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ABSTRACT

We present lower bounds for on-line searching problems in two special classes of
simple polygons called streets and generalized streets. In streets we asssume that the
location of the target is known to the robot in advance and prove a lower bound of V2
on the competitive ratio of any deterministic search strategy which can be shown to be
tight.

For generalized streets we show that if the location of the target is not known, then there
is a class of orthogonal generalized streets for which the competitive ratio of any search
strategy is at least v/82 ~ 9.06 in the Lz-metric—again matching the competitive ratio
of the best known algorithm. We also show that if the location of the target is known,
then the competitive ratio for searching in generalized streets in the Li-metric is at least
9 which also can be shown to be tight.

The former result is based on a lower bound on the average competitive ratio of searching
on the real line if an upper bound of D to the target is given. We show that in this case
the avervage competitive ratio is at least 9 — O(1/log D).

1. Introduction

The problem of a robot searching for a target in an unknown environment has
recently received a considerable amount of attention 2-%5-6:11:12:15,17.18 = Tp thig
setting it is assumed that the robot is equipped with an on-board vision system
that allows it to see its local environment. However, the robot does not have access
to a complete map of its surroundings.

Since the robot has to make decisions about the search based only on the part of
its environment that it has seen before, the search of the robot can be viewed as an
on-line problem. One way to judge the performance of an on-line search strategy
is to compare the distance traveled by the robot to the length of the shortest path
from s to ¢. In other words, the robot’s path is compared with that of an adversary
who knows the complete environment; this approach to analysing on-line algorithms
was introduced by Sleator and Tarjan 2°. The ratio of the distance traveled by the
robot to the optimal distance from s to t is called the competitive ratio of the search
strategy.

Since, in general, the ratio between the distance a robot traverses and the length
of a shortest path can be forced to be (n) if the obstacles in the scene have a total
of n edges, efforts have focussed on restricted classes of environments that allow
more efficient search strategies.
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Figure 1: (a) The triple (P, s,t) is a street since the two polygonal chains L and R
from s to t are weakly visible from each other. (b) The triple (@, s, t) is a G-street
(but not a street) since every point of () can be seen by the two horizontal chords
that connect L and R.

Figure 2: A lower bound for G-streets.

Klein was the first to consider a class of polygons called streets ''. A street
is a triple (P, s,t) where P is a simple polygon and s and ¢ are two points on
the boundary of P such that the two polygonal chains L and R from s to ¢ are
mutally weakly visible, that is, each point on L sees a point on R and vice versa
(see Figure 1a). It can be easily shown that v/2 is a lower bound for the competitive
ratio of searching in an orthogonal street. Surprisingly, this competitive ratio can
be achieved even for arbitrarily oriented streets %'?. In this paper, we show that
V2 remains a lower bound for searching in (orthogonal) streets even if the location
of the target is known in advance. However, streets are often too restrictive a class
of polygons in order to model real environments.

In the search for larger classes of polygons that admit search strategies with a
constant competitive ratio Datta and Icking propose a class of polygons they call
generalized streets or G-streets ®. Similar to a street, a G-street is also a triple
(P, s,t) but now each point on L or R has to be seen from a horizontal chord that
connects the two polygonal chains L and R (see Figure 1b). It can be shown that
the class of G-streets properly contains the class of streets. Datta and Icking present
an algorithm to search in orthogonal G-streets that achieves a competitive ratio of
9 in the Li-metric and of v/82 (~ 9.06) in the Ly-metric. In fact, 9 is also a lower
bound for searching in orthogonal G-streets. To see this consider the polygon P in
Figure 2. If the target ¢ is placed in any of the spikes, then (P, s,t) can be easily
shown to be a G-street. Obviously, a strategy to search in P can be used to search
for a target on the real line (without visibility information). Since 9 is a lower
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in G-streets.

Lépez-Ortiz and Schuierer present an algorithm to search in arbitrarily oriented
G-streets albeit with a much higher competitive ratio 6.

In this paper we present a family of orthogonal G-streets in which every search
strategy needs a competitive ratio of at least 1/82 if the path length is measured in
the Lo-metric, thus, proving that the strategy of Datta and Icking is optimal even
in the Ls-metric.

Finally, we consider the problem of searching in an orthogonal G-street if the
location of the target is known in advance. We again show that this knowledge
does not provide an advantage to the robot and show a lower bound of 9 in the
L;-metric.t

In order to be able to prove the lower bound of 9 for known destination search in
G-streets we use a reduction to a variant of searching for a target on the real line. In
this new variant we consider the average competitive ratio C*¥ of a strategy where
the average is taken over the competitive ratio C'* if the target is found to the left
of the starting position and the competitive ratio C* if the target is found to the
right of the starting position, that is, C* = (CL + C*)/2; moreover, we assume
that we are given an upper bound D on the maximal distance of the target to the
starting position. We show that C*” > 9 — O(1/log D). This new bound may be
of use in other lower bound proofs of similar nature.

The paper is organized as follows. In Section 2 we show a lower bound of /2
for searching in streets given the location of the target in advance. In Section 3 we
present lower bounds for orthogonal G-streets with known and unknown location of
the target. In Section 4 we prove a lower bound for biased search strategies on the
real line. Finally, in Section 5 we summarize our results.

