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Abstract

As computer science has progressed, numerous models and measures have been developed
over the years. Among the most commonly used in theoretical computer science are the RAM
model, the I/O model, worst case analysis, space (memory) usage, average case analysis, amor-
tized analysis, adaptive analysis and the competitive ratio. New models are added to this
list every few years to reflect varying constraints imposed by novel application or advances in
computer architectures. Examples of alternative models are the transdichotomous RAM or
word-RAM, the data stream model, the MapReduce model, the cache oblivious model and the
smoothed analysis model. New models and measures, when successful expand our understand-
ing of computation and open new avenues of inquiry. As it is to be expected relatively few
models and paradigms are introduced every year, and even less are eventually proven successful.

In this paper we discuss first certain shortcomings of the online competitive analysis model
particularly as it concerns paging, discuss existing solutions in the literature as well as present
recent progress in developing models and measures that better reflect actual practice for the case
of paging. From there we proceed to a more general discussion on how to measure and evaluate
new models within theoretical computer science and how to contrast them, when appropriate, to
existing models. Lastly, we highlight certain “natural” choices and assumptions of the standard
worst-case model which are often unstated and rarely explicitly justified. We contrast these
choices to those made in the formalization of probability theory.

1 Introduction

Starting with the seminal paper of Sleator and Tarjan in 1985 it was observed that the competitive
ratio did not always fairly evaluate online algorithms. Since then many alternative measures have
been proposed to remedy this fact. Yet, a quick perusal of the systems literature as it applies to
paging suggests that none of the many models suggested by theory have consistently been put to
good use in practice (see Section 2 as well as our previous survey [DLO05]).

In this paper we continue work described in our previous survey. First we discuss the key
differences between how paging algorithms are evaluated in theory and in practice (Section 2), we
then survey the search for alternatives to the competitive ratio and highlight new developments
(Section 3). In Section 4 we discuss a new and effective measure that resolves most of the issues
∗Portions of this paper appeared in preliminary form in WALCOM’08 and WAOA’09.
† c©Reza Dorrigiv and Alejandro López-Ortiz, 2010.
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with paging algorithms. This naturally leads to a discussion of the features of the standard worst-
case model. We observe that some of the choices seem natural mostly out of tradition rather than
fundamental reasons. As a point of comparison of alternative approaches we contrast this with the
formalization of probability theory, in which many of these choices are left open. Evidence suggests
that perhaps the probability theory model while very general, is unnecessarily so. In turn, the worst
case model has a set of ready made choices which have proven rather effective, but are not unique
or always optimal in all settings (Section 5). We conclude with a discussion of the characteristics
of successful models and measures (Section 6).

We consider first the case of online algorithms, for which there is a well accepted theoretical
model. As we shall see, in certain circumstances this model has been found wanting by practitioners.
This has been observed by numerous other researchers, and hence there is a suite of existing
alternative models.

2 Online Algorithms and Competitive Analysis

Competitive analysis has long been established as the canonical approach for the analysis of online
algorithms. Informally, the input of an online algorithm is a sequence of requests that arrive
sequentially in time and the algorithm must make irrevocable decisions with only partial or no
knowledge about future requests.

The competitive ratio—formally introduced by Sleator and Tarjan [ST85a]—has served as a
practical framework for the study of online algorithms. An algorithm (assuming a cost-minimization
problem) is said to be c-competitive if the cost of serving any specific request sequence never exceeds
c times the optimal cost (up to some additive constant) of an offline algorithm which knows the
entire sequence. The competitive ratio has been applied to a variety of problems and settings such
as classical online algorithms, geometric searching, motion planning and online approximation of
NP-complete problems. Indeed the growth and strength of the field of online algorithms is due in
no small part to the effectiveness of this measure in the course of practical analysis: the measure is
relatively simple to define yet powerful enough to quantify, to a large extent, the performance of an
online algorithm. Furthermore computing the competitive ratio has proven to be effective—even
in cases where the exact shape of the offline optimum opt is unknown.

On the other hand, there are known applications in which competitive analysis yields unsatis-
factory results. In some cases it results in unrealistically pessimistic measures, in others it fails to
distinguish between algorithms that have vastly differing performance under any practical charac-
terization. Most notably, for the case of paging and online motion planning algorithms, competitive
analysis does not reflect observed practice, as first noted by Sleator and Tarjan in their seminal
paper [ST85a]. Such anomalies have led to the introduction of many alternatives to the competitive
analysis of online algorithms [BDB94, BL99, BLN01, BF03, KP00, Ken96, FW98, Ira98, BIRS95,
IKP96, CN99, You94].

In this section we study the reasons behind the gap between theory and practice for online
algorithm analysis . We then highlight attempts—by the authors as well as others—to resolve this
disconnect by means of improving and refining the model. We discuss the benefits and drawbacks
for each of these proposed measures.
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2.1 Paging: A Case Study

Paging is a fundamental problem in the context of the analysis of online algorithms. A paging
algorithm mediates between a slower and a faster memory. Assuming a cache of size k, it decides
which k memory pages to keep in the cache without the benefit of knowing in advance the sequence
of upcoming page requests. After receiving the ith page request if the page requested is in the
cache (known as a hit) it is served at no cost; else, in the case of a fault the page is served from
slow memory at a cost of one unit. In this event the request results in a cache miss and the online
algorithm must decide irrevocably which page to evict without the benefit of knowing the sequence
of upcoming page requests. The goal of a paging algorithm is to minimize the number of faults
over the entire input sequence, that is, the cost of a particular solution.

Three well known paging algorithms are Least-Recently-Used (LRU), First-In-First-Out (FIFO),
and Flush-When-Full (FWF). On a fault, if the cache is full, LRU evicts the page that is least
recently requested, FIFO evicts the page that is first brought to the cache, and FWF empties the
entire cache. All these paging algorithms have competitive ratio k, which is the best among all
deterministic online paging algorithms [BEY98].

Let σ = (σ1, σ2, . . .) be an input sequence. We denote by σ1:j = (σ1, σ2, . . . , σj) the prefix
subsequence of the first j requests in σ. An online algorithm A for an optimization problem takes
as input a sequence σ = (σ1, σ2, . . . , σn). The algorithm A processes the request sequence in order,
from σ1 onwards and produces a partial solution with cost costA(σ1:j) after the arrival of the jth
request.

In general it is assumed that the length of the sequence is unknown beforehand and hence an
online algorithm performs the same steps on the common prefix of two otherwise distinct input
sequences. More formally, if σ′ is a prefix of σ then costA(σ′) = costA(σ1:|σ′|). In contrast, the
offline optimal algorithm, denoted as opt has access to the entire sequence at once and hence does
not necessarily meet the prefix condition. Equivalently, using the more conventional ratio notation,
we have that an algorithm is C(n)–competitive iff

C(n) = max
|σ|=n
n≥No

{
costA(σ)

costOPT (σ)

}
.

