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Abstract. We consider the problem of exploring m concurrent rays us-
ing a single searcher. The rays are disjoint with the exception of a single
common point, and in each ray a potential target may be located. The
objective is to design efficient search strategies for locating t targets
(with t ≤ m). This setting generalizes the extensively studied ray search
(or star search) problem, in which the searcher seeks a single target. In
addition, it is motivated by applications such as the interleaved execu-
tion of heuristic algorithms, when it is required that a certain number of
heuristics have to successfully terminate.
We apply two different measures for evaluating the efficiency of the search
strategy. The first measure is the standard metric in the context of ray-
search problems, and compares the total search cost to the cost of an
optimal algorithm that has full information on the targets. We present
a strategy that achieves optimal competitive ratio under this metric.
The second measure is based on a weakening of the optimal cost as
proposed by Kirkpatrick [ESA 2009] and McGregor et al. [ESA 2009].
For this model, we present an asymptotically optimal strategy which is
within a multiplicative factor of Θ(log(m − t)) from the optimal search
cost. Interestingly, our strategy incorporates three fundamental search
paradigms, namely uniform search, doubling and hyperbolic dovetailing.
Moreover, for both measures, our results demonstrate that the problem
of locating t targets in m rays is essentially as difficult as the problem of
locating a single target in m− (t− 1) rays.

1 Introduction

Searching for a target is a common task in everyday life, and, unsurprisingly, an
important computational problem with numerous applications in various con-
texts. This class of problems involves a searcher that must locate a target which
lies at some unknown point in the environment. The natural objective is to de-
vise efficient strategies that allow the searcher to locate the target as quickly
as possible. One of the earliest examples of such problems is the linear search
problem, proposed by Bellman [4] and independently by Beck [2]. Here, the en-
vironment consists of an infinite line, with the searcher initially at some point
designated as the origin, and the target located at an unknown point on the line,
at distance d from the origin. The objective is to minimize the worst-case ratio
of the distance traveled by the searcher over d.



A natural generalization of the linear-search problem is the star search or
ray search problem, which is also known, informally, as the m-lane cow-path
problem. In this setting, we are given a set of m semi-infinite rays (lanes), all
with a common origin O, and a searcher (cow) initially placed at the origin O.
The target (pasture) is located at distance d from O, however the searcher is
oblivious of the ray on which the target lies. A strategy is an algorithm that
specifies how the searcher traverses the rays, and the objective is to minimize
the worst-case distance traveled, again normalized by the optimal distance d.

This deceivably simple problem has important applications to robot naviga-
tion, artificial intelligence, and operations research (see e.g. [5, 12, 16, 19, 1, 10, 6,
11] for some illustrative examples). This is due to the fact that it can be applied
in settings in which we seek efficient allocation of resources to multiple tasks.
For instance, consider the setting in which m different randomized heuristics (of
the Las Vegas type) can be employed to solve a problem. However, we do not
know in advance which of the heuristics will terminate successfully on a given
input. How should we distribute the processing time to the different heuristics
(assuming that we can interleave the execution of the heuristics)? This is an ex-
ample of a setting that is often encountered in the construction of (deterministic
or randomized) hybrid algorithms [12]. A different application is the design of
efficient interruptible algorithms, namely algorithms that can return meaning-
ful solutions even if interrupted during their execution. This is a fundamental
problem in artificial intelligence, with surprising connections to the ray-search
problem [5].

To our knowledge, with the exception of [18], all previous work on ray-search
(and related) problems has focused on the case in which the searcher must lo-
cate a single target. However, a natural generalization of the problem involves
the setting in which multiple targets may exist, and the searcher’s objective is
to locate t different targets. For instance, consider the setting in which a hy-
brid algorithm can execute m different heuristics, as described earlier. It may
be the case that we require that not just a single, but rather several heuristic
algorithms successfully terminate and return a solution. This is often desired in
situations in which we do not have strong guarantees on the quality of the so-
lution that each heuristic returns. A typical example is SAT-solvers that invoke
such hybrid algorithms (also known as algorithm portfolios [9]): here, we do not
know in advance which heuristic is the most appropriate for any given input.
The objective of this paper is thus to initiate the study of ray-search problems
in the setting where the strategy must guarantee that a certain number of tar-
gets are located as efficiently as possible. We also expect that the generalization
to multiple targets will prove an interesting topic of study in other contexts of
search and exploration problems, which so far have focused almost exclusively
on the case of a single target.