, we obtain the same lower bound for searching

2. A Lower Bound for Searching in Streets

In this section we present a lower bound for searching in streets. If we assume
that the position of the target is not known to the robot in the beginning, then the
polygon shown in Figure 3a? provides a lower bound of v/2. If the robot goes to
one side, before it can see into both ears of the polygon at the top of the rectangle,
then the target is placed in the ear on the other side. Hence, going straight up in
the middle until both ears are visible is the best on-line strategy. If we choose the
width to be 2 and the height to be 1, then the competitive ratio is /2.

The question is if there is a strategy with a better competitive ratio if the
location of the target is known. Clearly, the polygon shown in Figure 3a now no
longer provides a lower bound since the robot knows the position of the target and
can move directly to it; however, by connecting a number of these polygons, it is
still possible to show a lower bound of /2 on the competitive ratio of any strategy
to search in streets even if the position of the target is known in advance.

More precisely, we construct a family F,, of orthogonal streets such that, for
all n > 0 and for all on-line strategies S, there is a street Ps in F,, such that
the competitive ratio of S in Ps is v/2 — O(1//n). Note that the restriction to
orthogonal streets only strengthens our lower bound.

IPreliminary versions of the lower bounds for streets and G-streets have appeared in 1 and 6.
2For now, the paths drawn in the figure should be disregarded.



We call the polygon of Figure 3a an eared-rectangle. Eared-rectangles can be
connected to create larger polygons. This is shown in Figure 3b. In the construction
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Figure 3: (a) An eared-rectangle. (b) Connecting two eared-rectangles

of Figure 3 each eared-rectangle has a connecting alley and a dead-alley. The entry
point is the point where the robot enters an eared-rectangle which is located in the
middle of its bottom edge.

If the robot is located inside an eared-rectangle and wants to decide which of the
two alleys is dead and which is connecting, then it has to move up to a point in the
eared-rectangle from which the top edge of one of the alleys is completely visible.
By making the alleys very narrow, we can force the robot to move arbitrarily close
to the horizontal line that connects the alleys before it can decide which alley is
dead and which is connecting.

Assume we are given a strategy S to search in an orthogonal street with known
destination. In the beginning the robot is located in an eared-rectangle of width 2
units and height 1 unit. The target is located directly above the starting point s at
a distance of n units.

We present the strategy of an adversary to S that constructs a polygon consisting
of at most n?/2 connected eared-rectangles in which the path traversed by the robot
using S is at least v/2 — O(1/4/n) times longer than the shortest path from s to t.

The adversary’s strategy is as follows. If the robot moves into the left half of the
eared-rectangle in order to find out which alley is connecting, then the adversary
opens the right alley and connects a new eared-rectangle to it and vice versa. If
the robot travels in the middle of the eared-rectangle, then the adversary opens an
arbitrary alley. In this way the length of the path generated by S in one eared-
rectangle has a length of at least 2 — & where ¢ depends on the width of the alleys
whereas the shortest path has a length of v/2 (see Figure 3a).

The adversary puts one eared-rectangle on top of the other until n rectangles
have been placed and the top edge of the current eared-rectangle has the same
height as t. In this case the next eared-rectangle is rotated by 90° and placed on
the side of the current eared-rectangle that is closer to t. We denote the entry point
of this rotated eared-rectangle by s» (see Figure 4a).

First of all we note that at s» the situation is exactly analogous to the situation
at s just rotated by 90°. This is due to the fact that the shaded region in Figure 4b
does not contain any eared-rectangles and the target ¢ is again on an axis-parallel
line through s,. Hence, the adversary can apply the same strategy recursively now
starting at s». Since the distance of s; to ¢ is at least one less than the distance of
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Figure 4: (a) Constructing a new polygon with eared-rectangles. (b) The situation
at s, is analogous to the situation at s.

s to t, this construction ends after at most n iterations. Clearly, if P is the polygon
so constucted, then (P,s,t) is a street. Let k be the actual number of iterations
needed. We denote the starting point of the ith iteration s;, for 1 < i < k, where
S1 = S.

We now analyse the distance traveled by the robot. As we observed above, the
length of the path generated by S in one eared-rectangle is at least 2 — ¢ units
whereas the length of the shortest path is V/2 units. This is true for all eared-
rectangles except for the last eared-rectangle of an iteration whose top edge has the
same height as t. In this case the action of the adversary does not depend on S,
but the adversary always rotates the new eared-rectangle and opens the alley that
is closer to t. We assume that S is given this knowledge in advance and, hence, S
is able to choose the shortest path in the last eared-rectangle of an iteration. Note
that if the distance of s; to t is n;, then the adversary places n; eared-rectangles on
top of each other until the horizontal or vertical line through ¢ is reached. Hence,
the distance traveled by the robot in the ith iteration is (n; —1)(2 —¢) +v/2 whereas
the length of the shortest path is n;v/2. The competitive ratio of S is now at least

i (i —1)2=-2) +v2) e (@-V2-ek
\/EZleni a <\/§ > ﬁZleni
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with 1 <np <ng—1 <--- <mny <n; =n. The Strategy S can choose the numbers
k and n;, for 1 <14 < k, in order to minimize Expression 1. It is minimized if Ele n;
is as small as possible, that is, if npy = 1, ny_1 = 2, and so on until n, =k — 1 and
ni; = n. Therefore, Expression 1 is bounded by

(2-%) 5= - (V-35) - wme
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Figure 5: A G-street which forces a competitive ratio of 1/82.

