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t. In this paper we investigate parallel sear
hes on m 
on
ur-rent rays for a point target t lo
ated at some unknown distan
e along oneof the rays. A group of p agents or robots moving at unit speed sear
hesfor t. The sear
h su

eeds when an agent rea
hes the point t. Given astrategy S the 
ompetitive ratio is the ratio of the time needed by theagents to �nd t using S and the time needed if the lo
ation of t hadbeen known in advan
e. We provide a strategy with 
ompetitive ratioof 1 + 2(m=p � 1)(m=(m� p))m=p and prove that this is optimal. Thisproblem has appli
ations in multiple heuristi
 sear
hes in AI as well asrobot motion planning. The 
ase p = 1 is known in the literature as the
ow path problem.1 Introdu
tionSear
hing for a target is an important and well studied problem in roboti
s. Inmany realisti
 situations su
h as navigation in an unknown terrain or a sear
hand res
ue operation the robot does not possess 
omplete knowledge about itsenvironment. In the earlier 
ase the robot may not have a map of its surroundingsand in the latter the lo
ation of the target may be unknown [3, 11, 12, 17,18℄.The 
ompetitive ratio [20,11℄ of a strategy S is de�ned as the maximum ofthe ratio of the sear
h 
ost using S and the optimal distan
e from the startingpoint to the target, over all possible positions of the target.Consider an exhaustive sear
h on m 
on
urrent rays. Here, a point robotor|as in our 
ase|a group of point robots is assumed to stand at the originof m 
on
urrent rays. One of the rays 
ontains the target t whose distan
e tothe origin is unknown. The robot 
an only dete
t t if it stands on top of it. It
an be shown that an optimal strategy for one robot is to visit the rays in 
y
li
order, in
reasing the step length ea
h time by a fa
tor of m=(m � 1) if it startswith a step length of 1. The 
ompetitive ratio Cm a
hieved by this strategy isgiven by Cm = 1 + 2mm=(m � 1)m�1 whi
h 
an be shown to be optimal [1, 6,10,15℄. The lower bound in this 
ase has proven to be a useful tool for proving? This resear
h is partially supported by the DFG-Proje
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lower bounds for sear
hing in a number of 
lasses of simple polygons, su
h asstar-shaped polygons [13℄, G-streets [5, 14℄, HV-streets [4℄, and �-streets [4, 8℄.Parallel sear
hing on m 
on
urrent rays has been addressed before in two
ontexts. In the �rst 
ontext a group of p point robots sear
hes for the target.Neither the ray 
ontaining the target nor the distan
e to the target are known.The robots 
an 
ommuni
ate only when they meet. The sear
h 
on
ludes whenthe target is found and all robots are noti�ed thus. Baeza-Yates and S
hottinvestigated sear
hing on the real line [2℄ and Hammar, Nilsson and S
huierer
onsidered the same 
ase for m 
on
urrent rays [7℄.The se
ond 
ontext is the on-line 
onstru
tion of hybrid algorithms. In thissetting we are given a problem Q and m heuristi
s or approa
hes to solving it.The implementation of ea
h approa
h is 
alled a basi
 algorithm. We are givena 
omputer with k < m disjoint memory areas whi
h 
an be used to run onebasi
 algorithm and to store the results of its 
omputation. Only a single basi
algorithm 
an be run on the 
omputer at a given time. It is not known in advan
ewhi
h of the algorithms solves the problem Q|although we assume that thereis at least one|or how mu
h time it takes to 
ompute a solution. In the worst
ase only one algorithm solves Q whereas the others do not even halt on Q. Oneway to solve Q is to 
onstru
t a hybrid algorithm in the following way. A basi
algorithm is run for some time, and then a 
omputer swit
hes to another basi
algorithm for some time and so on until Q is solved. If k < m, then there isnot enough memory to save all of the intermediate results. Hen
e, the 
urrentintermediate results have to be dis
arded and later re
omputed from s
rat
h. Analternative way to look at this problem is to assume that we are given k robotssear
hing on m rays for a target. Ea
h ray 
orresponds to a basi
 algorithmand a robot 
orresponds to a memory area, with only one robot moving at anygiven time. Dis
arding intermediate results for an algorithm A is equivalent tomoving the robot on the ray 
orresponding to A ba
k to the origin. Kao etal. [9, 21℄ gave a hybrid algorithm that a
hieves an optimal 
ompetitive ratio ofk + 2(m � k + 1)m�k+1=(m� k)m�k:A generalization of this 
ontext is to 
onsider a distributed setting in whi
hmore than one 
omputer or robot perform a simultaneous sear
h. In this 
aseat least one of the robots must rea
h the target, at whi
h time the sear
h is
onsidered 
omplete. The robots move at unit speed and the 
ompetitive ratiois de�ned as the ratio between the sear
h time and the shortest distan
e tothe target. Under this framework L�opez-Ortiz and Sweet show that the integerlatti
e on the plane 
an be sear
hed eÆ
iently in parallel [16℄.In this paper we study sear
hes inm 
on
urrent rays whi
h also 
orrespond toanm heuristi
 problemwith k = pmemory states and p pro
essors or 
omputers.The \terminate-on-su