2.2 The Gap between Theory and Practice

As was mentioned earlier, the standard model for paging does not lead to satisfactory conclusions
which are replicated in practice. With the goal of closing the gap between theory and practice, we
examine the difference in the assumptions between the theoretical competitive ratio model and the
practical systems research approach to paging. We now discuss in detail the differences which also
appear summarized in Table 1.

1. Competitive ratio v. Fault rate. The theoretical model for the study of paging algorithms is
the competitive ratio framework in which the preformance is measured relative to an idealized
offline optimal algorithm. In contrast, the vast majority of systems research on paging uses
the fault rate measure, which simply determines the percentage of page requests in the input
sequence leading to a page fault. Consider for example a request sequence of 1M pages, such
that an online algorithm A has 200 page faults while the offline optimum has twenty faults.
This means that A has a competitive ratio of 10 which is high, while in terms of the fault
rate model A has a page fault rate of 0.002% which is very good.
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2. Worst case v. Typical case. In the worst case one can devise highly contrived request
sequences with a very high competitive ratio for any paging algorithm. Since these sequences
do not occur naturally, measuring the performance of an online algorithm on them does
not shed light on the actual relative performance of various algorithms. Practical studies in
contrast use an extensive set of real-life request sequences (traces) gathered from diverse set
of applications, over which the performance of any online strategy can be measured.

3. Marking algorithms v. LRU. Under the competitive analysis all marking algorithms have
the same performance. In other words LRU and FWF are equal under the competitive
ratio measure. In contrast, experimental analysis has consistently shown that LRU and/or
minor variants thereof are typically the best choices in practice, while FWF is much worse
than LRU. The competitive ratio then fails to separate these algorithms with very different
performance in practice.

4. Practical algorihtms. In terms of practice the theoretical model suggests that LRU might be
preferable for “practical” heuristic reasons. In actuality, since paging algorithms are executed
concurrently with every page access this limits the complexity of any solution, and hence
practical heuristic solutions are simplifications and approximations of LRU.

5. Idealized offline optimum. Competitive analysis uses an optimal offline algorithm as a
baseline to compare online algorithms. While this may be convenient, it is rather indirect:
one could argue that in comparing A to B all we need to study is the relative cost of the
algorithms on the request sequences. The indirect comparison to an offline optimal can
introduce spurious artifacts due to the comparison of two objects of different types, namely
an online and an offline algorithm. As well the offline optimum benefits from aspects other
than the difficulty of the instances, namely it can take advantage of knowledge of the future,
so regardless of the difficulty of servicing a request it might do better as a consequence of
this1. In contrast the fault rate measure uses a direct comparison of the number of faults per
access of paging algorithms to determine which one is preferable.

6. Unlimited v. Restricted input space. Interestingly, even if algorithms are measured using
the competitive ratio, in practice the worst case request sequence encountered using LRU
has competitive ratio 4, and most sequences result in a competitive ratio well below that.
Contrast this with the predicted competitive ratio of k under the theoretical model.

7. Adversarial v. Cooperative model. The offline optimum model implicitly creates an adver-
sarial model in which the paging algorithm must be able to handle all request sequences,
including those maliciously designed to foil the paging algorithm. In contrast, in practice,
programmers and compilers purposely avoid bad request sequences and try to arrange the
data in a way so as to maximize locality of reference in the request sequence (e.g. the I/O
model [AV88], or the cache oblivious model [Pro99]). In game theoretical terms, the com-
petitive model is a zero sum game in which the adversary benefits from a badly performing
paging algorithm, while in practice paging is a positive sum game in which both the user and

1For example consider the decision whether to purchase car insurance or not [BDB94]. If one purchases insurance
then the adversary selects the input in which no claim is filed, if alternatively no insurance is bought then the
adversary selects the input in which an accident takes place. In real life, however, it is easy to see that the best online
strategy is to buy insurance so long as it is priced below the expected loss.
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Theoretical Model Systems Framework
Competitive ratio framework Fault rate measure

Worst case analysis Typical case analysis
Marking algorithms optimal LRU and variants thereof are best

In practice LRU is best LRU is impractical
LFD is offline optimal No analogous concept
Competitive ratio is k Observed Comp. ratio is at most 4

User is a malicious adversary User seeks locality of reference
No benefit from lookahead Lookahead helps

Table 1: Contrast of theory versus practice for paging.

the paging algorithm can maximize their respective performances by cooperating and coordi-
nating their strategies. Indeed it was observed by Denning that paging algorithms optimize
for locality of reference because this was once observed in real life traces, and now compilers
optimize code to increase locality of reference because now paging algorithms excel on those
sequences. In other words, locality of reference which was once observed “in the wild” is now
actively sought after by both programmers and paging algorithms and hence its existence is
reinforced.

8. Effect of lookahead. Lastly, we observe that finite lookahead does not help in the theoretical
model, as this is a worst case measure (simply repeat each request for as long as the lookahead
is) yet in practice instruction schedulers in many cases know the future request sequence for a
small finite lookahead and use this information to improve the fault rate of paging strategies
in practice.

3 The Search for Alternatives

In this section we overview some alternatives to the competitive ratio. We refer the reader to the
survey of Dorrigiv and López-Ortiz [DLO05] for a more comprehensive and detailed exposition.

Loose competitiveness, which was first proposed by Young in [You94] and later refined in [You02],
considers an offline adversary that is oblivious to the parameter k (the cache size). The adversary
must produce a sequence that is bad for most values of k rather than for just a specific value. It
also ignores the sequences on which the online algorithm incurs a cost less than a certain threshold.
This results in a weaker adversary and hence in paging algorithms with constant performance
ratios. The diffuse adversary model by Koutsoupias and Papadimitriou [KP00] as well as Young
[You98, You00] refines the competitive ratio by restricting the set of legal request sequences to
those derived from a class (family) of probability distributions. This restriction follows from the
observation that although a good performance measure could in fact use the actual distribution
over the request sequences, determining the exact distribution of real-life phenomena is a difficult
task.

The Max/Max ratio, introduced by Borodin and Ben-David [BDB94] compares online algorithms
based on their amortized worst-case behaviour where the amortization arises by dividing the cost
of the algorithm over the length of the request sequence. The relative worst order ratio [BF03,
BFL05, BM04] combines some of the desirable properties of the Max/Max ratio and the random
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order ratio, introduced in [Ken96] in the context of the online bin packing problem. As with the
Max/Max ratio, it allows for direct comparison of two online algorithms. Informally, for a given
request sequence the measure considers the worst-case ordering (permutation) of the sequence, for
each of the two algorithms, and compares their behaviour on these orderings. It then finds among
all possible sequences the one that maximizes this worst-case performance. Recently, Panagiotou
and Souza proposed a model that explains the good performance of LRU in practice [PS06]. They
classify input sequences according to some parameters and prove an upper bound on the competitive
ratio of LRU as a function of these parameters. Then they argue that sequences in practice have
parameters that lead a to constant competitive ratio for LRU.