This is minimized for & = v/2n, and the competitive ratio of S is at least

V2 V2 ’
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for n > 2. By choosing the alleys so small that ¢ = 1/y/n, the claim follows. Since
n can be arbitrarily large, we have shown the following result.

Theorem 1 If S is a deterministic strateqy to search in streets with known location
of the target, then the competitive ratio of S is at least /2.

3. Lower Bounds in G-streets

In this section we prove lower bounds for two types of search problems in G-
streets. First we show that the competitive ratio of searching in a rectilinear G-street
is at least /82 ~ 9.06 if the length of a path is measured in the Ly-metric. Secondly,
we show that 9 remains a lower bound to search in rectilinear G-streets if the length
of a path is measured in the Lj-metric even if the coordinates of the target are
known in advance.

3.1. A Lower Bound for the Lo-Distance

Consider the G-street P in Figure 5. The target ¢t can be hidden in any of
the teeth of P and P still is a G-street. In order to decide whether the target ¢
is contained in a tooth T', the robot must intersect the vertical line through the
rightmost point of T"if T is to the left of s and the vertical line through the leftmost
point of T" if T is to the right of s. If P contains n teeth, then the robot can be
forced to travel at least 9 — O(1/log®n) times the horizontal distance of s to the
tooth that contains ¢ 1'%, It does not pay for the robot to leave the chord c; since if
the robot is located above ¢ when it detects the target, then an adversary places ¢ in
a tooth below ¢ and vice versa. If p is the point on ¢ at which the robot sees ¢, then
the robot travels a distance of 9d(s, p)+d(p, t) while the Lo-shortest path has length
\/d(s,p)? +d(p,t)2. By choosing d(p,t) = 1/9d(s,p), i.e., by putting the teeth of
P along lines with slopes 1/9 and —1/9, respectively, we obtain a competitive ratio
of v/82 for n — oo as claimed. We have shown the following theorem.

Theorem 2 The competitive ratio of any search strategy to search in orthgonal
streets is at least /82 ~ 9.06 in the Lo-metric.

3.2. A Lower Bound for Searching for a Target of Known Location

Now consider the situation in which the robot searches for a target of known



Figure 6: A Lego-stack polygon.

location on a G-street. In this case the polygon of Figure 5 no longer provides a lower
bound of 9. Instead, similar to the lower bound for searching in streets we again
construct a family F,, of polygons such that for each deterministic search strategy
S there is a polygon Ps in F,, for which a robot using S traverses at distance of at
least 9 — O(1/logn) times the length of a shortest path from s to ¢.

Theorem 3 Searching for a target of known location in a rectilinear G-street is at
least 9-competitive.

In the following we prove Theorem 3. Let the origin be the initial position s of
the robot and (0,1) the position of the target ¢. Each polygon in the family F,
of Lego-stack polygons is made of m = n3 connected rake polygons. A connection
point joins a tooth from the bottom rake to the middle of the top rake (see Figure 6).

Rakes are numbered in the order of occurrence on the robot’s path from s to
t. Each rake has height 1/m; it is symmetrically centered above its entrance point
and has length 2n (except for the last one which contains no teeth and is just wide
enough to contain ¢ and its entrance point). At the entrance point the robot sees
only into one tooth of the rake. It searches for the opening to the next rake by
alternatingly exploring the parts of the rake to the left and right of the entrance
point in increasing step lengths. We define CF to be the competitive ratio of the
search strategy of the robot if the target is found in the kth exploration of the left
side. Cf is defined analogously for the right side.

The problem in the construction of the Lego-stack polygon is that since the
robot knows the location of the target it can bias the search towards to target.
However, we can make use of the following theorem which ensures that the more
the robot biases the search towards the target, the higher is the penalty if the
adversary places the connecting tooth on the side opposite to the target. In the
following let C,, =9 — 72/(logn — 8).

Theorem 4 If X is a strategy to search for a target in a rake of length 2n having
a total of 21 steps, then
max (Ci +C)/2 2 Cn.

This theorem is proven in Section 4.

3.2.1. *

Adversary’s Strategy
We use an adversary to construct the polygon Ps on-line depending on the
robot’s moves. Let x; be the xz-coordinate of the entrance point to the ith rake and



d; the horizontal distance from the entrance point to the exit (connecting) tooth,
that iS, di = |:II,' — ;L'i+1|.

The adversary keeps track of z;, the competitive ratios C* and C¥, and a
variable D;. The competitive ratio C'* is defined as the ratio of the distance that the
robot has traversed in the current rake over the distance to the closest unexplored
tooth in the left part. C* is defined analogously for the right side. D; is defined as
the length of a shortest path from s to the entrance point of rake ¢ minus |z;|.

The adversary’s strategy to place rake ¢ + 1 works as follows. We assume that
z; > 0. The case x; < 0 is completely analogous. The adversary first checks if there
is a step in the exploration of rake i such that C* is not too small, that is, such
that CL > 2C,, — cx,+1 where k; = ||2;|/n] and ¢y, is defined by

| Cy, for k <0
%=1 Cu+(k—1)/n, fork>0.

