
New Lower Bounds for Element Distinctnesson a One-tape Turing MachineAlejandro L�opez-OrtizDepartment of Computer ScienceUniversity of WaterlooWaterloo, Ont. N2L 3G1 Canadae-mail: alopez-o@maytag.UWaterloo.caAbstractIt is shown that the Element Distinctness Problem (n numbers of k logn bits each,k � 2) on a one-tape Turing machine takes time proportional to almost the squareof the size of the input. The proof holds for both deterministic and nondeterministicTuring machines. This proof improves the best known lower bound of 
(n2= logn)for deterministic Turing machines and of 
(n log2 n) [4] for nondeterministic Turingmachines to 
(n2 logn). The lower bound is generalized to the n-Element Distinctnessproblem; on inputs of size N = nm, with 1 � n < N= logN , it is shown to take time
(maxfNn;Nmg). The proof makes use of Kolmogorov Complexity.Keywords: Theory of Computation, Kolmogorov Complexity1 IntroductionThe study of lower bounds for any computational model is one of the most di�cult problemsin Computational Complexity. Recent developments in Kolmogorov Complexity have provento be a useful tool for obtaining new bounds in Turing machines [8, 1, 7].Among the problems for which no tight upper and lower bounds are known, we haveElement Distinctness (ed) on a single tape Turing machine. The importance of thisproblem is partially derived from its close relationship to sorting. Given that in most othercomputational models the complexity of sorting and ed match, it is then a natural questionwhether this holds in more restricted models of computation.This paper presents a 
(n2 log n) bound for the Element Distinctness problem on nnumbers of O(log n) bits each on a one-tape Turing machine. This proof improves on the1



previously known lower bounds for ed, which is inherited from a slightly more powerful com-putational model [4]. The proof of this lower bound uses crossing sequences and KolmogorovComplexity [7].A natural generalization of ed is the n-Element Distinctness problem, in which n-numbersof m-bits each are to be distinguished from each other. As a consequence of the newlyproven lower bound, we can prove that the n-Element Distinctness problem takes time
(maxfNn;Nmg) where N = nm is the input size.These proofs hold for deterministic and nondeterministic Turing machines. Since thecomplement of Element Distinctness is in NTIME(n log2 n) time, this results separatesNTIME(N2= logN) from its complement for single-tape machines.2 PreliminariesDe�nition 1 A single-tape Turing machine is a standard TM (as de�ned, say in [3]), con-sisting of a �nite control and a single two-way in�nite tape with one read/write head, whereinput, intermediate computations and output are to be written. Whatever is left in the tapeafter the TM halts is said to be the output. Furthermore, the machine may halt in an ac-cepting or rejecting state [3].De�nition 2 A crossing sequence associated with a cell boundary is the sequence of statesat which the �nite control was when the head crossed the boundary between the cells.Notice that it is possible to modify any TM that computes a decision problem as tomake it leave a unique identi�cation of its decision (accept/reject) on all nonnull crossingsequences with at most a constant factor penalty in computing time. We assume our TM'sare so modi�ed.Moreover, the sum of the length of all (or some of) the crossing sequences correspondingto the computation on a particular input give a lower bound on the time taken by the Turingmachine to accept or reject such an input string.As it is usual for decision problems on nondeterministic TMs, the time taken on input oflength n is the longest computation over all inputs of this size.De�nition 3 [7] Given an enumeration of Turing machines, the Kolmogorov ComplexityK(x) of a binary string x is the shortest pair (M;u) such thatM represents a Turing machinewhich on input u computes x as output.De�nition 4 A string x is called incompressible if K(x) � jxj+ c, where c is a �x constant.Lemma 1 For every n there exist 
(2n) incompressible strings of length n.2



3 Element DistinctnessDe�nition 5 The input for an instance of Element Distinctness on a single tapeTuring machine is a list of n numbers encoded in binary notation, with each number beingof length k log n for �xed k � 2. The TM halts in an accepting state if all the numbersare distinct (corresponding to a yes answer) and halts in a rejecting state (or no answer)otherwise.Notice that the size of the input is N = kn log n. In this notation, quadratic time on theinput size means O(N2) = O(n2 log2 n).It is not hard to show that sorting on the single tape Turing machine takes �(N2) stepson the Turing machine for n numbers of k log n bits each (k > 2). This brings up the questionof whether the comparison-model-equivalent decision problem Element Distinctness hasquadratic complexity on the single-tape Turing machine.While it has been shown that on the comparison model ed and sorting have the sametime complexity, this argument does not carry over to the single tape TM since it may bepossible that sorting requires extra data movements to write its output which may not beneeded for the Element Distinctness decision problem. The following two theorems shedlight on this question.Theorem 1 Let N be the size of the input. Then Element Distinctness takes timeO(N2) on a single tape deterministic TM.Proof (sketch). An all-pairs comparison gives the desired upper bound. 2Theorem 2 Let N be the size of the input. Then Element Distinctness takes time
(n2 log n) = 
(N2= logN) in the worst case on any single-tape Turing machine.Proof. In this proof we assume k = 2. A simple padding argument extends this prooffor any constant k. We also assume that n is a multiple of the form 6k.We construct a class of input strings I for which any Turing Machine accepting ed takestime 
(N2= logN).Each input I in I is such that I = XY Z and jXj = jY j = jZj. That is, each of X, Y ,and Z contains n=3 numbers.Let X = x0 : : : x(n�1)=3, Y = y0 : : : y(n�1)=3 and Z = z0 : : : z(n�1)=3 be the n numbersforming the input sequence. The �rst (leftmost) log n bits of each yi are set to 0 and theremaining log n bits of yi are set to the binary representation of i. The �rst bit of xi and ziis set to 1, for i = 0 : : : n� 1. This ensures that no xi or zi is equal to yj (8i; j) and that allthe yi's are pairwise distinct.Given this arrangement, the answer to a particular instance of the Element Distinctnessproblem is no if and only if xi = zj for some i; j or xi = xj or zi = zj for i 6= j.3



