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Abstract

It is shown that the Element Distinctness Problem (n numbers of klogn bits each,
k > 2) on a one-tape Turing machine takes time proportional to almost the square
of the size of the input. The proof holds for both deterministic and nondeterministic
Turing machines. This proof improves the best known lower bound of Q(n?/logn)
for deterministic Turing machines and of Q(nlog®n) [4] for nondeterministic Turing
machines to Q(n?logn). The lower bound is generalized to the n-Element Distinctness
problem; on inputs of size N = nm, with 1 < n < N/logN, it is shown to take time
Q(maz{Nn, Nm}). The proof makes use of Kolmogorov Complexity.
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1 Introduction

The study of lower bounds for any computational model is one of the most difficult problems
in Computational Complexity. Recent developments in Kolmogorov Complexity have proven
to be a useful tool for obtaining new bounds in Turing machines [8, 1, 7].

Among the problems for which no tight upper and lower bounds are known, we have
ELEMENT DISTINCTNESS (ED) on a single tape Turing machine. The importance of this
problem is partially derived from its close relationship to sorting. Given that in most other
computational models the complexity of sorting and ED match, it is then a natural question
whether this holds in more restricted models of computation.

This paper presents a Q(n’logn) bound for the Element Distinctness problem on n
numbers of O(log n) bits each on a one-tape Turing machine. This proof improves on the



previously known lower bounds for ED, which is inherited from a slightly more powerful com-
putational model [4]. The proof of this lower bound uses crossing sequences and Kolmogorov
Complexity [7].

A natural generalization of ED is the n-Element Distinctness problem, in which n-numbers
of m-bits each are to be distinguished from each other. As a consequence of the newly
proven lower bound, we can prove that the n-Element Distinctness problem takes time
Q(max{Nn, Nm}) where N = nm is the input size.

These proofs hold for deterministic and nondeterministic Turing machines. Since the
complement of Element Distinctness is in NTIME(nlog®n) time, this results separates
NTIME(N?/log N) from its complement for single-tape machines.

2 Preliminaries

Definition 1 A single-tape Turing machine is a standard TM (as defined, say in [3]), con-
sisting of a finite control and a single two-way infinite tape with one read/write head, where
wnput, intermediate computations and output are to be written. Whatever is left in the tape
after the TM halts 1s said to be the output. Furthermore, the machine may halt in an ac-
cepting or rejecting state [3].

Definition 2 A crossing sequence associated with a cell boundary is the sequence of states
at which the finite control was when the head crossed the boundary between the cells.

Notice that it is possible to modify any TM that computes a decision problem as to
make it leave a unique identification of its decision (accept/reject) on all nonnull crossing
sequences with at most a constant factor penalty in computing time. We assume our TM’s
are so modified.

Moreover, the sum of the length of all (or some of) the crossing sequences corresponding
to the computation on a particular input give a lower bound on the time taken by the Turing
machine to accept or reject such an input string.

As it is usual for decision problems on nondeterministic TMs, the time taken on input of
length n is the longest computation over all inputs of this size.

Definition 3 [7]/ Given an enumeration of Turing machines, the Kolmogorov Complezity
K (=) of a binary string © is the shortest pair (M, u) such that M represents a Turing machine
which on wnput w computes  as output.

Definition 4 A string @ is called incompressible if K(z) > |z| + ¢, where ¢ is a fir constant.

Lemma 1 For every n there exist Q(2") incompressible strings of length n.



3 Element Distinctness

Definition 5 The input for an instance of ELEMENT DISTINCTNESS on a single tape
Turing machine s a list of n numbers encoded in binary notation, with each number being
of length klogmn for fited k > 2. The TM halts in an accepting state if all the numbers
are distinct (corresponding to a YES answer) and halts in a rejecting state (or NO answer)
otherwise.

Notice that the size of the input is N = knlogn. In this notation, quadratic time on the
input size means O(N?) = O(n?log® n).

It is not hard to show that sorting on the single tape Turing machine takes ©(N?) steps
on the Turing machine for » numbers of k log n bits each (k£ > 2). This brings up the question
of whether the comparison-model-equivalent decision problem ELEMENT DISTINCTNESS has
quadratic complexity on the single-tape Turing machine.

While it has been shown that on the comparison model ED and sorting have the same
time complexity, this argument does not carry over to the single tape TM since it may be
possible that sorting requires extra data movements to write its output which may not be
needed for the Element Distinctness decision problem. The following two theorems shed
light on this question.

Theorem 1 Let N be the size of the input. Then ELEMENT DISTINCTNESS takes time
O(N?) on a single tape deterministic TM.

PRrROOF (sketch). An all-pairs comparison gives the desired upper bound. a

Theorem 2 Let N be the size of the input. Then ELEMENT DISTINCTNESS takes time
Q(n?logn) = Q(N?/log N) in the worst case on any single-tape Turing machine.

PRrROOF. In this proof we assume k = 2. A simple padding argument extends this proof
for any constant k. We also assume that n is a multiple of the form 6k.

We construct a class of input strings 7 for which any Turing Machine accepting ED takes
time Q(N?/log N).

Each input [ in 7 is such that I = XY Z and |X| = |Y| = |Z|. That is, each of X, Y,
and Z contains n/3 numbers.

Let X = zo...%(n-1)3, ¥ = Yo.--Ymn-1)3 and Z = Zzp...Z2(n_1)/3 be the n numbers
forming the input sequence. The first (leftmost) logn bits of each y; are set to 0 and the
remaining log n bits of y; are set to the binary representation of :. The first bit of z; and z;
is set to 1, for ¢ = 0...n — 1. This ensures that no z; or z is equal to y; (V¢,7) and that all
the y;’s are pairwise distinct.