If this is the case, then adversary opens the tooth with competitive ratio C* and
sets z;4+1 = x; —d;. The length of the shortest path from s to the entrance point of
rake 41 increases by d;, that is, by the definition of D; its length is z; + D; +d; and
Dit1 =z + D; + d; — |xi41]- If we distinguish the cases z; > d; and z; < d;, then
it is easy to see that the equation for D;1; simplifies to D;11 = D; + 2min{d;, z;}.
If the competitive ratio C% is smaller than 2C,, — c,+1 for all steps of the

exploration of rake i, then the adversary opens a tooth to the right of the entrance
point with competitive ratio C* > 2C,, —C¥ which is always possible by Theorem 4.
We obtain z;41 = x; +d; and D;y; = D;. In a more algorithmic notation the
adversary’s strategy can be described as follows.

Adversary’s Strategy

1 Dy « 0; 21 <0

2 fori<+ 1tom—1do

4 if z; > 0 then

/* The robot is to the right of s */

5 if there is a step such that C* > 2C,, — g, 11
6 then the adversary opens the tooth to the left of the entrance
point with competitive ratio C'*
7 Tjp1 & T — di
8 Di+1 —D;+2 min{d,-, ;L'i}
9 else the adversary opens a tooth to the right of the entrance
point with (C¥ + CH)/2 > C,
10 Tiy1 ¢ x; + d;
11 Di+1 — D;

13 if z; <0 then ...
/* this case is completely analogous to the case z; > 0 with left
and right (and plus and minus for z;) exchanged */
end for

Since the competitive ratios C* and C* are non-negative, a tooth to the left of
the entrance point is opened if it is ever the case that 2C,, — cg, 41 < 0, which implies
that when a tooth to the left of the entrance point is opened we have |z;/n| < nC,
and if a tooth to the right of the entrance point is opened if |—z;/n| < nC,,. This
implies the following observation.
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Figure 7: Each block of length n that fits into |z;| is weighted by the factors c;.

Observation 1
|z:| < (nC,, + 1)n < 1002

In order to compute the distance traversed by the robot we show that the fol-
lowing invariant is maintained during the construction of Ps.
Invariant 1 When entering rake i the robot has traversed a distance of at least

k;—1
i . 1
L; = E ¢ | n+ckx; + <Cn - E) D;,

=0

where &; = |z;| — kin.
Invariant 1 states that each block of length n that fits into |z;| is weighted by the
factors ¢; which increase by 1/n (except for ¢; which equals ¢p). Hence, the larger
|z;| the larger is the detour of the robot. This is illustrated in Figure 7.

Proof. W a

e show that the invariant holds after each construction step. The invariant
obviously holds for ¢ = 1. Now assume it holds up to (and including) iteration
1 > 1. For simplicity we assume that z; > 0 in the following. The case x; < 0 is
completely analogous.

First consider Steps 6-8. By the invariant the total distance traveled by the
robot is at least L; + CLd;. First we assume that z; > d;, that is, D;i1 = D; +2d;.
Since CF > 2C,, — c.+1, the robot has traversed a distance of at least

ki—1
¢ 2 1

L; + (2Cn — ckiJrl)di = E c |l n+ Ckiii“i — (Clc,-+1 — —) d; + <Cn — —) (Dz + 2dz)
= n n) e——

=Di41

Note that Ck; Z Ck; —1 Z Cl;+1 — 2/n If di S ;i'i, then ii'H-l = ;i'i — di, kH—l = k,‘, and

. 2 . .
C; Ty — (Ckl—+1 - di > Cp; Tip1 = Chipy Tig1-



If d; > ;, then ii'H-l =I; +n—d;, kH—l =k; — 1, and

. 2 . .
Cl; 1M + Cr; Ty — (Clc,-+1 - di > Cp;1%i1 = Cryyy Tig1

Hence,
ki+1—l
. 1
L+ (2Cy, — cp41)d; > Z ¢l n+ cki Tt + <C’n — E) Ditq.
j=0

Now assume that z; < d;. In this case k; = 0 and Z; = x;. Since ¢y = ¢; = C,, the
total distance traversed by the robot is at least

1
Li-l-CLdi > co T+ <Cn——> Di-l-(QCn—Cl)di
~— n ~—————

=C, =C,

1 1
> Cn(d; — ;) + <Cn - ﬁ) (Di +22;) = colzipa|+ <Cn - ﬁ) Diiy.

Now consider Steps 9—11. As we observed above, Theorem 4 implies that there
is a step with (Ct + C*®)/2 > C,,. Since for all steps C* < 2C,, — ¢k, +1, we obtain

CH>2C, — C* > cpq1 > Chyys -

Hence, the distance traveled by the robot in iteration i is Cfd; > ¢, +1di and since
ZTi+1 = x; + d;, Invariant 1 is clearly maintained.

3.2.2. *

The Competitive Ratio

We now analyse the competitive ratio of a strategy for which a Lego-stack poly-
gon is constructed in the above manner. In the mth rake the target has distance
|, | from the entrance point. Hence, the total distance traveled by the robot is at

least (ngo_l Cj) N+ Cpdm + (Cp — L) Dy + |2 | and the competitive ratio C' of
the strategy is bounded from below by

(Efggl cj) n+ ¢, &m + (Cn — L) Dy + |z
D, + 2|z )

We observe that Dy, > m — 2|z,,| since the robot moves at least one step in each
iteration and, thus, the length of a shortest path from s to ¢ is Dy, + 2|2, | > m.
Hence, by using the taylor series expansion for 1/(1 + x), Observation 1 and the
fact that m = n® we obtain

(Cn— 1) Dy, 1 1 1 2|2
> L ni 7> - ) — > - - -
¢ Dy +2|wm| ~ <Cn ”) 1+ 2zml = <Cn n) <1 Dy, >

D,
1 20n? 1 1
(0-3) 0= 5Zmm) =00 (3) =0-0 ().
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Figure 8: Searching on the real line.

for n > 20. This concludes the proof.