Bijective analysis and Average analysis recently proposed by Angelopoulos, Dorrigiv and López-
Ortiz [ADLO07], build upon the framework of [AFG05]. These two models have certain desirable
characteristics for comparing online algorithms: they allow for direct comparison of two online
algorithms without appealing to the concept of the offline “optimal” cost (see [ADLO07] for a more
detailed discussion). In addition, these measures do not evaluate the performance of the algorithm
on a single “worst-case” request, but instead use the cost that the algorithm incurs on each and all
request sequences. Informally, Bijective analysis aims to pair input sequences for two algorithms
A and B using a bijection in such a way that the cost of A on input σ is no more than the cost
of B on the image of σ, for all request sequences σ of the same length. In this case, intuitively,
A is no worse than B. On the other hand, Average analysis compares the average cost of the two
algorithms over all request sequences of the same length. For an online algorithm A and an input
sequence σ, let A(σ) be the cost incurred by A on σ. Denote by In the set of all input sequences
of length n.

We say that an online algorithm A is no worse than an online algorithm B according to Bijective
analysis if there exists an integer n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : In ↔ In
satisfying A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B. Otherwise we denote the
situation by A 6�b B. Similarly, we say that A and B are the same according to Bijective analysis
if A �b B and B �b A. This is denoted by A ≡b B. Lastly we say A is better than B according to
Bijective analysis if A �b B and B 6�b A. We denote this by A ≺b B [ADLO07].

We say that an online algorithm A is no worse than an online algorithm B according to Average
analysis if there exists an integer n0 ≥ 1 so that for each n ≥ n0,

∑
I∈In A(I) ≤

∑
I∈In B(I). We

denote this by A �a B. Otherwise we denote the situation by A 6�a B. A ≡a B, and A ≺a B are
defined as for Bijective analysis [ADLO07].

As it turns out, a very large class of natural paging strategies known as lazy algorithms (including
LRU and FIFO, but not FWF) are in fact strongly equivalent under this rather strict bijective
measure. The strong equivalence of lazy algorithms is evidence of an inherent difficulty to separate
these algorithms in any general unrestricted setting. In fact, it implies that to obtain theoretical
separation between algorithms we must either induce a partition of the request sequence space (e.g.
as in Albers et al. [AFG05]) or assume a distribution (or a set of distributions) on the sequence
space (e.g. as in Koutsoupias and Papadimitriou [KP00], Young [You98] and Becchetti [Bec04]).
The latter group of approaches use probabilistic assumptions on the sequence space. However, we
are interested in measures that separate algorithms under a deterministic model.

It is well known that input sequences for paging and several other problems show locality of
reference. This means that when a page is requested it is more likely to be requested in the near
future. Therefore several models for paging with locality of reference have been proposed. In the
early days of computing, Denning recognized the locality of reference principle and modeled it using
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the well known working set model [Den68, Den80]. He defined the working set of a process as the set
of most recently used pages and addressed thrashing using this model. According to [Den05], the
word “locality” was first used by Denning in discussions with Dennis and Belady. They noticed that
programs showed locality behavior even when it was not explicitly planned. After the introduction
of the working set model, the locality principle has been adopted in operating systems, databases,
hardware architectures, compilers, and many other areas. Therefore it holds even more so today.
Indeed, [Den05] states “locality of reference is one of the cornerstones of computer science.”

One apparent reason for the drawbacks of competitive analysis of paging is that it does not
incorporate the corresponding locality of reference. There are several models for paging which
assume locality of reference. Borodin, Raghavan, Irani, and Schieber [BIRS95] proposed the access
graph model in which the universe of possible request sequences is reduced to reflect that the
actual sequences that can arise depend heavily on the structure of the program being executed.
The space of request sequences can then be modeled by a graph in which paths between vertices
correspond to actual sequences. In a generalization of the access graph model, Karlin, Phillips,
and Raghavan [KPR00] proposed a model in which the request sequences are distributed according
to a Markov chain process. Becchetti [Bec04] refined the diffuse adversary model of Koutsoupias
and Papadimitriou by considering only probabilistic distributions in which locality of reference is
present. Torng [Tor98] considered the decomposition of input sequences to phases in the same
manner as marking algorithms. He then modeled locality of reference by restricting the input
to sequences with long average phase length. Using the full access cost model, he computed the
performance of several paging algorithms on sequences with high locality of reference. Most notably,
Albers, Favrholdt, and Giel [AFG05] introduced a model in which input sequences are classified
according to a measure of locality of reference. The measure is based on Denning’s working set
concept [Den68] which is supported by extensive experimental results. The technique used, which
we term concave analysis, reflects the fact that efficient algorithms must perform competitively in
each class of inputs of similar locality of reference, as opposed to the worst case alone. It should be
noted that [AFG05] focuses on the fault rate as the measure of the cost of an algorithm, as opposed
to the traditional definition of cost as the number of cache misses.

Hence the need to combine Bijective analysis with an assumption of locality of reference model
such as concave analysis. In this model a request sequence has high locality of reference if the
number of distinct pages in a window of size n is small. Consider a function D() that represents
the maximum number of distinct pages in a window of size n within a given request sequence. This
gives a non-decreasing function which, furthermore, is trivially bounded by a concave function,
namely the identity. Extensive experiments with real data show that in fact this function can
generally be bounded by a non-trivial concave function f() which approximates D() rather well for
most practical request sequences [AFG05]. Let f be an increasing concave function. We say that a
request sequence is consistent with f if the number of distinct pages in any window of size n is at
most f(n), for any n ∈ N. Now we can model locality by considering only those request sequences
that are consistent with f .

Using this measure Angelopoulos et al. [ADLO07] show that LRU is never outperformed in any
possible subpartition on the request sequence space induced by concave analysis, while it always
outperforms any other paging algorithm in at least one subpartition of the sequence space. This
result proves separation between LRU and all other algorithms and provides theoretical backing to
the observation that LRU is preferable in practice. This is the first deterministic theoretical model
to provide full separation between LRU and all other algorithms.
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To be more precise we restrict the input sequences to those consistent with a given concave
function f . Let If denote the set of such sequences. We can easily modify the definitions of Bijective
analysis and Average analysis by considering If instead of I. We denote the corresponding relations
by A �fb B, A �fa B, etc. Note that we can make any sequence consistent with f by repeating
every request a sufficient number of times. Therefore even if we restrict the input to sequences
with high locality of reference, there is a worst case sequence for LRU that is consistent with f
and therefore the competitive ratio of LRU is the same as in the standard model. Observe that
the performance of a paging algorithm is now evaluated within the subset of request sequences of
a given length whose locality of reference is consistent with f , i.e. Ifn .