ess" framework models sear
h and res
ue operations aswell as the multiple heuristi
 sear
hes. We provide an optimal strategy with
ompetitive ratio of 1 + 2(m=p � 1)(m=(m � p))m=p for sear
hing m rays withp < m robots in parallel. The 
ase p = 1 is sometimes referred in the literatureas the 
ow path problem [10℄. A variation of the newly proposed strategy 
anbe applied to other graphs su
h as trees, resulting in an iterative deepening



s
heme whi
h is optimal to within a 
onstant fa
tor. This shows that neitherBFS nor DFS are optimal |absent any other information. This has relevan
e indistributed 
omputing sear
hes in game spa
es and automated theorem proving.The paper is organized as follows. In the next se
tion we present some def-initions and preliminary results. In Se
tion 3 we present a lower bound for theproblem of sear
hing on m rays with p robots. In Se
tion 4 we then present analgorithm that a
hieves this bound.2 PreliminariesIn the following we 
onsider the problem of a group of p robots sear
hing for atarget of unknown lo
ation onm rays in parallel. The 
ompetitive ratio is de�nedas the quotient of the sear
h time over the shortest distan
e to the target. In this
ase we 
onsider robots that have the same maximal speed, whi
h is assumed tobe, without loss of generality, one unit of distan
e per unit of time.Given a strategy S, at a time T the snapshot of S is given by m+ 2p values(s1; : : : ; sm; d1; I1; d2; I2; : : : ; dp; Ip) where si is the distan
e up to whi
h ray i isexplored, di is the distan
e of robot i to the origin, and Ii is the index of the raythat robot i is lo
ated on. Consider now a strategy X to sear
h on m rays withp robots, in whi
h the robots repeatedly travel one ray for a 
ertain distan
eand then return to the origin to 
hoose another ray. Let XS = (x0; x1; : : :) bethe 
olle
tion of distan
es at whi
h the robots 
hange dire
tion to return to theorigin, ordered by the time at whi
h the robots turn around.Let ri be the ray on whi
h the robot that turns at xi is lo
ated and Ti be the�rst time that a robot passes xi on ray ri again. Assume that this robot turnsaround again after having traveled a distan
e of xk, where k > i. If the target ispla
ed on ri between xi and xk, say at distan
e d after xi, then the 
ompetitiveratio of the strategy for this pla
ement isTi + dxi + d:Sin
e the 
ompetitive ratio is a worst 
ase measure, we see that the 
ompetitiveratio CS of S is at least CS � supd>0�Ti + dxi + d� = Tixi : (1)As the target is ne
essarily found at some point along a step, we obtainCS = supi�0 �Tixi� :We say a ray r is o

