
Lower Bounds for Streets and Generalized Streets�Alejandro L�opez-Ortizy Sven SchuiererzABSTRACTWe present lower bounds for on-line searching problems in two special classes ofsimple polygons called streets and generalized streets. In streets we asssume that thelocation of the target is known to the robot in advance and prove a lower bound of p2on the competitive ratio of any deterministic search strategy which can be shown to betight.For generalized streets we show that if the location of the target is not known, then thereis a class of orthogonal generalized streets for which the competitive ratio of any searchstrategy is at least p82 � 9:06 in the L2-metric|again matching the competitive ratioof the best known algorithm. We also show that if the location of the target is known,then the competitive ratio for searching in generalized streets in the L1-metric is at least9 which also can be shown to be tight.The former result is based on a lower bound on the average competitive ratio of searchingon the real line if an upper bound of D to the target is given. We show that in this casethe avervage competitive ratio is at least 9�O(1= logD).1. IntroductionThe problem of a robot searching for a target in an unknown environment hasrecently received a considerable amount of attention 3;4;5;6;11;12;15;17;18. In thissetting it is assumed that the robot is equipped with an on-board vision systemthat allows it to see its local environment. However, the robot does not have accessto a complete map of its surroundings.Since the robot has to make decisions about the search based only on the part ofits environment that it has seen before, the search of the robot can be viewed as anon-line problem. One way to judge the performance of an on-line search strategyis to compare the distance traveled by the robot to the length of the shortest pathfrom s to t. In other words, the robot's path is compared with that of an adversarywho knows the complete environment; this approach to analysing on-line algorithmswas introduced by Sleator and Tarjan 20. The ratio of the distance traveled by therobot to the optimal distance from s to t is called the competitive ratio of the searchstrategy.Since, in general, the ratio between the distance a robot traverses and the lengthof a shortest path can be forced to be 
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Figure 1: (a) The triple (P; s; t) is a street since the two polygonal chains L and Rfrom s to t are weakly visible from each other. (b) The triple (Q; s; t) is a G-street(but not a street) since every point of Q can be seen by the two horizontal chordsthat connect L and R.
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Figure 2: A lower bound for G-streets.Klein was the �rst to consider a class of polygons called streets 11. A streetis a triple (P; s; t) where P is a simple polygon and s and t are two points onthe boundary of P such that the two polygonal chains L and R from s to t aremutally weakly visible, that is, each point on L sees a point on R and vice versa(see Figure 1a). It can be easily shown that p2 is a lower bound for the competitiveratio of searching in an orthogonal street. Surprisingly, this competitive ratio canbe achieved even for arbitrarily oriented streets 9;19. In this paper, we show thatp2 remains a lower bound for searching in (orthogonal) streets even if the locationof the target is known in advance. However, streets are often too restrictive a classof polygons in order to model real environments.In the search for larger classes of polygons that admit search strategies with aconstant competitive ratio Datta and Icking propose a class of polygons they callgeneralized streets or G-streets 6. Similar to a street, a G-street is also a triple(P; s; t) but now each point on L or R has to be seen from a horizontal chord thatconnects the two polygonal chains L and R (see Figure 1b). It can be shown thatthe class of G-streets properly contains the class of streets. Datta and Icking presentan algorithm to search in orthogonal G-streets that achieves a competitive ratio of9 in the L1-metric and of p82 (� 9:06) in the L2-metric. In fact, 9 is also a lowerbound for searching in orthogonal G-streets. To see this consider the polygon P inFigure 2. If the target t is placed in any of the spikes, then (P; s; t) can be easilyshown to be a G-street. Obviously, a strategy to search in P can be used to searchfor a target on the real line (without visibility information). Since 9 is a lower2



