
Longest Increasing Subsequences in SlidingWindowsMichael H. Albert1, Alexander Golynski2, Ang�ele M. Hamel3, AlejandroL�opez-Ortiz2, S. Srinivasa Rao2, Mohammad Ali Safari21 Department of Computer Science, University of Otago, Dunedin, New Zealand,malbert@cs.otago.ac.nz2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,Canada, fagolynski,alopez-o,ssrao,masafarig@uwaterloo.ca3 Department of Physics and Computer Science, Wilfrid Laurier University,Waterloo, ON, N2L 3C5, Canada, ahamel@wlu.caAbstract. We consider the problem of �nding the longest increasingsubsequence in a sliding window over a given sequence (LISW). We pro-pose an output-sensitive data structure that solves this problem in timeO(n log log n+output) for a sequence of n elements. This data structuresubstantially improves over the naive generalization of the longest in-creasing subsequence algorithm and in fact produces an output-sensitiveoptimal solution.1 IntroductionGiven a sequence a1a2 � � � an of distinct values from a linearly orderedset its longest increasing subsequence (LIS) is a subsequence of maximumlength, whose values increase as the indices increase. The underlying set ofthe given sequence can be, and usually is, taken to be f1; 2; � � � ; ng, so thatthe sequence can be viewed as a permutation � = �(1)�(2) � � � �(n). In thissetting the LIS consists of a sequence of indices 1 � i1 < i2 < � � � < ik � nsuch that �(i1) < �(i2) < � � � < �(ik) where k is the largest number forwhich such a sequence exists.The longest increasing subsequence problem refers either to identifyingthe longest increasing subsequence(s) or, alternatively, to determiningthe length k of the LIS. In either of these forms, this problem has beenthe subject of intense study by mathematicians and computer scientistsalike (see Subsection 2.1 for a more detailed discussion of previous work).This problem has interesting properties both from a purely combinatorialperspective (see e.g. [13]) as well as actual applications in �elds such asDNA sequence matching [4].In this paper, we consider the problem of �nding the length of a longestincreasing subsequence in every window of a sequence (LISW) of given



width w; that is, the LIS's of substrings of � of the form �(i + 1)�(i +2) : : : �(i + w). This work is inspired by the study of the relationshipand theoretical underpinnings of a problem and its windowed version [5,6]. We propose an output sensitive data structure which solves LISW inoptimal time; that is, linear on the size of the output.2 Problem De�nitionGiven a sequence � = �(1)�(2) : : : �(n) and a window size w � n, thewindowsWi of � of width w are the subsequences �(i+1)�(i+2) : : : �(i+w) for 0 � i � n � w. The general problem that we consider is that ofdetermining a LIS in each of the windows Wi. Within this framework,several related questions can be posed regarding this problem, each withpotentially di�erent time complexity:Local Max Value For each window report the length k of the longestincreasing subsequence in that window.Local Max Sequence Explicitly list a longest increasing sequence foreach window.Global Max Sequence Find the window with the longest increasingsequence among all windows.We will deal with the Local Max Sequence form of the LISW. The al-gorithm we present runs in linear time on the size of the output for thisproblem and hence is optimal both in worst case and adaptive sense. Thesame algorithm solves the other two versions of the problem describedabove, although its optimality in these cases is an open question.2.1 Previous WorkAlgorithms for �nding the length of the LIS date back to Schensted [14]and Robinson [12] with a generalization due to Knuth [10]. These algo-rithms have time complexity O(n log n) which is optimal in the compari-son model. Hunt and Szmanski [9] give an algorithm with time complexityO(n log log n) using the van Emde Boas data structure. Chang and Wang[3] also give an O(n log log n) algorithm based on a permutation graphinterpretation. Bespamyatnikh and Segal [2] present an O(n log log n)algorithm that determines all longest increasing subsequences. The algo-rithm we present here is O(n log log n + output). Probabilistic resultsrelated to this problem have been discussed in Aldous and Diaconis [1]and Groenboom [7]. The question also has application in bioinformaticsin the MUMmer system for �nding matches between DNA sequences [4].