upied at time T if there is a robot on r at this time.We say a ray r is busy at time T if there is a robot on r that is moving awayfrom the origin at this time. Let the s
hedule of robot R be the sequen
e ofrays in the order in whi
h they are explored by R together with the distan
e



to whi
h they are explored, i.e. S
hR = (d1; I1; d2; I2; : : :). Given two strategieswe say that S1 is 
ontained in S2 up to time T , denoted S1 �T S2, if thesnapshots of both strategies 
oin
ide for all t � T . Given a sequen
e of strategiesV = (S1; S2; : : :), we say that the sequen
e V 
onverges to a limit strategy S ifthere is a stri
tly in
reasing fun
tion T (n) with limn!1 T (n) = 1 su
h thatfor ea
h n, Sm �T (n) Sm+1 for all m � n. The limit strategy S is de�ned in theobvious way.3 A Lower BoundWe are interested in proving a lower bound on CS for any strategy S.Lemma 1. Let S be a strategy to sear
h on m rays with p robots. Then thereexist a strategy S0 with the same 
ompetitive ratio or better su
h that1. At any time t, there is at most one robot on a given ray.2. If a robot moves towards the origin on some ray, then it 
ontinues until ithas rea
hed the origin.3. All robots are moving at all times.Proof. Assume that there are at least two robots on a given ray. Either the pathsof these two robots 
ross in opposing dire
tions along the ray or not. In the latter
ase, this means that one robot trails the other along that ray and, hen
e, has nonet e�e
t in the exploration. Clearly a modi�ed strategy S0 in whi
h the trailingrobot stays put in the origin has the same 
ompetitive ratio as S. Alternatively,if the robot paths 
ross in opposing dire
tions 
onsider a strategy S00 whi
hrepla
es the 
ross-paths with a \boun
e", in whi
h both robots 
hange dire
tionat the point of interse
tion of their paths. The robots also ex
hange s
hedulesfrom that point onwards. S00 is now a strategy in whi
h the robots never properly
ross in opposing dire
tions, and hen
e itself 
an be repla
ed with a strategy S0in whi
h one of the robots stays in the origin. S0 is a strategy with the same
ompetitive ratio as S in whi
h robots do not 
hange dire
tion away from theorigin.Similarly, if the robot is moving towards the origin and then 
hanges dire
-tion, we 
an 
reate a strategy S0 in whi
h the robot stays put rather than movingtoward the origin and then ba
ktra
king its steps. The strategy S0 has the same
ompetitive ratio as S, but no 
hanges in dire
tion away from the origin alonga ray.Lastly if we 
onsider a robot whose sequen
e of moves in
ludes a stand-stillperiod, 
learly removing those idle periods 
an only de
rease the 
ompetitiveratio. Let R be a robot that is idle at step i. Then R moves ahead to exploreray Ii in its s
hedule S
hR. However this ray might presently be o

upied inwhi
h 
ase R ex
hanges s
hedule with the robot R0 o

upying the ray and movesahead to the next ray in S
hR0 . In turn, this ray might also be o

upied, andthe robot ex
hanges s
hedules yet again, and so on. Note that a swap on agiven ray monotoni
ally in
reases the distan
e to be traversed on that ray by