Theorem 1 (Unique optimality of LRU) [ADLO07] For any concave function f and any pag-
ing algorithm A, LRU �fa A. Furthermore, let A be a paging algorithm other than LRU. Then
there is a concave function f so that A 6�fa LRU which implies A 6�fb LRU.

Recently this result was strengthened by Angelopolous and Schweitzer [AS09] where they showed
that the separation also holds under the stricter Bijective analysis (as opposed to Average analysis)
using the concave analysis framework. However Bijective analysis and Average analysis are not
particularly effective measures, hence even though separation for LRU was finally achieved, the
quest for a better model remains. In the next Section we will discuss a new, more effective model
for the analysis of online algorithms.

4 Adaptive Analysis

Standard algorithm analysis expresses performance in terms of the input size. Adaptive analysis
takes into account the difficulty of input instances as well. This means that an algorithm has good
performance according to adaptive analysis if it performs well on “easy” instances and not too
poorly on “difficult” ones. We define adaptive performance of an algorithm by representing its
traditional performance in terms of both the input size and the difficulty of the input. In general,
adaptive analysis involves two key steps: (i) find a realistic difficulty measure for input instances
and (ii) propose algorithms that provably perform well under such a measure. Observe that the
competitive ratio can be seen as a special case of adaptive analysis, namely the case where the
measure of difficulty is the performance of the offline OPT.

In terms of (i), namely identifying a reasonable measure of difficulty, this is generally a straight-
forward task. In most cases it is easy to identify a reasonable measures of difficulty. Indeed the
challenge is more often than not to justify a specific choice among several natural ones. Empirically
it has been observed that for most problems the differences in difficulty measure do not radically
alter the nature of the optimal algorithms for those measures. Observe that this situation is anal-
ogous to the encoding of the input under the classical worst-case model: in general there are many
reasonable ways to encode the input, however under linear time online decoding schemes most
algorithms remain optimal by adding a simple preprocessing step in the beginning.

Adaptive analysis brings to online algorithms the ability to use a finer measure of difficulty.
For each problem, we can choose the measure that best reflects the difficulty of the input. It
is unlikely that the offline OPT is such a measure for all cases. Another feature of adaptive
analysis of online algorithms is that in certain online problems, the competitive ratio measure might
force the algorithm to make a move that is suboptimal in most cases except for a pathological
worst case scenario. If the application is such that these pathological cases are agreed to be
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of lesser importance, then the online strategy can perform somewhat more poorly in these and
make the choice that is best for the common case. Observe that the input is no longer assumed
to be adversarially constructed. This better reflects, in particular, the case of paging, in which
programmers, compilers and optimized virtual machines (such as JVMs) go to great lengths to
maintain and increase locality of reference in the code. Hence it is more realistic to assume that
paging sequences are not adversarial and that furthermore, the user/programmer fully expects code
with low locality of reference to show a degradation in performance. The same observation has
been made in scenarios such as online robot exploration [LOS96, IKM93, HIKK01, LO96, LOS04,
LOS01a] and network packet switching, in which a robot vacuuming a room or a router serving
a packet sequence need only concentrate on well-behaved cases. A vacuuming robot need not
efficiently vacuum a maze, neither does the router have to keep up with denial-of-service floods.

Dorrigiv and López-Ortiz [DLO07] initially proposed cooperative analysis as a new framework
for the analysis of online algorithms and applied it to paging and list update problems. This measure
was further refined by Dorrigiv et al. in [DELO09] where it is reframed in terms of adaptive and/or
parameterized analysis.

In this section we apply parameterized analysis to paging. Paging and list update are ideal
testbeds for developing alternative measures, given our extensive understanding of these problems.
We know why and where competitive analysis fails, what are typical sequences in practice and
how to evaluate a new technique to determine if it indeed overcomes the known shortcomings.
It is important to note that even though well studied, most of the alternative models for these
problems are only partially successful in resolving the issues posed by these testbeds and as such
these problems are still challenging case studies against which to test a new model. We express
the performance of well known paging algorithms in terms of a measure of locality of reference. As
we shall see, for paging, this leads to better separation than the competitive ratio. Furthermore,
in contrast to competitive analysis it reflects the intuition that a larger cache leads to a better
performance. We also provide experimental results that justify the applicability of our measure
in practice. Some of the proofs follow the general outline of standard competitive analysis proofs
(e.g., those in [BEY98]), which shows the power of the adaptive model.

As stated before, several studies have been presented that integrate the concept of locality for
paging, culminating with the LRU separation results in [ADLO07, AS09]. These separation results
are based on heavy machinery specifically designed to resolve this singular long-standing question.
In contrast, the new measure we propose is easier to apply and creates a performance hierarchy of
paging and list update algorithms which better reflects their intuitive relative strengths. Several
previously observed experimental properties can be readily proven using the new model. This is a
strength of the new model in that is effective, that is readily applicable to a variety of algorithms
and with meaningful results.

As stated before input sequences for paging show locality of reference in practice. We want to
express the performance of paging algorithms on a sequence in terms of the amount of the locality
in that sequence. Therefore we need a measure that assigns a number proportional to the amount
of locality in each sequence. None of the previously described models provide a unique numerical
value as a measure of locality of reference. We define a quantitative measure for non-locality of
paging instances.

Definition 1 For a sequence σ we define dσ[i] as either k+1 if this is the first request to page σ[i],
or otherwise, the number of distinct pages that are requested since the last request to σ[i] (including
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espresso li eqntott compress tomcatv ear sc swm gcc
Distinct 3913 3524 9 189 5260 1614 561 3635 2663
λ 193.1 195.2 1.7 2.3 348.3 34.1 5.4 166.7 90.6
Ratio 4.9% 5.5% 19.3% 1.2% 6.6% 2.1% 1.0% 4.6% 3.4%

Table 2: Locality of address traces collected from SPARC processors running the SPEC92 bench-
marks.
σ[i]).2 Now we define λ(σ), the “non-locality” of σ, as λ(σ) = 1

|σ|
∑

1≤i≤|σ| dσ[i]. We denote the

non-locality by λ if the choice of σ is clear from the context.

If σ has high locality of reference, the number dσ[i] of distinct pages between two consecutive
requests to a page is small for most values of i and thus σ has a low non-locality. Note that while
this measure is related to the working set model [Den68] and the locality model of [AFG05], it
differs from both in several aspects. Albers et al. [AFG05] consider the maximum/average number
of distinct pages in all windows of the same size, while we consider the number of distinct pages
requested since the last access to each page. Also our analysis does not depend on a concave function
f whose identification for a particular application might not be straightforward. Our measure is also
closely related to the working set theorem in area of self-organizing data structures [ST85b]. For
binary search trees (like splay trees), the working set bound is defined as

∑
1≤i≤|σ| log (dσ[i] + 1).