bound for searching on the line 1;7;14, we obtain the same lower bound for searchingin G-streets.L�opez-Ortiz and Schuierer present an algorithm to search in arbitrarily orientedG-streets albeit with a much higher competitive ratio 16.In this paper we present a family of orthogonal G-streets in which every searchstrategy needs a competitive ratio of at least p82 if the path length is measured inthe L2-metric, thus, proving that the strategy of Datta and Icking is optimal evenin the L2-metric.Finally, we consider the problem of searching in an orthogonal G-street if thelocation of the target is known in advance. We again show that this knowledgedoes not provide an advantage to the robot and show a lower bound of 9 in theL1-metric.1In order to be able to prove the lower bound of 9 for known destination search inG-streets we use a reduction to a variant of searching for a target on the real line. Inthis new variant we consider the average competitive ratio Cav of a strategy wherethe average is taken over the competitive ratio CL if the target is found to the leftof the starting position and the competitive ratio CR if the target is found to theright of the starting position, that is, Cav = (CL + CR)=2; moreover, we assumethat we are given an upper bound D on the maximal distance of the target to thestarting position. We show that Cav � 9 � O(1= logD). This new bound may beof use in other lower bound proofs of similar nature.The paper is organized as follows. In Section 2 we show a lower bound of p2for searching in streets given the location of the target in advance. In Section 3 wepresent lower bounds for orthogonal G-streets with known and unknown location ofthe target. In Section 4 we prove a lower bound for biased search strategies on thereal line. Finally, in Section 5 we summarize our results.2. A Lower Bound for Searching in StreetsIn this section we present a lower bound for searching in streets. If we assumethat the position of the target is not known to the robot in the beginning, then thepolygon shown in Figure 3a2 provides a lower bound of p2. If the robot goes toone side, before it can see into both ears of the polygon at the top of the rectangle,then the target is placed in the ear on the other side. Hence, going straight up inthe middle until both ears are visible is the best on-line strategy. If we choose thewidth to be 2 and the height to be 1, then the competitive ratio is p2.The question is if there is a strategy with a better competitive ratio if thelocation of the target is known. Clearly, the polygon shown in Figure 3a now nolonger provides a lower bound since the robot knows the position of the target andcan move directly to it; however, by connecting a number of these polygons, it isstill possible to show a lower bound of p2 on the competitive ratio of any strategyto search in streets even if the position of the target is known in advance.More precisely, we construct a family Fn of orthogonal streets such that, forall n � 0 and for all on-line strategies S, there is a street PS in Fn such thatthe competitive ratio of S in PS is p2 � O(1=pn). Note that the restriction toorthogonal streets only strengthens our lower bound.1Preliminary versions of the lower bounds for streets and G-streets have appeared in 15 and 16.2For now, the paths drawn in the �gure should be disregarded.3



We call the polygon of Figure 3a an eared-rectangle. Eared-rectangles can beconnected to create larger polygons. This is shown in Figure 3b. In the construction
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Figure 3: (a) An eared-rectangle. (b) Connecting two eared-rectanglesof Figure 3 each eared-rectangle has a connecting alley and a dead-alley. The entrypoint is the point where the robot enters an eared-rectangle which is located in themiddle of its bottom edge.If the robot is located inside an eared-rectangle and wants to decide which of thetwo alleys is dead and which is connecting, then it has to move up to a point in theeared-rectangle from which the top edge of one of the alleys is completely visible.By making the alleys very narrow, we can force the robot to move arbitrarily closeto the horizontal line that connects the alleys before it can decide which alley isdead and which is connecting.Assume we are given a strategy S to search in an