it's o

upant. Hen
e this de�nes a sequen
e of strategies whose limit strategy S0is well de�ned. Moreover, S0 satis�es all three properties required in the lemmaand has 
ompetitive ratio no larger than the original strategy S. utLemma 2. There is an optimal strategy to sear
h on m rays with p robots thatsatis�es Lemma 1 su
h that if a robot is lo
ated at the origin at time T , then it
hooses to explore the ray that has been explored the least among all non-busyrays.Proof. Let S be an optimal strategy to sear
h on m rays with p robots thatsatis�es Lemma 1. Assume that robot R is lo
ated at the origin at time T and
hooses to explore ray r whi
h is explored up to distan
e dr. Assume that thereis a non-busy ray r0 that is explored up to distan
e dr0 < dr. Now 
onsider thestrategy S0 where the robot 
hooses to explore the ray r0 and the robot thatexplores ray r0 after T in S explores ray r in S0. Ea
h of these rays is explored inS0 to its originally s
heduled distan
e in S, only the order 
hanges. Everythingelse remains the same.The only di�eren
e in 
ompetitive ratio between the strategies S and S0 isthe time when the point lo
ated at a distan
e dr on ray r is passed the �rst timeby a robot and the time when dr0 is passed the �rst time by a robot on ray r0.Assume that in Strategy S a robot passes dr0 on ray r0 at time T 0+dr0 . Sin
er is explored before ray r0, we have T 0 > T . Hen
e, the 
ompetitive ratio of Sfor those two steps ismax�T + drdr ; T 0 + dr0dr0 � = 1+ max� Tdr ; T 0dr0�whereas the 
ompetitive ratio of S0 for those two steps ismax�T + dr0dr0 ; T 0 + drdr � = 1 + max� Tdr0 ; T 0dr� :Sin
e T 0 > T and dr > dr0 , T 0=dr0 > maxfT=dr0 ; T 0=drg and the 
ompetitiveratio of S0 is no greater than the 
ompetitive ratio of S.This shows that swit
hing the sear
hing order to favour the least explored rayhas no negative e�e
t on the 
ompetitive ratio. However if the non-busy ray r0was o

upied, then S0 violates 
ondition (1) of Lemma 1. In this 
ase, rather thanR exploring the o

upied ray r0 it ex
hanges s
hedule from that point onwardswith the o

upant of r0 as in the proof of Lemma 1. First we observe that afterthe ex
hange of s
hedules, r0 is no longer the least explored non-busy ray as iteither has been explored to a distan
e d > dr > d0r whi
h is further than rayr or it is in the pro
ess of being explored to that distan
e and hen
e is busy.In this 
ase, we have a new strategy S0 in whi
h robot R is about to explorea ray r0 whi
h might or might not be non-busy and o

upied. We apply thesame pro
edure to what would be the least explored ray r00 in the new strategyS0 and we obtain a new strategy S00 in whi
h ray r00 is about to be explored.Note that the distan
e to whi
h r0 is explored in
reased. Hen
e this 
reates a



sequen
e of strategies (S; S0; S00; : : :) whose limit strategy has 
ompetitive rationo larger than S. Moreover this new strategy satis�es the properties of Lemma 1and robots explore the least explored non-busy ray in sequen
e. utCorollary 1. There is an optimal strategy to sear
h on m rays with p robotssu
h that at any time the explored distan
es of all o

upied, but not busy raysare larger than the minimum of the explored distan
es of all uno

upied rays.Proof. By Lemma 2 there is an optimal strategy su
h that a robot at the originalways 
hooses to explore the non-busy ray that is explored the least. If this rayis o

upied, then there is a time at whi
h two robots are on the same ray|a
ontradi
tion to Lemma 1. utA strategy satisfying Lemmas 1 and 2 is termed a normalized strategy. Thenext lemma provides a lower bound for normalized optimal strategies.Lemma 3. The 
ompetitive ratio CS of an optimal normalized strategy S withturn point sequen
e X = (x0; x1; : : :) is at leastCS � supk�08<:1 + 2k+m�pXi=0 xsi� kXi=k�p+1xsi9=; (2)where Xs = (xs0; xs1; : : :) is the sequen
e of the sorted values of X.Proof. Let S be an optimal normalized strategy. Consider a time T su
h thatrobot R0 is lo
ated at the origin. By Lemma 2 we 
an assume that it 
hoosesto explore the ray that has been explored the least among all uno