2.2 Background of our resultsFor the problem we consider there is an obvious naive algorithm whichsimply computes the LIS in each window separately. Using the methodsof the preceding paragraph, this gives an algorithm whose complexity isO(nw log log n). In the case where the average length of the LIS in eachwindow is �(w) then, our algorithm o�ers no asymptotic improvementover this method.However, it is well known in the permutation case that the averagelength of the LIS of a permutation of length n is asymptotically 2pn (see[1] for this result, and references). Suppose that a permutation � of lengthn is chosen uniformly at random. Consider any �xed window of �. Therelative ordering of values observed in that window will also be uniformlychosen from among the patterns of permutations of length w. Thus theexpected length of an LIS in any given window is asymptotically 2pwand by linearity of expectation, the expected total length of all LIS's is(n� w + 1)2pw = O(npw). So, in the random case, or in any situationwhere the average length of the LIS in each window is o(w), our algorithmo�ers a signi�cant improvement on the naive one.This improvement is obtained largely through the judicious use of aparticular data structure. This data structure implicitly represents infom-ration pertinent to determining the LIS's of the current window and todetermining the LIS's of all suÆxes of the current window. This infor-mation can then be used to update the structure each time we drop anelement o� the beginning of the window and add one to the end. As withmost algorithms concerned with aspects of the LIS problem, our startingpoint will be the original constructions of Robinson and Schensted, so itwill be helpful to review these next.2.3 Tableaux and the Robinson{Schensted{Knuth AlgorithmThe Robinson{Schensted{Knuth algorithm (see [15] and references therein;for background see also Knuth [11] or Sagan [13]) is based on the conceptof a tableau which can be used to determine increasing subsequences ofa permutation. More formally,De�nition 1. A tableau of shape � = �1; �2; : : : ; �m where �1 + �2 +: : : �m = n is a collection of n elements arranged in left-justi�ed rowssuch that row i has �i elements, and the elements increase weakly acrossrows and increase strictly down columns.See Figure 1 for an example of a tableau.



Although we concern ourselves mostly with permutations, we will dis-cuss the Robinson{Schensted{Knuth algorithm in its full generality asapplied to sequences of possibly repeated elements that come from a lin-early ordered set. The algorithm we introduce in this paper uses a gener-alization of the Robinson{Schensted{Knuth algorithm and, in particular,uses the same \bumping" rules as Robinson{Schensted{Knuth.Given a sequence � = �1; �2; : : : ; �n, the Robinson{Schensted{Knuthalgorithm constructs a pair of tableaux P and Q both of shape � for �some partition of n. We describe here just the construction of P as thatincludes the bumping technique we use. Given �, elements �1; �2; : : : ; �nare inserted one at a time in that order to form P . At step 1 place a singleelement, �1, as the �rst element of the �rst row of P . At step i, place �iusing the following algorithm: Scan the �rst row of P from left to right tolocate the smallest element t that is greater than �i. If no such element texists, place �i at the end of the �rst row of P . If t does exist, remove tfrom the �rst row of P and put �i in its place. We say �i bumps t. Thenscan the second row of P from left to right to locate the smallest elementin the second row of P that is greater than t. If no such element exists,place t at the end of the second row of P . If t does bump an element, insertthat element into the third row of P and continue bumping elements untilthe currently bumped element comes to rest at the end of a row in P .Continue until all elements of � are exhausted.
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= PFig. 1. Tableau P created by Robinson{Schensted{Knuth Algorithm for � = 35274816.The length of the �rst row of tableau P is equal to the length ofthe LIS for �. This sequence can be determined via Schensted's basicsubsequences. Schensted [14] de�ned the ith basic subsequence to be thesequence of elements that had occupied the ith position in the �rst rowof P . It is easy to see that the basic subsequences are decreasing andthat each element belongs to exactly one basic subsequence. Any longestincreasing subsequence includes exactly one element from each basic sub-sequence and an increasing subsequence can be determined by associatingeach element a with the element b to its left when it entered the �rst rowof P . This result shows the signi�cance of the �rst row of the Robinson{