The logarithm can be explained by the logarithmic bounds on most operations in binary search
trees. Thus our measure of locality of reference can be considered as variant of this measure in
which we remove the logarithm.

Experimental Evaluation of the Measure. In order to check validity of our measure we ran
some experiments on traces of memory reference streams from the NMSU TraceBase [Uni]. Here we
present the results of our experiments on address traces collected from SPARC processors running
the SPEC92 benchmarks. We considered a page size of 2048 bytes and truncated them after 40000
references. The important thing to notice is that these are not special cases or artificially generated
memory references, but are access patterns a real-life implementation of any paging algorithm might
face. The results for the corresponding eleven program traces are shown in Table 2. The first row
shows the number of distinct pages, the second row shows λ, and finally the third row shows the
ratio of the actual locality to the worst possible locality. The worst possible locality of a trace
asymptotically equals the number of distinct pages in that trace. It is clear from the low ratios
that in general these traces exhibit high locality of reference as defined by our measure.

Next we analyze several well known paging algorithms in terms of the non-locality parameter.
We consider the fault rate, the measure usually used by practitioners. The fault rate of a paging
algorithm A on a sequence σ is defined as A(σ)/|σ|, i.e., the number of faults A incurs on σ
normalized by the length of σ. The fault rate of A, FR(A), is defines as the asymptotic worst
case fault rate of A on any sequence. The bounds are in the worst case sense, i.e., when we say
FR(A) ≥ f(λ) we mean that there is a sequence σ such that A(σ)

|σ| ≥ f(λ(σ)) and when we say

FR(A) ≤ g(λ) we mean that for every sequence σ we have A(σ)
|σ| ≤ g(λ(σ)). Also for simplicity,

we ignore the details related to the special case of the first few requests (the first block or phase).
2Asymptotically, and assuming the number of requests is much larger than the number of distinct pages, any

constant can replace k + 1 for the dσ[i] of the first accesses.
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Algorithm Lower Bound Upper Bound

Deterministic λ
k+1

λ
2

LRU λ
k+1

λ
k+1

Marking λ
k+1

2λ
k+3

FWF 2λ
k+3

2λ
k+3

FIFO λ
k+1

λ
k+1

LFU 2λ
k+3

λ
2

LIFO λ
2

λ
2

LRU-2 2kλ
(k+1)(k+2)

2λ
k+1

MARK 2λ
3k+1

2λ
3k+1

LFD λ
3k+1

2λ
3k+1

Table 3: Bounds for paging.

Asymptotically and as the size of the sequences grow, this can only change the computation by
additive lower order terms.

We give a proof of the first two results to illstrate the effectiveness of the model and refer the
reader to [DELO09] for a full proof of the results summarized in Table 3.

Lemma 1 For any deterministic paging algorithm A, λ
k+1 ≤ FR(A) ≤ λ

2 .

Proof: For the lower bound consider a slow memory containing k+ 1 pages. Let σ be a sequence
of length n obtained by first requesting p1, p2, . . . , pk, pk+1, and afterwards repeatedly requesting
the page not currently in A’s cache. Since A(σ)

|σ| = n/n = 1, and λ is at most k+ 1 (there are k+ 1
distinct pages in σ), the lower bound follows.

For the upper bound, consider any request sequence σ of length n. If the ith request is a fault
charged to A, then dσ[i] ≥ 2 (otherwise σ[i] cannot have been evicted). Hence, 2A(σ) ≤

∑n
i=1 dσ[i]

and the upper bound follows. 2

We now show that LRU attains the best possible performance in terms of λ.

Theorem 2 FR(LRU) = λ
k+1 .

Proof: It follows from the observation that LRU faults on the request σ[i] if and only if
dσ[i] ≥ k + 1, which implies LRU(σ) ≤ λ

k+1 and Lemma 1. 2

According to the results of Table 3, LRU and FIFO have optimal performance among deter-
ministic algorithms. Marking algorithms can be twice as bad and FWF is among the worst marking
algorithms. LIFO has the worst performance possible and LRU-2 is almost twice as bad as LRU.
The performance of the randomized algorithm MARK is better than any deterministic algorithms:
it behaves almost 2/3 better than LRU. Observe that LFD, an optimal offline algorithm, is only
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a factor of 3 better than LRU under this measure. Contrast this with the competitive ratio for
which LFD is k times better than LRU.

The adaptive and bijective models generalize to other online problems. In the interests of brevity
we refer the reader to Appendix where we give to other examples in which adaptive analysis leads
to more accurate results.

5 Classical Measures

In this section we discuss the basic features of the classical model with the aim of understanding
the differences between the various models. Classical analysis of algorithms uses primarily the
worst-case measure to quantify the performance of an algorithm. We briefly review the underlying
assumptions and highlight certain key aspects of the measure. Recall that the driving motivation
for algorithm analysis is to understand, quantify and compare the relative performance of a set
of algorithms for a given problem. Traditionally, there has been a preference for measures which
return a single numerical value. Such a measure would naturally induce a linear order in the set of
algorithms thus allowing for ready comparisons between them. However, as we know, for the case
of algorithms in general it is not possible to reduce their performance down to a single number.
Hence we must consider measures that are functions of one (or more) parameters, and introduce a
method for making pairwise comparisons.

Formally, given an algorithm A and an input x, A(x) denotes the execution of A over x. A
performance measure µ associates a real positive number to A(x). Typical examples of µ are time,
space usage, number of random bits used, and number of I/O operations.

When analyzing an algorithm we aim to determine the value of µ for a given input in as
accurate a manner as feasible. Observe that the domain of µ(·), which consists of all binary strings
representing well formed inputs lacks regularity. This makes it difficult to evaluate or estimate
µ(A(x)) for a given input x. Hence, we group inputs by size. This draws on the familiar notion
developed in elementary school that for a fixed type of problem—say addition or multiplication—its
complexity increases with the number of digits in the input. In other words this assumption in the
model is at some level naturally supported by experience.