upied rays,say this is ray r0. In general, let rj be the 
urrent ray of robot Rj at time T , for0 � j � p � 1.Now 
onsider the sequen
e of turn points taken by a robot Rj up to|butnot in
luding|time T . These turn points are elements in the sequen
e Xs; letIj be the set of indi
es in Xs of these turn points of robot Rj.Let the distan
e up to whi
h ray r0 is explored at time T be d0. Note thatd0 = xsk0, for some k0 � 0. Furthermore, let dj be the distan
e up to whi
h rayrj was explored before the robot Rj entered ray rj. Note that dj = xskj , for some0 � kj where kj < k0 by Lemma 2. Hen
e dj � d0. When the robot Rj passesdj at time Tj � T + dj � T + d0 and the target is pla
ed right after dj on rayrj, then the 
ompetitive ratio for this pla
ement of the target is given by2Pi2Ij xsi + xskjxskj = 1 + 2Pi2Ij xsixskj ;a

ording to Equation 1, for 0 � j � p � 1. The fa
tor 2 
omes from the fa
tthat the robot has traveled to and fro from the origin to ea
h turn point. Hen
e,the 
ompetitive ratio at time T + d0 is at leastCS � max0�j�p�1(1 + 2Pi2Ij xsixskj ) � 1 + 2Pp�1j=0Pi2Ij xsiPp�1j=0 xskj :



Here, we make use of the fa
t that maxfa=
; b=dg � (a + b)=(
 + d), for alla; b; 
; d > 0. Note that the sum A = Pp�1j=0Pi2Ij xsi 
ontains as summands allxsi that have been explored up to time T . In parti
ular, A in
ludes all xsi that aresmaller than xsk0, as otherwise the robot R0 would have explored a ray di�erentfrom r0 by Lemma 2. Similarly, there are at least m � p + 1 uno

upied raysat time T , one of whi
h is r0. These rays have ea
h been explored to a distan
exli � xk0 , for 1 � i � m � p sin
e otherwise robot R0 would have 
hosen oneof these for exploration at time T . The smallest 
hoi
e for these m� p values isxsk0+1; : : : ; xsk0+m�p. Hen
e, p�1Xj=0Xi2Ij xsi � k0+m�pXi=0 xsi :Now 
onsider the values dj, for 1 � j � p�1. The value dj is the distan
e upto whi
h ray rj was explored before robot Rj entered it. Sin
e robot Rj 
hoseray rj and not ray r0, Lemma 2 implies that dj � d0 = xsk0 . The p � 1 largestsu
h values are xsk�p+1; : : :xsk�1 andp�1Xj=1 dj � k0Xi=k0�p+1xsi :Hen
e, CS � 1 + 2Pp�1j=0Pi2Ij xsiPp�1j=0 xskj � 1 + 2 k0+m�pPi=0 xsik0Pi=k0�p+1xsi ;for all k � p. utIn order to prove a lower bound on Expression 2 we make use of the results byGal [6℄ and S
huierer [19℄ whi
h we state here without proof and in a simpli�edform for 
ompleteness. Let Ga = (1; a; a2; : : :) be the geometri
 sequen
e in aand X+i = (xi; xi+1; : : :) the suÆx of sequen
e X starting at xi.Theorem 1 ([19℄). Let X = (x0; x1; : : :) be a sequen
e of positive numbers, ran integer, and a = limn!1(xn)1=n, for a 2 R[ f+1g. If Fk, k � 0, is asequen
e of fun
tionals whi
h satisfy1. Fk(X) only depends on x0; x1; : : : ; xk+r,2. Fk(X) is 
ontinuous, for all xi > 0, with 0 � i � k + r,3. Fk(�X) = Fk(X), for all � > 0,4. Fk(X + Y ) � max(Fk(X); Fk(Y )), and5. Fk+i(X) � Fk(X+i), for all i � 1,then sup0�k<1Fk(X) � sup0�k<1Fk(Ga):