Schensted{Knuth construction and indeed in our algorithm we make useof the �rst row only and discard the rest.3 AlgorithmIn order to deal with the problem of determining the longest increasingsubsequences in the windows of a permutation we �rst consider a datastructure which addresses a slightly more general question. In this struc-ture we maintain information about the LIS of a sequence in such a waythat we can{ Remove the �rst element of the sequence,{ Add an element to the end of the sequence,{ Query the data structure for the length of the current LIS.For a given sequence � = �1�2 � � ��n be the initial sequence let �ji =�i�i+1 � � ��j denote the subsequence from the i-th to the j-th element.We apply Robinson{Schensted{Knuth to � but keep track of only the �rstrow in the tableau. We call this row the principal row of � and denote it byP (�). Our data structure will maintain principal rows for all the suÆxesof the current sequence �; that is, all the rows P (�n1 ); P (�n2 ); : : : ; P (�nn).It will be helpful to think of these rows as lying one above the other in arow tower. See Figure 2.Now consider this data structure applied to the LISW problem, begin-ning with the subseqnece �(1)�(2) � � � �(w) of a permutation � of lengthn. The removal operation is easy: to remove the �rst element we needonly delete the �rst row of the row tower. Adding a new element cor-responds to inserting it using a Robinson{Schensted{Knuth approach ineach of the rows stored so far and creating a new row consisting of thiselement only. The length of the LIS of the current window is the lengthof the �rst principal row we store.A naive implementation of this data structure using a van Emde Boaspriority queue for each row takes O(1) time for expiring, O(w log log n)time for adding each element and O(1) time for outputting the length ofeach subsequence. Total time complexity would be O(nw log log n).However, observe that each row other than the �rst in the row toweris either the same as the one above, or can be obtained from it by deletinga single element. This claim is easily veri�ed by induction. In the trivialcase this claim holds when the �rst element is added, since there is only asingle row in this case. Now consider two consecutive rows before insertion



of a new element b. If they are the same then they will remain the sameafter inserting b. Alternatively if they di�er in a single element r, then if bdoes not bump r from the �rst row, they will still di�er in the same way.If b does bump r, then either it bumps the next element of the secondrow, or is added to the end of that row. In the �rst case the two rows stilldi�er by one deletion (the next element after r), while in the second casethey are now the same. Thus we have proven:Lemma 1. Let sequence S be a suÆx of sequence T . Then P (S) is asubsequence of P (T ) and jP (T )j � jP (S)j � jT j � jSj.Since we now know that the row tower forms an inclusion chain we canremove duplicate rows and record the original multiplicity of remainingrows in a sequence m. From now on, when we refer to the row tower,we will assume that the rows have been made distinct in this way. Afterthis modi�cation the data structure still supports all the operations asdescribed above, but the time complexity for adding is O(` log logn) andspace is O(n`) at this time, where ` denotes the length of the current LIS.Suppose that the �rst row of the row tower contains ` symbols. Then,to each position in this row, we associate the number of the last row inwhich this symbol occurs. Since each row di�ers from the preceding oneby the removal of exactly one symbol, this gives a permutation � on theelements 1; 2; : : : `. We call � the drop out permutation of the row tower.We can also de�ne a drop out sequence, d, of drop out times, by replacingeach element of the drop out permutation by the actual index of the lastrow in which the corresponding element of the principal row occurs.
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Fig. 2. Row towers for � = 35274816.