Models and performance measures Throughout the paper we consider the setting
in which up to m potential targets are placed in the m rays, with at most one
target per ray. More specifically, we will denote by λ1 ≥ . . . ≥ λm the distances
of the targets, in non-increasing order. We allow the possibility that λi =∞ for

2



some values i ∈ [1,m]. In other words, there may be rays with no target located
on them. We will denote by Λ = {λ1, . . . , λm} the multiset of all target distances,
and we make the standard assumption λm ≥ 1. Note that without this assump-
tion, i.e., if the distances can become arbitrarily small, no search algorithm can
be competitive (see, e.g., [6]). We seek efficient strategies for locating t ≤ m
targets, where we assume that t is provided as input to the algorithm, and is
thus known. We emphasize that the searcher can move from ray to ray only by
passing over the origin, and that the search terminates when the t-th target is
reached.

In order to evaluate the performance of a strategy, one needs to compare the
search cost incurred by the algorithm (that has no information on the set Λ)
to the cost of an ideal algorithm that has a certain amount of information con-
cerning the targets. The worst-case ratio of these costs gives rise to the so-called
competitive ratio, since search problems are often considered online problems in
the literature of search and exploration.

We distinguish between two concrete models. First, we consider the classical
model in which the ideal algorithm has complete information on the placement
of targets, that is, the algorithm knows not only Λ, but also the specific ray
on which the target at distance λi can be found. In this model, the cost of the
optimal algorithm is easy to evaluate, and equals 2

∑m
i=m−t+2 λi + λm−t+1. In

other words, the optimal strategy locates the t targets closest to the origin (the
factor of 2 is due to the searcher returning back to the origin). On the other hand,
more recently, a different approach in defining a less powerful (and in a sense,
more realistic) ideal algorithm was proposed independently by Kirkpatrick [14]
and McGregor, Onak and Panigrahy [18]. In their setting, the ideal algorithm has
only partial information about the locations of the targets. More specifically, we
allow the ideal algorithm knowledge of the set Λ, but not of the exact mapping
of distances λi to the rays. The implication is that the ideal algorithm itself will
be associated with an intrinsic search cost, which is the worst-case cost of a
search strategy that has knowledge of Λ. Following the notation of Kirkpatrick,
we will denote by ξt(Λ) the intrinsic (i.e., “optimal”) cost for locating t targets.
We shall omit the subscript “t”, whenever it is clear from the context.

Contribution of this paper In this work we provide optimal strategies for locat-
ing t ≤ m targets in the m-ray setting. In Section 2 we focus on the complete
information model for the ideal algorithm. We show that the worst-case compet-
itive ratio for locating t targets is the same as the worst-case competitive ratio
for locating a single target in m− (t− 1) rays, and we obtain a tight analytical
expression for the optimal competitive ratio (c.f. Theorem 1).

Section 3 addresses the problem under the partial information model, and
contains the main results of this work. First, we provide an analytic expres-
sion of the intrinsic cost, given the set of target distances Λ (c.f. Theorem 2).
Next, we present a strategy based on combination of doubling and hyperbolic
search that yields a Θ(logm)-competitive algorithm (c.f. Theorem 3). Last, we
use the previous strategy as a subroutine so as to obtain an optimal algorithm
of competitive ratio Θ(log(m − t)) (Theorem 4 and Theorem 5). Interestingly,
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this optimal strategy incorporates three fundamental search paradigms, namely
uniform search, doubling and hyperbolic dovetailing. Similar to our results con-
cerning the full-information model, we can interpret this result as a reduction
between the problems of locating a single and multiple targets. Namely, the
optimal competitive ratio for finding t targets in m rays is determined by the
optimal strategy for locating one target in m − (t − 1) rays. Observe that, as
discussed above, while the competitive ratio is the same the strategy itself is
quite different from the m− (t− 1) ray case.