In parti
ular, in our 
ase it is easy to see that, if we setFk(Xs) = 1 + 2k+m�pXi=0 xsi� kXi=k�p+1xsi ;then Fk satis�es all 
onditions of Theorem 1. Hen
e,CS � sup0�k<1Fk(Xs) � sup0�k<1Fk(Ga) = sup0�k<11 + 2 k+m�pPi=0 aikPi=k�p+1ai :Note that if a � 1, then the above ratio tends to in�nity as k !1. Hen
e, we
an assume that a > 1 and obtainCS � sup0�k<11 + 2 (ak+m�p+1 � 1)=(a� 1)(ak+1 � ak�p+1)=(a� 1)= sup0�k<11 + 2 ak+m�p+1 � 1ak+1 � ak�p+1(a>1)= 1 + 2 am�p1� a�p = 1 + 2 amap � 1 :The above expression is minimized for a = (m=(m � p))1=p and the 
ompetitiveratio is bounded from below byCS � 1 + 2� mm�p�m=pmm�p � 1 = 1 + 2�mp � 1�� mm� p�m=p :Theorem 2. There is no sear
h strategy for a target on m rays using p robotswith a 
ompetitive ratio of less than1 + 2�mp � 1�� mm � p�m=p :Note that the above expression interpolates ni
ely between the various spe
ial
ases that may o

ur. For instan
e, if p = 1, then we obtain 1+2mm=(m�1)m�1as previously shown [1, 6℄. If there is an integer number of rays per robot, saym = kp for some integer 
onstant k, then we obtain1 + 2�kpp � 1�� kpkp� p�kp=p = 1 + 2(k � 1) kk(k � 1)k = 1 + 2 kk(k � 1)k�1 ;that is, the same 
ompetitive ratio as if ea
h of the robots sear
hes on a separatesubset of k rays.



4 An Optimal StrategyWe now present a strategy that a
hieves a 
ompetitive ratio mat
hing the lowerbound we have shown above. The strategy works as follows. The robots explorethe rays in a �xed 
y
li
 order. Let a = (m=(m� p))1=p. The sequen
e of returndistan
es of the robots is given by xi = ai. The kth time that robot R returnsto the origin it 
hooses to explore ray (kp + R) mod m up to distan
e xkp+R.Obviously, the ith time ray r is explored, the robot explores it up to distan
exim+r.So let r be a ray that is explored by robot R after it has returned the kthtime to the origin. Hen
e, kp+R = r mod m, or equivalently kp+R = im+ r.The total distan
e traveled thus far by robot R is 2Pk�1j=0 xjp+R. Clearly, therobot that explored ray r up to distan
e x(i�1)m+r rea
hed the origin beforerobot R. Hen
e, r has been explored up to distan
e x(i�1)m+r when robot Rtravels on it and the 
ompetitive ratio in this step is given by1 + 2Pk�1j=0 xjp+Rxkp+R�m = 1 + 2aRPk�1j=0 (ap)jaRakp�m = 1 + 2 akp � 1(ap � 1)akp�m� 1 + 2 amap � 1 = 1 + 2�mp � 1�� mm � p�m=p :Sin
e the bound is independent of the robot R, the ray r and the number oftimes the ray was visited, we obtain the following theorem.Theorem 3. There exists a strategy for sear
hing for a target on m rays usingp robots with a 
ompetitive ratio of1 + 2�mp � 1�� mm� p�m=pwhi
h is optimal.5 Con
lusionsWe present an optimal strategy for sear
hing for a target on m 
on
urrent raysin parallel using p robots. This strategy has a 
ompetitive ratio of1 + 2�mp � 1�� mm � p�m=p :This is a generalization of the on-line 
onstru
tion of on-line heuristi
s to a dis-tributed model. It also extends the 
ow path problem to multiple sear
hers onm 
on
urrent rays, whi
h has proven to be a basi
 primitive in the explorationof 
ertain 
lasses of polygons. Furthermore, it expands the �eld of target sear
h-ing to multiple robots; a setting that more 
losely re
e
ts real-world s
enarios.An open problem is to generalize this algorithm to randomized or average 
asestrategies. In similar settings, a trade-o� theorem between average and worst
ase performan
e of sear
h strategies is known. It is natural to expe
t that asimilar result might hold for parallel sear
hes.
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