Given this arrangement, the answer to a particular instance of the Element Distinctness
problem is NO if and only if z; = z; for some ¢,j or z; = z; or 2z, = z; for 1 # j.



The remaining bits of the z;’s and z;’s are chosen so that when concatenated they form
an incompressible string in the sense of Definition 4. For the purposes of this proof, the
selection of the incompressible bits of X and Z are such that no two z;’s and/or z,’s are
equal. That is, the answer to the decision problem on input XY Z is YEs.

The class 7 contains exactly those strings that satisfy the above criteria.

Let C denote the crossing sequence for I at some cell boundary in the Y section. Also
consider all the strings 77,75 ... of the same length as X such that T;YZ € 7T but T; differs
from X in at least one bit.

Now, given any such string T}, it is possible to replace X by T; and verify if the compu-
tation of the TM on input 7T;Y Z has the same crossing sequence C as I. Let £ be the set of
strings T; that do have the same crossing sequence as X. Analogously, let R be the set of
those T; such that the input XYT; has C as crossing sequence as well.

The sets £ and R are recursively enumerable, which implies that X (and Z) can be
reconstructed from the crossing sequence C and its index in the lexicographical numbering
of L (R).

Since X is an incompressible string, the length of any description of it has to be of length
(n/3)(2log n — 1) — ¢, in particular, |C| + |index(X, L)| > (n/3)(2logn — 1).

Lemma 2 Given an accepting crossing sequence C, the smallest of the sets L and R has at
most (n?/4)!/ (n?/4 —n/3)! elements.

Corollary 1 The indez of X or Z in L or R is log( (n?/4)! / (n?/4 — n/3)!) bits long.

Observation 1 Note that [[7o '(n?/4 — i) < (n?/4)"® and thus log( (n?/4)!/(n?/4 —
n/3)!) <(2/3)n(logn —1).

Clearly, once Lemma 2 has been proved, Corollary 1 and Observation 1 imply that
log |C| > n/3 in order for X or Z to be incompressible. And since C is any crossing sequence
in one of the 2nlogn/3 cell boundaries of Y, the total time taken by the TM is Q(n?logn)
as required.

PrOOF (Lemma 2). From the definition of £ and R it follows that for any U € L and
V € R the string UY'V also has C as crossing sequence. Since the TM accepts the string I,
the crossing sequence uniquely identifies such decision. That is, for all U and V as above,
the string UY'V is also accepted. But UYV can only be accepted if no two numbers in U
and V are the same for all U and V.

If no two numbers are the same in U and V this implies that the numbers (elements) ap-
pearing in the strings of U and those appearing in V form two disjoint subsets of {0,...,n%/2—
1}. The smaller of the two subsets formed by U and V has then at most n?/4 elements.

Out of a set of at most n?/4 numbers we can construct at most (r?/4)!/(n*/4 — n/3)!
different strings U or V, which implies that the smallest of £ or R is at most this large, as
stated in Lemma 2.

This concludes the proof of Lemma 2 and of Theorem 2. a
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Notice that to prove this lower bound we construct a set of strings which are hard cases for
any Element Distinctness algorithm. I.e. the set of strings constructed requires Q(n?logn)
time. We conjecture that the set proposed requires indeed time @(n?log’n). There are
sets of simpler construction which require time ©(n*logn). The proof for such set then
uses a suitably adapted version of Lemma 2. For the sake of generality and with potential
extensions in mind we have chosen to present the proof based on the slightly more complex
set of strings.

Definition 6 For a given N, the input for the n-ELEMENT DISTINCTNESS problem in a
single tape Turing machine s a list of n numbers encoded in binary notation, with each
number being of length m where m = N/n. The TM halts in an accepting state if all the
numbers are distinct (corresponding to a YES answer) and halts in a rejecting state (or NO
answer) otherwise.

Notice that the 2-Element Distinctness problem is computationally equivalent to the
complement of PALINDROMES. The following theorem, which was proven by Hennie [2], gave
the first quadratic lower bound for a TM.

Theorem 3 PALINDROMES recognition takes time O(N?) in a single-tape Turing machine.

It is easy to see that the proof techniques used by Hennie and those of Theorem 2 in this
work carry over to any n in the n-Element Distinctness problem.

Theorem 4 The n-Element Distinctness problem takes time Q(max{Nn, Nm}) for1 <n <
N/logN and N = nm.

ProOF. First, let I = Yz be an input string to the n-Element Distinctness problem
such that z and z are numbers (elements) m bits long with the first bit set to 1 and Y is a
string of n — 2 distinct numbers (elements) each prefixed by 0.

Note that I is then in ED if and only if zy is not in PALINDROMES. Then by Hennie’s
theorem the length of the crossing sequences in the Y part is O(m). Since the string Y is of
length (n — 2)m = O(N), we have that this instance takes time Q(Nm).

Now consider an input string I = XY Z as in theorem 2, where |X| = |Y| = |Z]|, and
X and Z are incompressible strings of size mn/3. It then follows that for m > logN the
smallest of the corresponding sets £ and R has (2™ 1)!/(2™"* — n/3)! elements. Thus the
length of the crossing sequence is C = mn/3 —nm/3 —n/3 = O(n), and since Y is of size
nm/3 = O(N) this implies a lower bound of Q(Nn).

Finally it follows trivially that the largest of the two bounds is also a lower bound, which
concludes the proof of Theorem 4. a
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