With the grouping by size assumption in place we can now define a new measure—termed a
timing function—from the positive integers to the real numbers, i.e. T : Z+ ← R+. The function
T (n) is defined as

T (n) = max
|x|=n
{TA(x)}

where TA(x) = µ(A(x)) denotes the time taken by algorithm A to run on input x.
While this measure has come to be seen as synonymous to the performance of an algorithm it

is important to remember that it is in fact an imprecise approximation.
Indeed, the amount of information lost in this reduction varies significantly with the algo-

rithm. We illustrate this with three algorithms: Mergesort, Bubblesort with early termination, and
Quicksort. Figures 1, 2, and 3, show the performance of these algorithms over a billion random per-
mutations of 100 numbers. Each dot in the tear drop shape represents the number of comparisons
required by an actual input among the billion permutations. We can see that the performance for
Mergesort over most inputs is strongly clustered around 525±10 comparisons—which is reasonably
close the predicted worst-case value of 664 comparisons (see Figure 1). The actual observed worst
case for Mergesort over a billion permutations was 554 comparisons. For Bubblesort with early ter-
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Figure 1: Performance of Mergesort over a billion random permutation of 100 numbers.
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Figure 2: Performance of Bubblesort over a billion random permutation of 100 numbers.
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Figure 3: Performance of Quicksort over a billion random permutation of 100 numbers.
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Figure 4: Relative performance of sorting algorithms over a billion random permutation of 100
numbers.
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mination we have a similar situation where the performance is strongly clustered around 4920± 20
comparisons which is very close to the worst case performance of 4950 comparisons (see Figure 2).
Moreover the worst case bound of 4450 was observed in practice for several of the permutations
generated at random. Lastly we have Quicksort. For this algorithm we can see that the worst
case performance is a terrible representative its actual performance. Quicksort timings are strongly
clustered around 700 ± 40 comparisons but the worst case prediction is 4950 comparisons! Even
the observed worst case over a billion permutations which was on itself very rare, required 1427
comparisons, falling well short of the predicted worst case.

While this is well known it illustrates that worst case performance is, in all three cases, just
an approximation of the actual behaviour we were interested in studying and that the quality of
this approximation is variable. Note that the fact that this bound on the performance has been
mathematically proven is orthogonal to the quality of this representation. The example given also
illustrates the ways in which a model or measure can fail and yet still be the preferred tool. In
Section 6 we will discuss this in more detail.

Observe that in the definition of worst case analysis there are several choices to be made. First
we have the choice of measure. For example, by replacing the time measure function µ with a
function µ′ measuring space or I/O operations we obtain the standard worst case space and I/O-
model analysis, respectively. Second we have the choice of the worst case max operator. We could
use instead the average operator which gives average case analysis for any of the measures listed
above. Lastly we have the grouping by input size. There are alternatives to this grouping though
none as commonly used as those for the previous two choices. For polynomial algorithms there
is adaptive analysis which, as discussed before, uses a measure of difficulty to group inputs by a
second dimension. For example, in Table 4 we list the set of input permutations to a comparison
based sort. Each column is grouped by the standard measure of input size but further subdivided
by the complexity measure of transpositions required to obtaine the sorted sequence. Observe
that trivially all sequences in the first few k rows, for k constant, can be sorted in time O(n).
For NP-hard problems we have parameterized analysis, which uses a set of measures—such as
treewidth—to group the inputs by a parameter other than input size. Another example is given
by output-sensitive algorithms in which the input space is partitioned by both the size of the input
and the size of the output produced by a particular input string.

Probability Measures. The partition of the input space by size is motivated by the goal
of introducing structure to the input space as well as obtaining a mapping from the reals to the
reals, since real valued functions are more amenable to analysis. Note that this situation parallels
the use of random variables in probability. In this case the probability space often is similarly
not amenable to study due to its lack of structure and hence the notion of random variable is
introduced. A random variable transforms the space of events (which could as varied as a set of
coin tosses or a sample subset of people) into classes which are represented by the pre-image of
their numerical value, i.e. the set of events X−1(r) for r ∈ R.

In practice, in nearly all instances the random variable X is some sort of natural counting
function, yet the formal definition chooses to ignore this fact and allows for any arbitrarily defined
random variable. Contrast this with the analysis of algorithms in which we selected the most
natural grouping function (input size). This grouping has only relatively recently been expanded
to include a second parameter such as difficulty of the input, treewidth or output size. At the same
time it has become increasingly clear that there is a large number of such grouping functions which
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input size 1 2 3 4

0 transpositions 1 1 2 1 2 3 1 2 3 4

1 transposition
2 1 1 3 2 1 2 4 3

2 1 3 1 3 2 4
2 1 3 4

2 transpositions

2 3 1 1 3 4 2
3 1 2 1 4 2 3

2 1 4 3
2 3 1 4
3 1 2 4

3 transpositions

3 2 1 1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3

4 transpositions

2 4 3 1
3 1 2 3 2 4 1

3 4 1 2
4 1 3 2
4 2 1 3

5 transpositions
3 4 2 1
4 2 3 1
4 2 1 3

6 transpositions 4 3 2 1

Table 4: Number of transpositions needed for sorting an input of size n for n = 1, 2, 3, and 4.

are natural and worth being the subject of study3.
Similarly the measurement function Pr which also has a very natural interpretation in mathe-

matics is left unspecified by the axiomatization of Kolmogorov and is only required to be a mea-
surement function assigning the value of one to the entire sample space.

In turn in computer science we selected a specific random-variable-of-sorts namely the input size,
and then a specific measure or density function, namely max. Thus far the field has only hesitantly
considered variations of those, as discussed before. This is in stark contrast to the probabilistic
definition in which no judgement is made as to the specific choice of parameters.

In practice, the most commonly used measures aside from time are space and number of I/O
operations. In this it can be argued that while this set might not yet be complete it is unlikely
to contain many other functions and that by keeping the set of possible measures small leads to

3Indeed, at a recent Dagstuhl meeting on fixed parameter tractability over a dozen different parameters were
identified by the attendants as being in common use in the field.
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stronger theorems, just as in probability theory often theorems assume a specific type of distribution
or at least independent identically distributed variables. So in all, the fact that a narrower choice
was made in algorithms analysis is not necessarily bad, but it is important to keep in mind that
this choice was made and expand this selection if need be.

Observe that the competitive ratio can also be understood in this light. In its original form it
simply computes the maximum of a normalized measure over the entire input space. That is, let r
denote the competitive ratio of an online algorithm A then

r = max
x

{
costA(x)
costOPT (x)

}
which in particular leads to the initial terming of algorithms for which the competitive ratio was
a function of n non-competitive or of unbounded competitive ratio. Eventually this definition was
enlarged to include a partition of the input space by input size as follows:

r(n) = max
|x|=n

{
costA(x)
costOPT (x)

}
which allows us to describe an algorithm as, say log n-competitive or

√
n-competitive.

Following the same outline, we define the adaptive performance of an algorithm A as

T (n, λ) = max
|x|=n
D(x)=λ

{TA(x)}

which gives a bivariate timing function. Fixed parameter algorithms, approximation algorithms
and output-sensitive algorithms also use a second parameter to refine the partition of the input
space. For example, consider the performance of Quicksort as shown in Figure 3. A well chosen
difficulty parameter would partition the performance teardrop into narrower ranges each of which
would then presumably be estimated much more accurately by its corresponding maximum value.