For the example in Figure 2, we have m = (1; 2; 4; 1), d = (7; 3; 8; 1)and � = (3; 2; 4; 1). Figure 3 illustrates the transformation of the rowtower as the window slides.
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6 8 Fig. 3. Construction for � = 257368491.We use the values of the principal row, d, and �, as an implicit rep-resentation of all but the �rst row in the row tower. That is, this datastructure has three components, the principal row R = R1, the drop outsequence d, and the drop out permutation �. Although it is clear thatthe �rst two of these suÆce to describe the complete row tower, we willmake use of the third when we wish to produce actual LIS's from eachwindow, rather than simply the length of the LIS in each window. Nextwe describe how to update these parts under expire and add operations.The expire operation simply subtracts 1 from each element of d anddeletes the element with expiry time 0 (if there is one) from R. If nodeletion occurs then � is unchanged. Otherwise, the element 1 is deletedfrom � and the remaining values are decreased by 1.The add operation for an element b requires that b be used to bumpan element out of each row of the row tower (unless it is appended to allof them). Since, as we have observed, the rows form an inclusion chain,if b bumps a certain element s out of a row, then it bumps the element sout of all further rows to which s belongs. In other words, the drop outtime for s changes to the index of the �rst row from which it is bumpedby b. Now consider the next row of the row tower (if one exists) after shas dropped out. In this row there may or may not be elements largerthan s. If there are such elements then b bumps the smallest of them. Ifnot, then b is appended to the end of this and all subsequent rows.So there is a sequence of indices i1 < i2 < � � � < ik for the sequence dde�ned as follows: i1 is the least index of an element of the principal rowwhich is larger than b (if no such index exists, then the sequence is empty),



and it+1 is the least index larger than it for which d(it+1) > d(it). Theseindices represent the elements of the principal row which are bumped byb. Since b is placed in position i1 in the �rst row and does not drop outuntil the very end, the sequence d is updated according to:d(it+1) = d(it) for t = 1; 2; : : : ; k � 1d(i1) = w + 1:Similarly, the update of � is:�(it+1) = �(it) for t = 1; 2; : : : ; k � 1�(i1) = `:At this point, we have a data structure with expire/add time O(`)per element, query time (for the length of the LIS in the current window)O(1) and space O(n).In order to support the operation of outputting an LIS we maintain atree for each row Ri. In the tree associated to R1 the paths from verticesto the root will constitute reversals of (some) increasing sequences in thecurrent window. In particular, the path from the last element of R1 tothe root will be an LIS.The reason for including multiple trees is to allow for the expiry oper-ation. At the point where a principal row expires, it will be necessary tohave access to the tree for the new principal row. The basic idea is simplythat whenever an element is added to a row it is also added to the treecorresponding to that row and its parent in the tree is the element of therow immediately to its left. The property claimed of paths from verticesto the root then follows immediately.However, the diÆculty with this approach is that all but the �rst rowhave implicit representations, and hence looking up the predecessor ofan element in each row as required above is a non-trivial operation. Weovercome this diÆculty by noting that each parent operation takes us onecolumn to the left in some row tower. This row tower is not necessarilythe current one, since the element whose parent we seek may already havebeen bumped from the current row tower, as happens for instance whenwe look for the LIS in 1342, the element 3 which is 4's parent, no longeroccurs in the row tower after 2 arrives. Suppose that we have a value vand a column c that v occupies in some row tower. When v is �rst addedto the row tower, there is a unique row in which it occupies column c. Weset the parent of v in column c to be the predecessor of v in that row.In other words, at the time that v is added we establish an array whose