Related work Ray-search problems have a long and exciting history of research.
We review some representative results, with the observation that the vast ma-
jority apply to the complete information model for the ideal algorithm. For the
linear search problem, Beck and Newman [3] first showed an optimal compet-
itive ratio of 9. The generalization to the m-ray ray-search problem was first
studied by Gal [8] and later by Baeza-Yates et al. [1]. Both works proposed a
round-robin strategy of exponentially increasing lengths that achieves optimal
competitive ratio (see also the discussion of Jaillet and Stafford [10]). The above
results are obtained by means of deterministic strategies; however, it is known
that randomization can help improve the competitive ratio. In particular, Kao
et al. [13] gave an optimal randomized algorithm for linear search, a result that
was extended by Kao et al. [12] to the m-ray problem (under the restrictive as-
sumption of round robin strategies). Other variants include the setting in which
the searchers incur some turn cost when they switch direction (studied by De-
maine et al. [6]), the case of multiple searchers (López-Ortiz and Schuierer [17])
and the average-case analysis of linear search (due to Kao and Littman [11]).
Typically, round-robin strategies based on iterative deepening yield optimal or
near-optimal algorithms, and similar ideas lead to efficient search algorithms in
more general settings and environments (see the results of Koutsoupias et al. [15]
and Fleischer et al. [7]).

In contrast, the study of the partial information model is much more recent.
Kirkpatrick [14] addressed both deterministic and randomized algorithms under
this framework. For both cases he presented optimal strategies based on a search-
ing technique named hyperbolic dovetailing, since in each round a ray is searched
to distance inversely proportional to its rank. The (optimal) competitive ratio
of both deterministic and randomized strategies based on hyperbolic search is
shown to be Θ(logm). Independently, McGregor et al. [18] studied the setting
in which there is a target in each ray, and the objective is to locate as many as
possible at a cost close to the intrinsic cost. Their results provide randomized
algorithms for locating k − Õ(k5/6) targets at a cost no more than (1 + o(1))
times the intrinsic cost for locating k of them.

2 Ray search in the full-information model

For the case of a single target and m concurrent rays, it is known that optimal
strategies can be found in the class of the so-called geometric or exponential
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strategies (see, e.g., [8]). In this class of strategies, the searcher performs a round-
robin exploration of rays with distances forming a geometric sequence (i.e., of
the form b0, b1, b2, . . ., for some appropriate choice of the base b > 1). We show
that similar geometric strategies lead to optimal multi-target search algorithms.
Proofs are omitted for space reasons.

Lemma 1. There is a geometric strategy for searching t targets in m rays with

competitive ratio at most 1 + 2 bm−(t−1)

b−1 , where b is the base of the strategy.

Theorem 1. The competitive ratio of the geometric strategy of Lemma 1 is min-

imized for b = m−(t−1)
m−t , for which it is equal to 1 + 2 (m−(t−1))m−(t−1)

(m−t)m−t . Moreover,

this is optimal, i.e., there is no algorithm with a smaller competitive ratio.

We emphasize that the competitive ratio of Theorem 1 is the same as the
competitive ratio of searching a single target in m− t+ 1 rays [8].

3 Ray-search in the partial-information model

In this section we study deterministic algorithms for ray-search in the partial-
information model for the ideal algorithm (as discussed in the introduction).
Recall that the m rays are associated with a (multi)set Λ of target distances
Λ = {λ1, . . . λm} (with λ1 ≥ λ2 ≥ . . . λm), and the objective is to locate t
targets. In order to facilitate the exposition of our results, we focus on a slightly
different cost formulation; namely, we assume that the searcher incurs cost only
the first time it traverses a previously unexplored segment of a certain ray (for
instance, we do not charge the searcher for returning to the origin). In other
words, the total search cost is the sum of the maximum distances traversed on
each ray. For the sake of completeness, we note that, our results can be extended
to the m-ray search problem under the “standard” cost formulation.

As mentioned in Section 1, we assume that the multiset Λ is not known to
the (online) search strategy, but is known, in contrast, to the ideal algorithm. A
presentation of Λ is a specific assignment of distances in Λ to target locations in
the rays, which is unknown both to the online strategy and to the ideal algorithm.
Given Λ, we denote by ξt(Λ) the intrinsic cost of the ideal algorithm for locating
at least t targets, namely the minimum worst-case search cost of a strategy that
knows Λ. The special case of t = 1 was treated in [14, 18].

3.1 Intrinsic cost of multi-target search

We begin by evaluating the intrinsic cost in the case where we search for t ≥ 1
targets.

Theorem 2. The intrinsic cost for locating t targets in a presentation with as-
sociated distance set Λ is

ξt(Λ) = min
1≤i1<...<it≤m

t∑
j=1

ij · µij , (1)
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where µij = λij − λij+1
, for j < t, and µit = λit .