4. Searching on the Real Line

In this section we prove Theorem 4. In fact, we consider the more general setting
of searching on the real line. Here, we assume that the robot is located at the origin
s and the target ¢ is located elsewhere on the line. The robot can only detect ¢ if it
stands on top of it. We assume that we are given a lower bound of 1 distance unit
on the minimal and an upper bound of D distance units on the maximal distance
to the target.

A strategy to search for ¢t works as follows. The robot starts at s and travels
to one side, say to the left. At some point, say at a distance of zy to s, it decides
that it has traveled far enough to the left and returns to s. It travels a distance of
x1 to the right and returns to s again to explore the left side again and so on. For
illustration see Figure ?7. Obviously, the values z; which denote the distance that
the robot travels to the left or to the right of s—depending on whether i is even or
odd—suffice to characterize a search strategy completely. Note that since an upper
bound of D on the distance to t is known, the strategy consists of a finite number
of steps which we assume to be (zo, ..., T2p41)->

4.0.3. *

The Competitive Ratio

Assume that the target is discovered in Step k + 2, say to the left of the origin.
The ray to the left of the origin was visited the last time before Step k£ + 2 in Step
k. Hence, the distance d of the target is greater than x;. The distance traveled by
the robot to discover t is d + 2 Zfiol z;. The competitive ratio of Step k is given by

k+1
Zi:o Lq

Tk

sup L =142

d+2 Zf:ol x;
d>xy, d

since d can be placed arbitrarily close to xj by an adversary. The competitive ratio
C of the strategy is now given as the maximum of the competitive ratios of the
Steps k with 0 < k < 2n, that is, C = maxo<k<on 1 + 2(2?;01 x;)/zk. It can be
shown that, if D = oo, then the competitive ratio of the strategy is minimized if

x; = 2¢ 127 This results in a competitive ratio of 9.

3Note that the number 2n + 2 of steps of a strategy is not related to the width 2n of a rake
which is a distance measurement and corresponds to D. The reason why we choose the number
of steps to be 2n + 2 instead of n is due to the fact that we will work with sequences that have
about half as many elements as X.

11



4.04. *

Biased Strategies

We say a search strategy is biased if one side is favored over the other. For
instance, the robot may explore the ray to the left much farther than the ray to
the right. Of course, the overall competitive ratio of such a strategy is at least 9
as mentioned above. However, suppose that the competitive ratios for the left and
right sides are considered separately. We define the left competitive ratio Ly of Step
2k to be the competitive ratio if the target is placed on the left side and is found
in Step 2k + 2; analogously, we define the right competitive ratio Ry, of Step 2k + 1;
that is,
Zo T wd gy = 142lmm

L2k L2k+1

L, = 1+2

Let C% = maxo<k<n—1(Lr + Ri)/2 which we call the average competitive ratio of
X. Within this framework Theorem 4 can now be stated as follows.

Theorem 4’ If X is a strategy to search for a target on the real line whose distance
is at most D to s and CY’ is its average competitive ratio, then C%Y > 9—72/(log D—
8).

We use the following approach to prove a lower bound on C}y’. Assume that
strategy X consists of 2n + 2 steps and the average competitive ratio of X is less
than 9 (otherwise the theorem is trivially true). Let Cyp,4o be twice the minimal
average competitive ratio that a positive sequence consisting of 2n +2 elements can
achieve. In particular, C% > Capy2/2. We compute a lower bound C} on Copyo.
Then, we show that C}; > 18 — 36/n which implies that C§’ > 9 — 18/n.

Finally, we observe that since
s Lot Re el wi . e mi S T2kl | T2kdd

8> > )
2 Ty, Tokt1 Ty, Tokt1

for 0 < k < n—1, the ratio xag42/x2; is bounded by 16 and, therefore, D < s, <
16" zy. Hence, log D < 4(n+1)+logze < 4(n+1)+4and CY > 9—72/(log D—8)
which proves Theorem 4'.

Hence, in the remaining section it is our aim to show the following lemma.

Lemma 2 There is a C}; with C}; < 62n+2 such that

. 36
Cr>18-—.

Once we have shown Lemma 2, Theorem 4’ follows by our above considerations.
Since the proof of Lemma 2 is somewhat involved we show the claim in several steps
which are formulated as lemmas.

4.0.5. *

Computing a Lower Bound on 62n+2
In the following let X be a sequence consisting of 2n+2 elements (zo, . . . , Tan+1)-

We define I, = xop, and 7 = Topy1, for 0 < k < n. Furthermore, let L = Zf:o l;
and Ry, = Zf:o rr. Ly, is half the distance traversed on the left side and Ry, is half
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the distance traversed on the right side. As above let Ly be the left competitive of
Step 2k and Ry, the right competitive ratio of Step 2k + 1, that is,

2k+1 - —

PP/ L

Ly = 1_4_2@:14_2@
Tk L

and

2k+2 — —

i—o Tj L R

ZJ_O I _ 149 k+1 + ko
T2k+1 Tk

R, = 1+2

If there is a 0 < k < n — 1 such that Ly + R; > 18, then we are done. Hence, we
assume in the following that Ly + Ry < 18, forall 0 < k <n — 1.