The remaining bits of the xi's and zj's are chosen so that when concatenated they forman incompressible string in the sense of De�nition 4. For the purposes of this proof, theselection of the incompressible bits of X and Z are such that no two xi's and/or zj's areequal. That is, the answer to the decision problem on input XY Z is yes.The class I contains exactly those strings that satisfy the above criteria.Let C denote the crossing sequence for I at some cell boundary in the Y section. Alsoconsider all the strings T1; T2 : : : of the same length as X such that TiY Z 2 I but Ti di�ersfrom X in at least one bit.Now, given any such string Ti, it is possible to replace X by Ti and verify if the compu-tation of the TM on input TiY Z has the same crossing sequence C as I. Let L be the set ofstrings Ti that do have the same crossing sequence as X. Analogously, let R be the set ofthose Ti such that the input XY Ti has C as crossing sequence as well.The sets L and R are recursively enumerable, which implies that X (and Z) can bereconstructed from the crossing sequence C and its index in the lexicographical numberingof L (R).Since X is an incompressible string, the length of any description of it has to be of length(n=3)(2 log n� 1) � c, in particular, jCj+ jindex(X;L)j � (n=3)(2 log n � 1).Lemma 2 Given an accepting crossing sequence C, the smallest of the sets L and R has atmost (n2=4)! = (n2=4 � n=3)! elements.Corollary 1 The index of X or Z in L or R is log( (n2=4)! = (n2=4 � n=3)! ) bits long.Observation 1 Note that Qn=3�1i=0 (n2=4 � i) � (n2=4)n=3 and thus log( (n2=4)! = (n2=4 �n=3)! ) � (2=3)n(log n� 1):Clearly, once Lemma 2 has been proved, Corollary 1 and Observation 1 imply thatlog jCj � n=3 in order for X or Z to be incompressible. And since C is any crossing sequencein one of the 2n log n=3 cell boundaries of Y , the total time taken by the TM is 
(n2 log n)as required.Proof (Lemma 2). From the de�nition of L and R it follows that for any U 2 L andV 2 R the string UY V also has C as crossing sequence. Since the TM accepts the string I,the crossing sequence uniquely identi�es such decision. That is, for all U and V as above,the string UY V is also accepted. But UY V can only be accepted if no two numbers in Uand V are the same for all U and V .If no two numbers are the same in U and V this implies that the numbers (elements) ap-pearing in the strings of U and those appearing in V form two disjoint subsets of f0; : : : ; n2=2�1g. The smaller of the two subsets formed by U and V has then at most n2=4 elements.Out of a set of at most n2=4 numbers we can construct at most (n2=4)!=(n2=4 � n=3)!di�erent strings U or V , which implies that the smallest of L or R is at most this large, asstated in Lemma 2.This concludes the proof of Lemma 2 and of Theorem 2. 24



Notice that to prove this lower bound we construct a set of strings which are hard cases forany Element Distinctness algorithm. I.e. the set of strings constructed requires 
(n2 log n)time. We conjecture that the set proposed requires indeed time �(n2 log2 n). There aresets of simpler construction which require time �(n2 log n). The proof for such set thenuses a suitably adapted version of Lemma 2. For the sake of generality and with potentialextensions in mind we have chosen to present the proof based on the slightly more complexset of strings.De�nition 6 For a given N , the input for the n-Element Distinctness problem in asingle tape Turing machine is a list of n numbers encoded in binary notation, with eachnumber being of length m where m = N=n. The TM halts in an accepting state if all thenumbers are distinct (corresponding to a yes answer) and halts in a rejecting state (or noanswer) otherwise.Notice that the 2-Element Distinctness problem is computationally equivalent to thecomplement of palindromes. The following theorem, which was proven by Hennie [2], gavethe �rst quadratic lower bound for a TM.Theorem 3 Palindromes recognition takes time �(N2) in a single-tape Turing machine.It is easy to see that the proof techniques used by Hennie and those of Theorem 2 in thiswork carry over to any n in the n-Element Distinctness problem.Theorem 4 The n-Element Distinctness problem takes time 
(maxfNn;Nmg) for 1 � n <N=logN and N = nm.Proof. First, let I = xY z be an input string to the n-Element Distinctness problemsuch that x and z are numbers (elements) m bits long with the �rst bit set to 1 and Y is astring of n� 2 distinct numbers (elements) each pre�xed by 0.Note that I is then in ED if and only if xy is not in palindromes. Then by Hennie'stheorem the length of the crossing sequences in the Y part is O(m). Since the string Y is oflength (n� 2)m = O(N), we have that this instance takes time 
(Nm).Now consider an input string I = XY Z as in theorem 2, where jXj = jY j = jZj, andX and Z are incompressible strings of size mn=3. It then follows that for m > logN thesmallest of the corresponding sets L and R has (2m�1)!=(2m�1 � n=3)! elements. Thus thelength of the crossing sequence is C = mn=3 � nm=3 � n=3 = O(n), and since Y is of sizenm=3 = �(N) this implies a lower bound of 
(Nn).Finally it follows trivially that the largest of the two bounds is also a lower bound, whichconcludes the proof of Theorem 4. 24 AcknowledgmentsI would like to thank Prabhakar Ragde, Ming Li, and Paul Vitanyi for helpful discussionson the content and comments on the presentation of this paper.5
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