Proof. First, we will lower-bound the intrinsic cost of any search strategy A
which succeeds for all possible presentations of Λ. At each point in time, the
strategy has explored each ray to some distance: in particular, suppose without
loss of generality, that A has searched rays 1, . . . ,m to distances d1, . . . dm, in
non-increasing order, i.e., d1 ≥ d2 . . . ≥ dm. We then can claim the following
property concerning A and the set of distances {di : i ∈ [1,m]}: there must exist
indices 1 ≤ i1 < . . . < it ≤ m, such that dij ≥ λij (1 ≤ j ≤ t), otherwise
strategy A will have not located t targets for at least one presentation of Λ.
It follows then that the overall search cost of strategy A has to be at least
i1λi1 + (i2 − i1)λi2 + . . .+ (it − it−1)λit . Note that this is equal to

∑t
j=1 ij · µij ,

where the µi’s are as in the statement of the lemma.
On the other hand, we can upper-bound the intrinsic cost by considering the

following strategy that works in t phases. Fix indices 1 ≤ i1 < i2 . . . < it ≤ m. In
phase t, the strategy searches rays 1, . . . it up to depth λit = µit . Let Nt denote
the set of rays on which no target was located in phase t. In phase t − 1, the
strategy will search all rays in Nt up to an additional length of λit−1−λit = µit−1 .
More general, if Nj denotes the set of rays for which no target was located
during phase j, then in phase j − 1 the strategy will search all rays in Nj up
to an additional distance of λij−1

− λij = µij−1
. We terminate when t targets

have been located (which may happen before we reach the end of phase 1). Note
that this strategy will always locate at least one target per phase, since in phase
j it searches ij rays up to distances λij , hence its cost is upper bounded by∑t

j=1 ij · µij . 2

Given two sets of target distances Λ and Λ′, we say that Λ dominates Λ′

(denoted by Λ � Λ′) if λi ≥ λ′i. The following is an immediate corollary of
Theorem 2.

Corollary 1. If Λ � Λ′, then ξt(Λ) ≥ ξt(Λ′), for any t.

3.2 A O(logm)-competitive algorithm

In this section we present a search strategy for locating t targets that achieves
competitive ratio O(logm). This strategy, which we call Adaptive Hyperbolic
Search is based on a combination of hyperbolic search and doubling, and will be
used as subroutine in the construction of an optimal algorithm in Section 3.3.

Before we present our algorithm, let us describe briefly the hyperbolic dove-
tailing algorithm in [14, 18] for locating a single target. The algorithm begins
with assigning unique ranks to the rays, which are integers in [1,m], and by
initializing a counter c to the value 1. It then proceeds in iterations, where the
ray with rank i is searched up to distance c/i. If no target was found this way,
then c is increased by 1 at the beginning of the next iteration.

There are (at least) two natural ways one could attempt to extend this algo-
rithm to the case where we are interested in finding t > 1 targets. On the one
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hand, we could simply choose to never change the rank of rays, even after a tar-
get is located on some ray. On the other hand, we could behave “aggressively”,
and update the ranks immediately after a target was located (according to some
chosen rule). However, it turns out that both ways lead to extremely ineffective
algorithms of competitive ratio Ω(t).

Our algorithm (see the pseudocode below) strikes a balance between the
above two extremes. Initially, as in the classical hyperbolic search, it begins by
assigning unique ranks to the rays, and by initializing a counter c to 1. However,
the execution of our algorithm is divided into epochs, where each epoch in turn
consists of two phases (the boolean variable firstphase in the statement of
the algorithm determines whether we are in the first phase or not). During the
first phase of each given epoch, the algorithm searches, for all i, the ray of
rank i (denoted by ri in the pseudocode) to a distance of c/i, i.e., it performs
a hyperbolic search according to rank. The phase terminates when a target is
discovered, at which point the second phase begins; this phase proceeds until
iteration c ← 2c, and again consists of hyperbolic search according to rank (in
what follows we call iteration j the execution of lines 3–33 when c has value j).
Targets found during this phase do not affect the rank. However, at iteration c
the ranks of the rays are updated (lines 27–33), by removing rays on which
targets are found.