Lemma 3 For all positive sequences X of length 2n + 2 with Ly + Ry < 18, for
0 <k <n-—1, there is a sequence Q = (Q1,Qa,..., Q1) with Qi € [1/4,12], for
1<k <n-—1 such that

4 2
max Lp+ R, > max 6+ Q + +2¢/2(Q+2)(1+ (2)
0<k<n—1 1<k<n—2 Qpt1 Q1

Proof. L O
et Ly and Ry be defined as above. For 1 < k <n — 1, we set
0 = 2Lk71 + Ry
Uk
The sequence (4,...,Q,-1) is called the residue sequence of X. Lj can now be
expressed as follows
L, +R Lp_1+Rp_1 2 2
L, = Lpolet e g olkott fer 2Tk 34+ 4+ 2k
Ik Uk Uk Uk
which implies that
Iy
T = (Lk—3—9k)5- (3)
Moreover,
L.+R -
Lk:1+2lﬁ—l- = 2(Ln+Ri) = (L, — 1)l (4)
k
and
L.+R ) ) Ly -1
Q1 = Qﬂ @ (Lp —1)— or k1 _ kT2 (5)
li+1 li+1 Uk Qg1

We first show that Qp € [1/4,12], for all 1 < k < n—1. Q < 12 follows
immediately from Ly + Ry < 18, Q4 +3 < Ly, and 3 < Ry,. We show that Q; > 1/4
by contradiction. So assume that Qj < 1/4. Then,

Ly 1+ Ri

1/4> Qp =2
Ik

13



which implies that I > 8(Lg_1 + Rg_1) and, therefore,

Ly + Ry Ly_1+ 1, + Ry
Li 1 +Rpqy > Rp_y = 142877kl g4 oZh=l TR T k-l
Tk—1 Tk—1
n 2Lk71 + Ry +8(Lp—1 + Rp—1)
Tk—1
L1 + R
= 19418kt g
Tk—1

v

1

in contradiction to the assumption that Ly 1 + Rr_1 < 18.
Next we show Equation 2. From Equations 3, 4, and 5 we obtain that, for
1<k<n-2,

I _
Lp,+R, = Lk+1+2k+1747+Rk
k
= Lk+1+2m
Tk
@4 +1+2lk+1+(Lk—1)lk
= k (Lk—?)—ﬂk)l?k
Lk)_]- 4lk+1
= Lp+1+2
k L —3—Qr (Lr—3—Q)lk
(©) Ly -1 4(Ly, — 1)
= Lp+1+2
’ Lo -3 (Lrn—3—00)%m
1+2/Qps
= Lp+1+2(Lg—1)——F—-F.
k+14+2(Lg )Lk—3—Qk
Let
14+2/Q
f(Lkaﬂkaﬂk—‘,-l):Lk+1+2(Lk—l)ﬂ
Lk_?)—ﬂk
Taking the derivative of f w.r.t. Ly yields
of 1+2/Qq Li—1
—— (L, Q, Q2 =1+2 1—
aLk( k> Sbk, k)-‘rl) + Lk—g—ﬂk Lk_g_ﬂk

Hence, f has (at most) two extrema in Ly, at

20/402 1, + 203, O + 8Qurt + 41 O

Qp +
S 2041

Since f — —oo0 as Ly — —oo, f — oo as Ly — oo, and f has a polar point at
Lj = 34 Qy, one extremum which is contained in (—oo, 3+ ;) is a local maximum
of f, and the other extremum which is contained in (3 + 2, 00) is a local minimum.
Since by Equation 3 Ly > 3 + Qf, we only need to consider the minimum of f in
(3 4+ Q,00). The value of Ly, at the minimum is

20/408 1 + 202, + 81 + 41 O

14



In particular, Ly + Ry > f(Lk(Qk, Qpr1), U, Qpp1), for 1 < k < n — 2. If we set
g(ﬂka Qk)-‘rl) = f(Lk) (Qka Qk+1)7 Qk: Qk+1)7 that iS,

4 2
g%, Qp1) = 6+ Qp + +24[2(Q + 2) <1+ )
Qk+1 Qk+1

then, maxo<k<n-—1 Ly + Ry > maxj<k<n—2 g(ﬂk, Qk+1) as claimed.

By Lemma 3 the minimal value C;}; of maxi<g<n—2 g(Q%k, Qx41) taken over all
sequences (€,...,Qy_1) with Q € [1/4,12] is a lower bound on 52n+2. This
completes the first step.

4.0.6. *

Optimal Residue Sequences

So now we are concerned with finding a residue sequence (1, s, ..., Q,_1) with
O € [1/4,12] such that maxi<g<p—2 g(Qk, Q41) is minimized. More precisely, let
r: [1/4, 12]”71 — IR with F(Ql, QQ, Ceey anl) = MaX1<k<n-—2 g(Qk, Qk+1) and

Cr = inf§€[1/4712]n,1

We first show that, for a fixed n, there is a special residue sequence 0 =
(Q,Q3,...,95 ) such that D((*) = C and, in addition, 9(Q, 0y ) = C, for
alll <k <n-2.