In sum, classical measures have made certain parameter choices, which while natural and useful
are not necessarily unique. In cases where these choices led to undesirable results one can either
perfect the classical model, or introduce a novel measure to handle the anomalous cases. Past
experience shows that properly chosen variants have led to interesting and novel algorithms and
results.

6 Evaluating new models

As observed before, proposing a new model or measure is relatively rare, and widespread adoption
of one is even rarer. As such there is a paucity of established techniques on how to gauge the
usefulness and validity of a proposed new model. In this section we discuss key aspects of the
introduction and evaluation of new models to illustrate the process by which new models become
adopted.

Often there is a tendency to think in terms of “competing models” as if there were a unique
best model out there waiting to be found. In practice, different models are used in different settings
depending on the information being sought and the specific application in mind. For example if
we are sorting a given number of keys, we might choose to study the problem under the RAM
model, the I/O model or the MapReduce model if the number of keys is modest, large or massive,
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respectively. That is to say, to adopt the MapReduce model we do not need to disprove the validity
of the RAM model throughout. All that is required is for the MapReduce model to produce more
accurate estimates of the algorithm performance for the particular set of instances that we are
interested in, and then we use this model for exactly those instances.

Furthermore, newly introduced models often have to be evaluated on their promise as it might
take the combined work of several research efforts before their full potential is grasped4. Indeed
a well-honed and understood inferior model will initially outperform an ultimately preferable new
model that is yet to be fully developed and perfected.

Another often overlooked factor is that models are approximations of reality, not accurate
descriptions—hence the use of the word model. This was most notably stated by the mathematician
George Box in his maxim “essentially, all models are wrong, but some are useful”5 [BD86, page
424]. In fact models can be at times highly inaccurate provided that they fail in well understood
and predictable scenarios, in which case we learn not to use them in the first place. For example,
we know that the worst case measure is not adequate for the evaluation of randomized algorithms.
Naturally this is not considered an indictement of the worst case measure, and rightly so.

The economist Paul Krugman observed this process of internalization of the limits of well
established models and overlooking of their flaws, in the context of commenting on the various
models he introduced:

The models I proposed were incomplete and yet they told meaningful stories. To achieve
this aggregate level of description required accepting certain basically silly assumptions
of symmetry, yet these silly assumptions tell stories that were persuasive, and that could
not be told using the standard model. What I began to realize was that in economics
we are always making silly assumptions; it’s just that some of them have been made
so often that they come to seem natural. And so one should not reject a model as
silly until one sees where its assumptions lead. Initially your assumptions will surely
look peculiar. Consider for example the Arrow-Debreu model of perfect competition
with utility maximization and complete markets. This is indeed a wonderful model—
not because its assumptions are remotely plausible but because it helps us think more
clearly about both the nature of economic efficiency and the prospects for achieving
efficiency under a market system. [emphasis added and excerpted for brevity, see [Kru]
for the complete quote]

This is not to say that newly proposed models cannot be tested or evaluated. A good model
shows promise even if initially flawed and should eventually lead to new insights and predictions
that were not explicitly built into the model.

A good model first unifies, then explains and ultimately predicts. Ideally it begins by reducing
the facts to basic, self-evident principles which are so obviously true that they verge between the
trivial, the overly simplified and the circular.6 Yet they readily and accurately explain the facts in
ways that were not otherwise possible.

4Consider for example the introduction of the notion of NP-completeness by S. Cook and the followup paper by
Richard Karp the year after, discussing this idea further.

5Another variant, also by G. Box, is “remember that all models are wrong; the practical question is how wrong
do they have to be to not be useful.”

6For example, consider Newton’s 1st Law: “Objects remain in motion until they are affected by an external force”.
What is an external force? something that affects the motion of an object.
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Observe that the effectiveness of a model is another important consideration. Indeed, we readily
trade accuracy for effectiveness in our choice of models. We illustrated this fact with the error
observed during the worst case analysis of the sorting algorithms in the previous section. In a more
recent example we see the same tradeoff being made in the development of non-uniform access-cost
memory models:

A number of models have been proposed [...] The two most widely adopted ones are the
input/output model (or I/O model) and the cache-oblivious model. Their success is due
to the balance they provide between simplicity, in order to allow the design and analysis
of sophisticated algorithms and accuracy in predicting the performance of algorithms
on real memory hierarchies. (excerpted from [PAZ09])

It is easy to underestimate the amount of precision that we routinely trade in exchange for effec-
tiveness. In this sense almost all probabilistic models are a vast tradeoff between accuracy and
effectiveness. For example, given an unlimited budget a doctor might be able to determine if a
patient will or will not develop lung cancer. Instead we settle for a probabilistic statement such as
“30% of former smokers do”. In all three cases discussed above, even though we might be able to
produce much better estimates it would be at a disproportionately higher cost and hence not done.

7 Conclusions

In this paper, we highlighted the gap between theoretical and experimental results for some online
problems and possible ways to close this gap. We observed that standard measure for analysis of
online algorithms, i.e., competitive analysis, leads to results that are not consistent with practice
for paging. Then we described reasons for the shortcomings of competitive analysis and described
several new models for analysis of online algorithms that do not have these drawbacks. Bijective
analysis and Average analysis directly compare two online algorithms on all sequences of the same
length and lead to satisfactory results when applied to paging. They avoid two shortcomings of
competitive analysis: they do not compare online algorithms to an optimal offline algorithm and
they do not focus on a single worst case sequence. We then proposed a more effective measure,
namely adaptive analysis. We discussed various choices made by established models as well as
possible alternatives and contrast it with those made in probability theory. Lastly we discussed
how to go about evaluating a newly introduced model or measure.
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A Applications of New Models

We observed that applying the adaptive and bijective models to the paging problem leads to
promising results. In this appendix we show that they can be applied to other online problems.

A.1 List Update

List update is a fundamental problem in the context of online computation. Consider an unsorted
list of m items. The input to the algorithm is a sequence of n requests that should be served in an
online manner. Let A be an arbitrary online list update algorithm. To serve a request to an item
x, A should linearly search the list until it finds x. If x is the ith item in the list, A incurs cost i to
access x. Immediately after accessing x, A can move x to any position closer to the front of the list
at no extra cost. This is called a free exchange. Also A can exchange any two consecutive items
at a cost of 1. These are called paid exchanges. An efficient algorithm should use free and paid
exchanges so as to minimize the overall cost of serving a sequence. Three well-known deterministic
online algorithms are Move-To-Front (MTF), Transpose, and Frequency-Count (FC). MTF moves
the requested item to the front of the list whereas Transpose exchanges the requested item with
the item that immediately precedes it. FC maintains a frequency count for each item, updates
this count after each access, and makes necessary moves so that the list always contains items in
non-increasing order of frequency count. Sleator and Tarjan showed that MTF is 2-competitive,
while Transpose and FC do not have constant competitive ratios [ST85a].