Algorithm 1: Adaptive hyperbolic search
1 T ← 0 , c← 1, c← 0 , firstphase ← true
2 for i = 1 to m do
3 ri ← i
4 foundi ← false

5 end
6 repeat
7 while firstphase=true or (firstphase=false and c < c) do
8 for i = 1 to m do
9 if foundi = false then

10 search ray ri up to distance c
i

11 if target found at ray ri then
12 foundi ← true
13 T ← T + 1
14 if T = t then break
15 if firstphase=true then
16 firstphase ← false
17 c← 2c

18

19

20

21 end
22 c← c + 1

23 end
24 firstphase ← true , count ← 1
25 for i = 1 to m do
26 if foundi= false then
27 ri ← count
28 count ← count+1

29

30 end

31 until T = t
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Analysis Denote by Ri the set of rays that acquire rank equal to i during the
execution of the algorithm. Note that if a ray is assigned rank i during some
epoch, and rank j 6= i in some subsequent epoch, it cannot be assigned rank i
again in the future. This observation allows us to define the search cost on a ray
l for the interval in which the rank of l is i, which we denote by Ci(l). We also
denote by C(Ri) =

∑
l∈Ri

Ci(l) the overall search cost for rays of rank i. With
this notation, the cost of our algorithm can be written as

ALG =

m∑
i=1

C(Ri). (2)

Moreover, we will use the notation c∗ to denote the value of c when the algorithm
terminates, i.e., the last iteration. The next lemma bounds the value of C(Ri).

Lemma 2. For any 1 ≤ i ≤ m, C(Ri) ≤ 3c∗

i .

Proof. Note that every time the algorithm performs a search on a ray l ∈ Ri, it
contributes to the cost C(Ri) in two possible ways: i) By searching the ray the
first time after it is assigned rank i (in other words, when line 12 is executed
immediately after l acquires rank equal to i), and ii) in all remaining cases, i.e.,
subsequent iterations in the same epoch in which line 12 is executed for l. Let
Ci

1(l) and Ci
2(l) denote the above two contributions to Ci(l). Clearly,

C(Ri) =
∑
l∈Ri

(Ci
1(l) + Ci

2(l)). (3)

We first bound the cost incurred by Ci
2(l). Let e denote the total number of

epochs in the execution of the algorithm, and let c1, . . . , ce denote the value
of c at the end of the corresponding epoch. (In particular, we have ce = c∗).
Let 1 ≤ j < e be any epoch, and let us denote by l the ray of rank i the jth
epoch, and by l′ the ray of rank i in the (j + 1)th epoch. At the end of the jth
epoch, l is searched to distance cj/i. Moreover, note that the second time l′ is
searched in the (j+1)st epoch, it had been already searched down to distance

cj
i .

Therefore, the accumulated cost for searching the rays of rank i over all epochs
is bounded by c∗

i , i.e.,
∑

l∈Ri
Ci

2(l) ≤ c∗

i .

It remains to bound the cost Ci
1 =

∑
l∈Ri

Ci
1(l). To this end, let l1, l2, . . . , le

denote the rays in Ri, where lk had rank i in epoch k. Note that there is a
unique ray that had rank i in a particular epoch. Moreover, ray lk contributes
a cost of at most ck−1

i to Ci
1 (where we use the convention c0 = 0). Note also

that the definition of the algorithm implies that ck+1 ≥ 2ck, as the first phase
in the epoch ends when c attains the value 2ck, due to line 19 in the statement
of the algorithm. We conclude that ck ≤ c∗

2k−1 , and thus, Ci
1 =

∑j
k=1 C

i
1(lk) ≤∑j

k=1
1

2k−1
c∗

i ≤
2c∗

i . 2

The next lemma relates the intrinsic complexity with the cost of the algorithm.

Lemma 3. For any t ≥ 2, ξt(Λ) ≥ c∗

5 .
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Proof. Set c′ = bc∗/3c. We can assume, without loss of generality, that c∗ ≥ 5.
In order to prove the statement, let us first assume that the iterations c′ and c∗

occurred in the same epoch of the execution of the algorithm. Then no target is
found during iterations up to c′ which also belong in the epoch of c′, as otherwise
it would be that c∗ ≤ 2c′ < c∗, a contradiction.

