It is natural to expect that a

similar result might hold for parallel searches.
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