orthogonal street with knowndestination. In the beginning the robot is located in an eared-rectangle of width 2units and height 1 unit. The target is located directly above the starting point s ata distance of n units.We present the strategy of an adversary to S that constructs a polygon consistingof at most n2=2 connected eared-rectangles in which the path traversed by the robotusing S is at least p2�O(1=pn) times longer than the shortest path from s to t.The adversary's strategy is as follows. If the robot moves into the left half of theeared-rectangle in order to �nd out which alley is connecting, then the adversaryopens the right alley and connects a new eared-rectangle to it and vice versa. Ifthe robot travels in the middle of the eared-rectangle, then the adversary opens anarbitrary alley. In this way the length of the path generated by S in one eared-rectangle has a length of at least 2� " where " depends on the width of the alleyswhereas the shortest path has a length of p2 (see Figure 3a).The adversary puts one eared-rectangle on top of the other until n rectangleshave been placed and the top edge of the current eared-rectangle has the sameheight as t. In this case the next eared-rectangle is rotated by 90Æ and placed onthe side of the current eared-rectangle that is closer to t. We denote the entry pointof this rotated eared-rectangle by s2 (see Figure 4a).First of all we note that at s2 the situation is exactly analogous to the situationat s just rotated by 90Æ. This is due to the fact that the shaded region in Figure 4bdoes not contain any eared-rectangles and the target t is again on an axis-parallelline through s2. Hence, the adversary can apply the same strategy recursively nowstarting at s2. Since the distance of s2 to t is at least one less than the distance of4
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Figure 4: (a) Constructing a new polygon with eared-rectangles. (b) The situationat s2 is analogous to the situation at s.s to t, this construction ends after at most n iterations. Clearly, if P is the polygonso constucted, then (P; s; t) is a street. Let k be the actual number of iterationsneeded. We denote the starting point of the ith iteration si, for 1 � i � k, wheres1 = s.We now analyse the distance traveled by the robot. As we observed above, thelength of the path generated by S in one eared-rectangle is at least 2 � " unitswhereas the length of the shortest path is p2 units. This is true for all eared-rectangles except for the last eared-rectangle of an iteration whose top edge has thesame height as t. In this case the action of the adversary does not depend on S,but the adversary always rotates the new eared-rectangle and opens the alley thatis closer to t. We assume that S is given this knowledge in advance and, hence, Sis able to choose the shortest path in the last eared-rectangle of an iteration. Notethat if the distance of si to t is ni, then the adversary places ni eared-rectangles ontop of each other until the horizontal or vertical line through t is reached. Hence,the distance traveled by the robot in the ith iteration is (ni�1)(2�")+p2 whereasthe length of the shortest path is nip2. The competitive ratio of S is now at leastPki=1 �(ni � 1)(2� ") +p2�p2Pki=1 ni = �p2� "p2�� (2�p2� ")kp2Pki=1 ni� �p2� "p2�� kPki=1 ni (1)with 1 � nk < nk�1 < � � � < n2 < n1 = n. The Strategy S can choose the numbersk and ni, for 1 � i � k, in order to minimize Expression 1. It is minimized ifPki=1 niis as small as possible, that is, if nk = 1, nk�1 = 2, and so on until n2 = k � 1 andn1 = n. Therefore, Expression 1 is bounded by�p2� "p2�� kPk�1i=1 i+ n = �p2� "p2�� k(k � 1)k=2 + n:5
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Figure 5: A G-street which forces a competitive ratio of p82.This is minimized for k = p2n, and the competitive ratio of S is at leastp2� "p2 � 1p2n� 1=2 � p2� "p2 � 1pn;for n � 2. By choosing the alleys so small that " = 1=pn, the claim follows. Sincen can be arbitrarily large, we have shown the following result.Theorem 1 If S is a deterministic strategy to search in streets with known locationof the target, then the competitive ratio of S is at least p2.3. Lower Bounds in G-streetsIn this section we prove lower bounds for two types of search problems in G-streets. First we show that the competitive ratio of searching in a rectilinear G-streetis at least p82 � 9:06 if the length of a path