Observe that at the end of an epoch, i.e., at lines 28–33, each possible rank
between 1 and m − T is assigned to a unique ray (recall that T is the number
of targets that were discovered up to the current iteration). Consequently, if in
the first iteration of the succeeding epoch no additional target is found, then for
each 1 ≤ i ≤ m− T there is a ray that has been searched up to distance c/i. In
our case in particular, since at most t − 1 targets were found at the beginning
of the last epoch (i.e., the epoch of c∗), for every j with 1 ≤ j ≤ m − (t − 1),
there exists a ray that has been searched unsuccessfully up to distance c′/j. This
implies that if we set

Λ′ = {λ′1, . . . , λ′m} =

{
c′,
c′

2
,
c′

3
, . . . ,

c′

m− (t− 1)
, 0, . . . , 0

}
,

then Λ � Λ′. Corollary 1 implies that ξt(Λ) ≥ ξt(Λ
′) = ξ1

(
{λ′1, . . . , λ′m−(t−1)}

)
,

where the equality follows easily from Theorem 2. We conclude the proof in this

case by observing that ξ1

(
{λ′1, . . . , λ′m−(t−1)}

)
= min1≤i≤m−(t−1) iλ

′
i = c′.

It remains to consider the case where iterations c′ and c∗ occurred in different
epochs. We may further assume that in the epoch of iteration c′, at least one
target was discovered at some iteration smaller than or equal to c′ which also
belongs in the epoch of c′, as otherwise the same argument as in the previous
case would apply. Let c′′ ≥ c′ be the first iteration of the epoch that succeeds the
epoch of iteration c′. We shall denote, in the remainder, this epoch as the current
epoch. Note that c′′ ≤ 2c′ < c∗. Suppose that ` ≥ 0 targets are discovered during
iteration c′′, and let us denote by i1 < i2 < · · · < i` the ranks of the rays on
which they were discovered, and by d1, . . . , d` their corresponding distances. We
claim that

dj ≥
c′′

ij + (t− `− 1)
for all 1 ≤ j ≤ `. (4)

To show this, note that the number of targets that were found in all previous
epochs (i.e., before the current epoch) is at most t−`−1. Therefore, the ray with
rank ij in the current epoch had rank at most ij+(t−`−1) in the previous epoch;
this follows immediately from the rank update in lines 28–33 of the algorithm.

The definition of the ij ’s implies that no target is found on all other rays
that are searched in iteration c′′. Thus, for all i ∈ [1,m− (t− `−1)]\{i1, . . . , i`}
there is a ray that is searched to distance c′′/i (this occurs on the ray of rank i
in the current epoch). By putting this together with (4), we infer that for all i
as above, there is a distinct target at distance at least c′′/i, and that there are `
targets at distances at least c′′/(ij + (t− `−1)). In what follows we shall exploit
this to construct a lower bound on the intrinsic cost of Λ. Define

aj =

{
j + (t− `− 1), if j ∈ {i1, . . . , i`}
j, otherwise

.
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The previous discussion implies that for all 1 ≤ j ≤ m − (t − ` − 1), there is a
distinct ray with a target at distance at least c′′/aj . Let bj denote the value of
the jth element in the increasingly sorted sequence of {ai}1≤i≤m−(t−`−1). Note
that b1 ≤ ` + 1, since the pigeonhole principle implies that one of the values
[1, `+ 1] is not contained in {i1, . . . , i`}. Similarly we can argue that bj ≤ `+ j.
We now define

Λ′′ = {λ′′1 , . . . , λ′′m} =

{
c′′

`+ 1
,
c′′

`+ 2
, . . . ,

c′′

m− t+ 1 + 2`
, 0, . . . , 0

}
,

where the number of 0’s is t−`−1. Then, Λ � Λ′′, and thus ξt(Λ) ≥ ξ`+1

(
{λ′′1 , . . . , λ′′m−(t−`−1)}

)
.

By applying Theorem 2 we infer that

ξt(Λ) ≥ min
i1<···<i`+1

∑̀
j=1

ij(λ
′′
ij − λ

′′
ij+1

) + i`+1λ
′′
i`+1

 . (5)

Let (i∗j )1≤j≤`+1 denote any choice of the ij ’s that minimizes the above expression.
Suppose that for all 1 ≤ j ≤ `+ 1 we have that i∗j ≤ `+ 1. Then (5) simplifies to∑`+1

i=1 c
′′/(`+ i) ≥ c′′/2. On the other hand, suppose that there is a 1 ≤ k ≤ `+1

such that i∗k ≥ ` + 1. Then, the bound in (5) is due to the monotonicity of the
i∗j ’s at least

i∗`+1λ
′′
i∗`+1

= i∗`+1

c′′

`+ i∗`+1

(i∗`+1≥`)
≥ c′′

2
.

Since c′′ = bc/3c, the proof is completed. 2

Lemma 2, Lemma 3 and (3) imply the main result of this section.