Lemma 4 There is a sequence (QF,Q5,...,Q5 ) € [1/4,12]"71 such that

g(Q, Q) =C, forall 1 <k <n—2.

Proof. F a
irst note that there is, indeed, a sequence (* € [1/4,12]""! with I'(}*) = cr

since I" is a continuous mapping on a compact domain and, therefore, assumes its

minimum (and maximum).

Let G* be the set of positive sequences G = (g1, 92, - - -,9gn—2) of length n — 2
such that g, = g(Q, Qk+1), for some sequence (Q1,Qa,...,Qp_1) € [1/4,12]"7L
and max;<g<n—2 gr = C,;. By the above argument G* is not empty. Consider a
sequence G* € G* such that the number of elements ¢ in G* with g, = C} is
minimized. We claim that G* = (C%,Cr,...,CF).

The proof is by contradiction. So assume that G* # (C},C,...,Ck). Let
gr € G™ such that g, = O}, and either g1 < gi or gr41 < gg. Since G* is not
constant, such a g clearly exists. Consider the derivatives of g = g(Q, Qpy1)
w.r.t. Q and Qp41. We obtain

I(€}). As we observed above C is a lower bound on Ca,ys.

2
2(1+ m+1)
Qr+2

9gr _ 99

90, _ 09 >0 (6)

(Q, Up1) = 1+

and

O dyg _ 4 _ 22 +2)

99 _ 99 (q, <0. (7
L O S
k+1

Hence, if gr—1 < gi, then we can decrease , which increases gx—1 = g(Qx—1, )
and decreases g, = g(Q, Qx+1), such that g and gx_1 < C};. In this way we obtain
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a new sequence G'. The number of elements g} € G' with g = C}: is one less than
for G*. Note that if g, is the only element of G* with g, = C};, then we have, in fact,
decreased the value of max G* in contradiction to our choice of G* € G*. Hence,
there are less elements in G’ that are equal to C}; than in G* again in contradiction to
the choice of G*. Similarly, if gr4+1 < g, then we can increase 41 which decreases
g = 9(Q, Qg+1) and increases grr1 = g(Qg+1, Qg+2) and the same argument
applies. Hence, there is a sequence (Q7,...,Q ;) with g(Q, Q5. ;) = Cp;, for all
1<k <n-—2, as claimed.
In fact, the proof of Lemma 4 implies a stronger result.

Corollary 1 All sequences G = (1, Qy,..., Q1) € [1/4,12]" 1 with D(}) = C
satisfy (., Qus1) = . for L<k <n—2.

4.0.7. *

A Recurrence Equation

In the following let (Q1,2,...,Q,_1) be a sequence with Q; € [1/4,12] such
that g(Qg, Q1) = Cr, for all 1 < k < n — 2. With the help of Lemma 4 we now
can derive a recurrence equation for the sequence (€y).

Lemma 5 Forall1 <k <n-—2,

(g1 +2) C — 2)
Qpp1

= h(C*, Qpyr) = CF (8)

Proof. B a
y assumption the sequence (€2;) satisfies the equation

4 2
+20/20+2) (14 =C,
Qpt1 \/( * )< Qk+1>

forall 1 < k < n—1. If we solve the above equation for 2, then there are two
possible solutions for €2

6+ Q. +

Q 2 2
O = O -2+ tova, | Qe £2)(C —2)
Qk+1 Qpy1
or
QO = C:; Qk+1+2 C —2)
Qg1

In order to see that ) equals the second solution we note that we only have to
consider Q € [1/4,12]. Inequalities 6 and 7 imply that C* > ¢(1/4,12) > 10 and,
hence,

min cr

Qpr€fl/a,12] "

+2f\/ Qi +2)(C; — 2) > 16.9

Qk-‘rl Qg1

which contradicts Q0 < 12. Therefore, €1}, is given by Equation 8.
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Figure 9: (a) For Q > 1/4, h(16.5,1) is completely below the diagonal of the first
quadrant and after a few iterations €, becomes negative. (b) The graph of h(18,2)
touches the diagonal in the point (2,2) and an infinite number of positive values of
Q. are possible.

4.0.8. *

Bounding the Number of Steps

Recurrence equation 8 limits the number of elements the sequence
(Q1,Qa,...,Q,-1) can consist of for a given C%. This can be seen by visualiz-
ing the dynamics of recurrence equation 8. In the following we refer to Figure 77.
Let C be a fixed value. Consider the graph G, ¢ of the function h(C,-). We obtain
Q. if we start on the z-axis at Q41 and go vertically up to Gj,c. At the intersec-
tion point (Qpy1, h(C, Q1)) = (Ver1, Qk) of Gy, with the vertical line through
Qr+1 we continue horizontally until we intersect the diagonal of the first quadrant,
in the point (Q, Q). At this point we again continue vertically until we intersect
Gh,c in (Q, Qk—1) and so on (see Figure ?7?).

We will show that C' = 18 is the first value for which G, ¢ intersects the diagonal.
Therefore, if C' < 18, then 2 becomes negative or at least smaller than 1/4 after
some number of steps, say m. Since we require that Qp > 1/4,forall 1 <k <n-—1,
the length n — 1 of the sequence (€) is at most m — 1. In following we show that
m is bounded by 36/(18 — C).