is measured in the L2-metric. Secondly,we show that 9 remains a lower bound to search in rectilinear G-streets if the lengthof a path is measured in the L1-metric even if the coordinates of the target areknown in advance.3.1. A Lower Bound for the L2-DistanceConsider the G-street P in Figure 5. The target t can be hidden in any ofthe teeth of P and P still is a G-street. In order to decide whether the target tis contained in a tooth T , the robot must intersect the vertical line through therightmost point of T if T is to the left of s and the vertical line through the leftmostpoint of T if T is to the right of s. If P contains n teeth, then the robot can beforced to travel at least 9 � O(1= log2 n) times the horizontal distance of s to thetooth that contains t 1;14. It does not pay for the robot to leave the chord c; since ifthe robot is located above c when it detects the target, then an adversary places t ina tooth below c and vice versa. If p is the point on c at which the robot sees t, thenthe robot travels a distance of 9d(s; p)+d(p; t) while the L2-shortest path has lengthpd(s; p)2 + d(p; t)2. By choosing d(p; t) = 1=9d(s; p), i.e., by putting the teeth ofP along lines with slopes 1=9 and �1=9, respectively, we obtain a competitive ratioof p82 for n!1 as claimed. We have shown the following theorem.Theorem 2 The competitive ratio of any search strategy to search in orthgonalstreets is at least p82 � 9:06 in the L2-metric.3.2. A Lower Bound for Searching for a Target of Known LocationNow consider the situation in which the robot searches for a target of known6
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n Figure 6: A Lego-stack polygon.location on a G-street. In this case the polygon of Figure 5 no longer provides a lowerbound of 9. Instead, similar to the lower bound for searching in streets we againconstruct a family Fn of polygons such that for each deterministic search strategyS there is a polygon PS in Fn for which a robot using S traverses at distance of atleast 9�O(1= logn) times the length of a shortest path from s to t.Theorem 3 Searching for a target of known location in a rectilinear G-street is atleast 9-competitive.In the following we prove Theorem 3. Let the origin be the initial position s ofthe robot and (0; 1) the position of the target t. Each polygon in the family Fnof Lego-stack polygons is made of m = n3 connected rake polygons. A connectionpoint joins a tooth from the bottom rake to the middle of the top rake (see Figure 6).Rakes are numbered in the order of occurrence on the robot's path from s tot. Each rake has height 1=m; it is symmetrically centered above its entrance pointand has length 2n (except for the last one which contains no teeth and is just wideenough to contain t and its entrance point). At the entrance point the robot seesonly into one tooth of the rake. It searches for the opening to the next rake byalternatingly exploring the parts of the rake to the left and right of the entrancepoint in increasing step lengths. We de�ne CLk to be the competitive ratio of thesearch strategy of the robot if the target is found in the kth exploration of the leftside. CRk is de�ned analogously for the right side.The problem in the construction of the Lego-stack polygon is that since therobot knows the location of the target it can bias the search towards to target.However, we can make use of the following theorem which ensures that the morethe robot biases the search towards the target, the higher is the penalty if theadversary places the connecting tooth on the side opposite to the target. In thefollowing let Cn = 9� 72=(logn� 8).Theorem 4 If X is a strategy to search for a target in a rake of length 2n havinga total of 2l steps, then max1�k�l(CLk + CRk )=2 � Cn:This theorem is proven in Section 4.3.2.1. *Adversary's StrategyWe use an adversary to construct the polygon PS on-line depending on therobot's moves. Let xi be the x-coordinate of the entrance point to the ith rake and7