Theorem 3. The adaptive hyperbolic-search algorithm locates t targets in m
rays with associated distance set Λ at a search cost of at most 15 logm · ξt(Λ).

3.3 An asymptotically optimal multi-target search algorithm

We now describe an optimal algorithm for locating t targets. We begin with a
lower bound which demonstrates that the problem is at least as hard as searching
a single target in m− t+ 1 rays. The proof is omitted for space reasons.

Theorem 4. For the m ray problem in the partial information model, there
exists a distance set Λ such that every deterministic algorithm that successfully
locates t targets incurs a cost at least Ω(log(m − t)) · ξt(Λ), for at least one
presentation of Λ.

Let s be such that t = m− s. Note that if s ≥ m/2, then t ≤ m/2, which in
turn implies that the adaptive hyperbolic search of Section 3.2 is asymptotically
optimal, as follows from Theorem 3 and Theorem 4. Therefore, we shall focus
only on the case s ≤ m/2.
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The optimal algorithm, which we call Hybrid, consists of two phases. In the
first phase we perform a uniform search, i.e., we search all rays in the same
fixed order, increasing by a unit the distance up to which we search rays in each
iteration. Once a target is located in one of the rays, we effectively discard that
ray, without affecting the ordering of the remaining rays. This phase continues
until m−2s targets have been located, at which point the algorithm switches to
the adaptive hyperbolic search algorithm (Algorithm 1). In this second phase,
we search for s more targets in the remaining 2s rays on which the uniform
search did not locate any targets.

Theorem 5. Let s ≤ m/2. Algorithm Hybrid locates t = m−s targets at a total
cost O(log s) · ξt(Λ), for any presentation with associated distance set Λ.

Proof. Let C1, C2 denote the search costs incurred by the first and second phase,
respectively. We will show that C1 ≤ 2 · ξt(Λ), and C2 = O(log s) · ξt(Λ), which
will be sufficient to prove the theorem.

Consider first the uniform-search phase. From construction, the first target
will be located after the uniform search incurs a cost of at most mλm; the second
target will be located at an overall cost of at most mλm + (m− 1)(λm−1− λm);
and more generally, by the time the l-th target is discovered, the uniform-search
phase has not incurred cost more than mλm +

∑l−1
i=1(m − i)(λm−i − λm−i+1).

Therefore, the overall cost of Phase 1 is at most

C1 ≤ mλm +

m−2s−1∑
j=1

(m− j)(λm−j − λm−j+1). (6)

On the other hand, from Theorem 2, we know that there exist 1 ≤ i1 < . . . < it ≤
m such that ξt(Λ) ≥ itλit +

∑t−1
j=1 ij(λij − λij+1

). Since it > it−1, and λit ≥ λm
we deduce that ξt(Λ) ≥ itλm + it−1(λit−1

− λm) +
∑t−1

j=2 it−j(λit−j
− λit−j+1

),
from which it follows that

ξt(Λ) ≥ itλm +

t−1∑
j=1

it−j(λm−j − λm−j+1). (7)

Since the indices ij assume different values, we know that it ≥ t = m− s. More
generally, we have that it−j ≥ t− j = m− s− j, for all j ∈ [0,m− 2s− 1]. Thus,

m− j
it−j

≤ m− j
m− s− j

≤ 2 for all j ≤ m− 2s. (8)

Combining (6), (7) and (8) we conclude that C1 ≤ 2 · ξt(Λ).
It remains to argue that C2 = O(log s) · ξt(Λ). Let M denote the subset of

rays that are searched in phase 2, and let ΛM denote the subset of Λ induced
by the set M . By applying Theorem 3, we infer that C2 = O(log(2s)) · ξs(ΛM ).
However, ξs(ΛM ) ≤ ξt(Λ). This is because even if the distances of the targets
for the m− 2s rays involved in Phase 1 are revealed to the optimal (i.e., ideal)
algorithm, such an algorithm would still have to locate s more targets among the
rays in M . Thus, it follows that C2 = O(log s) · ξt(Λ), which is also the overall
complexity of the search algorithm. 2
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4 Conclusions

Several problems remain to be studied in this setting, among them the optimal
expected search cost of t targets as well as the case where only an arbitrary
subset of size s ≤ t of the targets is being sought.
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16. A. López-Ortiz and S. Schuierer. The ultimate strategy to search on m rays.
Theoretical Computer Science, 261(2):267–295, 2001.
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