We first show that € actually becomes negative or smaller than 1/4 after a
number of steps. To see this consider the roots of h(C, Q) which are given by

4 — 8v2 and 2y = 4 + 8v2
C-10 C—2(C-10) ‘T C0-10 " JO—2(C-10)

It is easy to see that h(C,€Qy) is positive, for Qi € [0,21) and Qi € (22,00) and
negative for Q0 € (21, 22). Moreover, z; decreases as C increases, if C' > 10, and,

zZ1 =
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therefore, z; assumes its maximum for the minimal value of C. Hence,

4 82

< 1l <1/4
2+ C—10 VO —2(C—10) = /
and Q, € [z2,00), forall 1 <k <n-—1
Lemma 6 If 10 < C' < 18, then the mazimum number m of elements Qy, with
O € [22,12], for all 1 < k <m, and Qg = h(C, Qpq1), for all1 <k <m—1, is at
most 36/(18 — C).

Proof. W O
e claim that

Q=1 > (18-0)/3, (9)

for Qp, Qp—1 € [22,00) and 10 < C' < 18. Since 22 < Oy, and Q; < 12, this implies

that
12 — z2 12 — Z9 36
m <

- <
T minj<g<n—1 Qp — Qg1 — (18 — C)/3 —18-C

as claimed.
In order to see (9) we observe that by Lemma 5

4 Qp +2 2
Q= V1 =Y —C+2— — +2 o +2)(C =2) des a(, C).
Qy Qy

We consider the derivative g¢ of ¢ w.r.t. C.

2(Q +2) 2/ + 1 Ymtl
10 (9,C) mio—2) =V Teop = VA Teoy !
- _sm+4\/§+mc_1 - /2 < _us3s
= (VO =2+2v2)(C -2) - c-2 =

If ¢(Q, 18) > 0, then
18

Qk_Qkfl = q(Qkac) > q(Qkac)_q(Qkals) = / _qC(Qkav) dr)/ > 035(18_0)
C

which proves (9).
It remains to be shown that

4 Or +2
(0, 18) = O — 16 — — +2,/32°5 72 5 ¢
O O

for Q, € [22,12). Since O — 16 — 4/, < 0, it suffices to show that

Qk+2 <
k

128

4 2
16+ — -0 .
+Qk k>

If we multiply by 2, the above inequality is equivalent to showing that the function
@1 (D) = 128 Qp (U +2)— (16 Qi +(2— Q) (2+Q,))? = —Q3+32 Q5 —120 Q7 +128 0, —16
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is non-negative on [zs,12). The function ¢; has three extrema, one at 11 — /105,
one at 2, and one at 11 ++/105. Obviously, the extremum at 2 is a minimum with
¢1(2) = 0. Hence, we only need to check the boundary values ¢;(1/4) = 8.99 > 0
and ¢ (12) = 18800 > 0. Hence, ¢; is non-negative. This concludes the proof.

We are now in a position to finally prove Lemma 2 and, thus, Theorem 4’.

Proof. | a

Lemma 2] By Lemma 3 C is a lower bound for 62n+2. By Lemma 4 there is a
sequence (1* = (Qf,93,...,9Q5_;) with QF € [1/4,12] such that g(Q},Q;,,) = C,
for all 1 < k <n —2. Lemma 5 implies that (* satisfies the recurrence equation

Qf = h(Ch Q1)

for all 1 < k <n — 2. By our previous considerations 2} € [22,12], for all 1 < k <
n — 1. Hence, we can apply Lemma 6 and

36 36
< — *> 18— —
n_18—C,*L or C; >18 -

which concludes the proof.

Notice that an unbiased strategy can be viewed as a special case of a biased
strategy; therefore, Theorem 4’ also implies a lower bound for unbiased strategies;
however, the converse does not hold. In this sense Theorem 4’ is the stronger result.
For other results about unbiased searching on the real line up to a given distance
see 514,

Corollary 2 (13) Let CP be the competitive ratio for finding a target point on the

real line under a given strategy X if the target is placed at a distance of at most D

to s. Then, CY >9—0(1/log D).

Proof. T a
he proof is by contradiction. Assume that CP < 9 — 72/(log D — 8). Then,

C <9 —172/(log D —8) since CP = max;<p<pn—1{Ls, Ri}—a contradiction.

5. Conclusions

We have presented lower bounds for streets and generalized streets. In streets, we
provide a lower bound of v/2—O(1/+/n) for the competitive ratio of any deterministic
strategy that a robot may use to search in a rectilinear street if the coordinates of
the target are given in advance to the robot. Here, n is the Euclidean distance from
the start point to the target.

In G-streets, we provide a simple example, that settles the competitive ratio of
searching in orthogonal G-streets w.r.t. the Lo-metric. We show that V/82 is a lower
bound which matches the competitive ratio of the best known algorithm. Secondly,
we also investigate if it is an advantage for the robot if it is given the location of the
target in advance. We show that there are polygons for every strategy that force
the robot to walk at least nine times the length of the shortest path from s to ¢.

Our lower bounds are based on a new result about searching on the real line.
Here, we show that the average competitive ratio of any strategy to search on the
real line is at least 9 — O(1/log D) if the target is placed anywhere within D to the
origin.
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