entry in position c is the parent of v in column c� 1. This can easily beaccomplished from the explicit information available.Namely, when v is �rst added, it is added in say column C. Its prede-cessor in that column is its immediate predecessor, say p1 in the principalrow. This remains its predecessor in columns C�1 through C��(p1)+1.In column C � �(p1) its parent will be the right most element p2 of theprincipal row which satis�es �(p2) > �(p1), and this will remain its par-ent through column C � �(p2) + 1. Thus, by scanning leftwards alongthe principal row we can create references to all the parents of v in eachcolumn. When we exhaust the elements to the left of v (that is, thinkingin terms of the row tower, when we reach the �nal block of rows of whichv is the initial element) the parent of v is simply set to the root elementof the tree.Now, we can construct the reversal of the LIS in a given window inconstant time per element. Namely, we begin with the rightmost elementof the principal row (column `). Using the array associated with thiselement we determine its parent in column `�1, the second (last) elementof the LIS. In turn using the array associated with that element we �ndits parent in column `� 2, and so on.Hence the data structure proposed computes longest subsequences ona sliding window, with a cost for the ith window of O(`i) where `i is thelength of the longest increasing sequence in window i. Thus, the total timeis given by Pn�wi=0 `i = output, plus the cost of initializing the structure,namely O(n log log n).Theorem 1. The algorithm described above computes the n � w + 1longest increasing sequences, one for each window in total time O(n log log n+output).As an interesting side bene�t, the algorithm obtained computes theLISW in an on-line fashion.4 Conclusions and Open ProblemsWe proposed a data structure for �nding the longest increasing subse-quence in a sliding window over a given sequence (LISW). The datastructure uses an implicit representation of principal rows for each ofthe subsequences on a window, and results in an output-sensitive algo-rithm. This data structure substantially improves over the naive gen-eralization of the longest increasing subsequence algorithm. An on-line,



output-sensitive optimal algorithm is derived from this data structure.The time complexity is O(n log log n+ output).Other variations of the problem remain open, in particular the exacttime complexity of the global max sequence problem remains an openquestion. Another interesting case is the o�-line case, in which a pre-processing step in o(n log logn) time is allowed. Then a query is issued forthe longest subsequence within a given window which must be answeredin time o(w log logn).Acknowledgments We wish to thank the participants of the Algo-rithmic Problem Session at the University of Waterloo for many helpfuldiscussions.References1. D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sortingto the Baik{Deift{Johansson theorem, Bull. Amer. Math. Soc. 36 (1999), 413{432.2. S. Bespamyatnikh and M. Segal, Enumerating longest increasing subsequences andpatience sorting, Info. Proc. Lett. 76 (2000), 7{11.3. M.-S. Chang and F.-H. Wang, EÆcient algorithms for the maximum weight cliqueand maximumweight independent set problems on permtuation graphs, Info. Proc.Lett. 43 (1992), 293{295.4. A.L. Delcher, S. Kasif, R.D. Feischmann, J. Peterson, O. White, S.L. Salzberg,Alignment of whole genomes, Nucleic Acids Res. 27 (1999), 2369-2376.5. P.B. Gibbons and S. Tirthapura, Distributed Streams Algorithms for Sliding Win-dows, In Proc. 14th ACM Symp. on Parallel Algs. and Architectures (SPAA), 2002.6. M. Datar, A. Gionis, P. Indyk and R. Motwani, Maintaining Stream Statistics overSliding Windows, In ACM-SIAM Symp. on Discrete Algorithms(SODA), 2002.7. P. Groeneboom, Hydrodynamical methods for analyzing longest increasing subse-quences, J. of Comp. and Appl. Math. 142 (2002), 83{105.8. M. Hamermesh, Group Theory and its Application to Physical Problems, NewYork: Dover, 1962.9. J. Hunt and T. Szymanski, A fast algorithm for computing longest common sub-sequences, Comm. ACM 20 (1977), 350-353.10. D.E. Knuth, Permutations, matrices, and generalized Young tableaux, Paci�c J.Math. 34 (1970), 709{727.11. D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,Reading, Mass.: Addison{Wesley, 1973.12. G. de B. Robinson, On representations of the symmetric group, Amer. J. Math.60 (1938),745{760.13. B. Sagan, The Symmetric Group, Paci�c Grove, Calf.: Wadsworth andBrooks/Cole, 1991.14. C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math. 13(1961), 179{191.15. M. Van Leeuwen, The Robinson{Schensted and Sch�uzenberger algorithms, an el-ementary approach, Elect. J. Comb. Foata Festschrift, Vol. 3, no. 2 (1996) R15.