The competitive analysis of list update algorithms does not have as many drawbacks as paging
and at first it gives promising results: list update algorithms with better competitive ratio tend to
have better performance in practice. However, in terms of separation list update algorithms have
similar drawbacks to paging: while algorithms can generally be more easily distinguished than
in the paging case, the experimental study of list update algorithms by Bachrach and El-Yaniv
suggests that the relative performance hierarchy as computed by the competitive ratio does not
correspond to the observed relative performance of the algorithms in practice [BEY97].

Like paging, “real-life” input sequences for list update problem usually exhibit locality of refer-
ence. As stated before, for the paging problem, several models for capturing locality of reference
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Algorithm Lower Bound Upper Bound

General λ̂ m · λ̂
MTF λ̂ λ̂

Transpose m·λ̂
2 m · λ̂

FC ≈ m·λ̂
2 m · λ̂

TS ≈ 2λ̂ m · λ̂
Bit ≈ 3

2 λ̂ m · λ̂

Table 5: The results for list update.

have been proposed [Tor98, AFG05, Bec04]. Likewise, many researchers have pointed out that input
sequences of list update algorithms in practice show locality of reference [HH85, Sch98, BEY98] and
actually online list update algorithms try to take advantage of this property [HH85, RWS94]. Hes-
ter and Hirschberg [HH85] posed the question of providing a good definition of locality of accesses
for the list update problem as an open problem. In addition, it has been commonly assumed, based
on intuition and experimental evidence, that MTF is the best algorithm on sequences with high
locality of reference, e.g., Hester and Hirschberg [HH85] claim: “move-to-front performs best when
the list has a high degree of locality”. However, to the best of our knowledge, locality of reference
for list update algorithms had not been formally studied, until recently [ADLO08, AL08, DLO07].

In [ADLO08], Angelopoulos, Dorrigiv and López-Ortiz extended the concave analysis model
[AFG05] to the list update problem. The validity of the extended model was supported by experi-
mental results obtained on the Calgary Corpus, which is frequently used as a standard benchmark
for evaluating the performance of compression algorithms (and by extension list update algorithms,
e.g. [BEY97]). They combined Average analysis with concave analysis and proved that under this
model MTF is never outperformed, while it always outperforms any other online list update algo-
rithm. Thus, [ADLO08] resolved the open problem posed by Hester and Hirschberg [HH85].

Dorrigiv et al. [DELO09] studied the parameterized complexity of list update algorithms in
terms of locality of reference. Here we briefly present their results. We define the non-locality of
sequences for list update in an analogous way to the corresponding definition for paging (Definition
1) . The only differences are:

1. We do not normalize the non-locality by the length of the sequence, i.e., λ̂(σ) =
∑

1≤i≤|σ| dσ[i].

2. If σ[i] is the first access to an item we assign the value m to dσ[i].7

The results are summarized in Table 5. According to these results, MTF has the best per-
formance among well known list update algorithms. TS has performance at least twice as bad
as MTF. The performance of Transpose and FC is at least m/2 times worse than MTF. The
performance of Bit is worse than MTF, while its competitive ratio is better. Experimental results
of [BEY97] show that MTF has better performance than Bit in practice, which favors our result
over competitive analysis.

7As for paging, asymptotically, and assuming the number of requests is much larger than m, any constant can
replace m for the dσ[i] of the first accesses.
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A.2 Online Motion Planning

Online motion planning has been an active area of research within theoretical computer science
for well over a decade. The applications are varied ranging from robotics, to search-and-rescue
operations in the high seas [RS71, LOS01b] as well as in land, such as in an avalanche [BHH+02] or
an office space [HIKK01, DHS95, DHS95, Ick94], to scheduling of heuristic algorithms for solvers
searching an abstract solution space for a specific solution [KMSY94, KRT93, LOS02, ALOH08,
LOAH06]. A large number of different search and motion scenarios have been considered and
theoretically optimal solutions have been derived for many of them. Yet, few if any of those
solutions have led to changes in practical algorithms. As in the case of paging, we first contrast
the assumptions of the theoretical model with those in practice.

The theoretical model has traditionally used the competitive ratio framework to quantify the
performance on online search algorithms. In contrast, robotics researchers consider simply distance
traversed to destination, perhaps augmented with the number of scan operations along the way.
The competitive ratio naturally implies then a worst case metric, while systems people care about
the everyday metric. For example, a vacuuming robot does not need to be able to efficiently vacuum
mazes. It needs, on the other hand, the ability to efficiently vacuum a living room. The model
of motion assumed in theory is often continuous curved motion paths, with perfect motion, while
in practice piecewise linear motions are often preferable and there is a consistent, large-degree
of forward and rotational error present in most cases. Theoretical models often assume perfect
scans and other such detection mechanisms, even though in practice most scans are low resolution
(although rapidly increasing in quality). In other settings, such as robotic cars driving across an
unpaved road, the degree of inaccuracy is high, and is likely to remain so for the foreseeable future
given the angles of resolution and distances of travel. Lastly, the competitive ratio assumes scenes
built with the purpose of foiling the robot in its task. For office and warehouse applications this
is once again an unwarranted and overly pessimistic assumption leading to unreasonable motion
planning algorithms in practice. While certain applications such as guarding and securing a polygon
against intruders should be studied under adversarial models, others such as search and rescue and
warehouse applications should assume friendly users which have an interest in being found and/or
making the environment as amenable as possible, within the circumstances, for the robot to succeed.
So in the best case we have an actively cooperating target, such as in search and rescue, in which
case the proper framework for analysis is the cooperative ratio, or as in the case of a robot navigating
a warehouse or office environment, moving obstacles should not be assumed to behave adversarially,
and an adaptive analysis is more appropriate.

In this case, the challenge is to define a reasonable adaptive measure that reflects realistic scenes.
While in the case of paging locality of reference is a natural adaptive measure, it is not quite so
obvious what characteristics describe a realistic scene as opposed to a contrived one. In general
“natural” scenes have predominantly orthogonal angles along the walls, which have bounded aspect
ratio features. In turn obstacles are smaller, with more general angles and often of unbounded aspect
ratio due to the discretization effects of a non rectilinear object. Lastly there is an interesting effect
in that there is a certain expectation that the path followed by the robot be predictable and hence
wandering is considered an undesirable effect. Practitioners seem to prefer paths with a few sharp
moves.

We have initiated the study of certain primitives, which are widely used within the theoretical
motion planning community, including looking around the corner and exploring a line (i.e. two semi-
infinite rays) in search for a target identifiable upon contact. In the latter an adaptive measure leads
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to a more “natural” search path even though surprisingly the actual distance traversed is larger
both in the worst and expected case [DLO08]. However it remains an open problem to determine
a reasonable and effective adaptive measure for the exploration of all polygonal regions.
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