di the horizontal distance from the entrance point to the exit (connecting) tooth,that is, di = jxi � xi+1j.The adversary keeps track of xi, the competitive ratios CL and CR, and avariableDi. The competitive ratio CL is de�ned as the ratio of the distance that therobot has traversed in the current rake over the distance to the closest unexploredtooth in the left part. CR is de�ned analogously for the right side. Di is de�ned asthe length of a shortest path from s to the entrance point of rake i minus jxij.The adversary's strategy to place rake i+ 1 works as follows. We assume thatxi � 0. The case xi < 0 is completely analogous. The adversary �rst checks if thereis a step in the exploration of rake i such that CL is not too small, that is, suchthat CL � 2Cn � cki+1 where ki = bjxij=nc and ck is de�ned byck = � Cn; for k � 0Cn + (k � 1)=n; for k > 0:If this is the case, then adversary opens the tooth with competitive ratio CL andsets xi+1 = xi � di. The length of the shortest path from s to the entrance point ofrake i+1 increases by di, that is, by the de�nition of Di its length is xi+Di+di andDi+1 = xi +Di + di � jxi+1j. If we distinguish the cases xi � di and xi < di, thenit is easy to see that the equation for Di+1 simpli�es to Di+1 = Di +2minfdi; xig.If the competitive ratio CL is smaller than 2Cn � cki+1 for all steps of theexploration of rake i, then the adversary opens a tooth to the right of the entrancepoint with competitive ratio CR � 2Cn�CL which is always possible by Theorem 4.We obtain xi+1 = xi + di and Di+1 = Di. In a more algorithmic notation theadversary's strategy can be described as follows.Adversary's Strategy1 D1  0; x1  02 for i 1 to m� 1 do3 ki  bjxij=nc4 if xi � 0 then=� The robot is to the right of s �=5 if there is a step such that CL � 2Cn � cki+16 then the adversary opens the tooth to the left of the entrancepoint with competitive ratio CL7 xi+1  xi � di8 Di+1  Di + 2minfdi; xig9 else the adversary opens a tooth to the right of the entrancepoint with (CL + CR)=2 � Cn10 xi+1  xi + di11 Di+1  Di13 if xi < 0 then : : :=� this case is completely analogous to the case xi � 0 with leftand right (and plus and minus for xi) exchanged �=end forSince the competitive ratios CL and CR are non-negative, a tooth to the left ofthe entrance point is opened if it is ever the case that 2Cn�cki+1 � 0, which impliesthat when a tooth to the left of the entrance point is opened we have bxi=nc � nCnand if a tooth to the right of the entrance point is opened if b�xi=nc � nCn. Thisimplies the following observation. 8
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xiFigure 7: Each block of length n that �ts into jxij is weighted by the factors cj .Observation 1 jxij � (nCn + 1)n � 10n2:In order to compute the distance traversed by the robot we show that the fol-lowing invariant is maintained during the construction of PS .Invariant 1 When entering rake i the robot has traversed a distance of at leastLi = 0@ki�1Xj=0 cj1An+ cki x̂i +�Cn � 1n�Di;where x̂i = jxij � kin.Invariant 1 states that each block of length n that �ts into jxij is weighted by thefactors cj which increase by 1=n (except for c1 which equals c0). Hence, the largerjxij the larger is the detour of the robot. This is illustrated in Figure 7.Proof. W 2e show that the invariant holds after each construction step. The invariantobviously holds for i = 1. Now assume it holds up to (and including) iterationi � 1. For simplicity we assume that xi � 0 in the following. The case xi < 0 iscompletely analogous.First consider Steps 6{8. By the invariant the total distance traveled by therobot is at least Li+CLdi. First we assume that xi � di, that is, Di+1 = Di+2di.Since CL � 2Cn � cki+1, the robot has traversed a distance of at leastLi + (2Cn � cki+1)di = 0@ki�1Xj=0 cj1An+ cki x̂i ��cki+1 � 2n� di +�Cn � 1n� (Di + 2di)| {z }=Di+1Note that cki � cki�1 � cki+1� 2=n. If di � x̂i, then x̂i+1 = x̂i� di, ki+1 = ki, andcki x̂i ��cki+1 � 2n� di � cki x̂i+1 = cki+1 x̂i+1:9



If di > x̂i, then x̂i+1 = x̂i + n� di, ki+1 = ki � 1, andcki�1n+ cki x̂i ��cki+1 � 2n� di � cki�1x̂i+1 = cki+1 x̂i+1:Hence,Li + (2Cn � cki+1)di � 0@ki+1�1Xj=0 cj1An+ cki+1 x̂i+1 +�Cn � 1n�Di+1:Now assume that xi < di. In this case ki = 0 and x̂i = xi. Since c0 = c1 = Cn, thetotal distance traversed by the robot is at leastLi + CLdi � c0|{z}=Cn xi +�Cn � 1n�Di + (2Cn � c1)| {z }=Cn di� Cn(di � xi) +�Cn � 1n� (Di + 2xi) = c0jxi+1j+�Cn � 1n�Di+1:Now consider Steps 9{11. As we observed above, Theorem 4 implies that thereis a step with (CL +CR)=2 � Cn. Since for all steps CL < 2Cn � cki+1, we obtainCR � 2Cn � CL > cki+1 � cki+1 :Hence, the distance traveled by the robot in iteration i is CRdi � cki+1di and sincexi+1 = xi + di, Invariant 1 is clearly maintained.3.2.2. *The Competitive RatioWe now analyse the competitive ratio of a strategy for which a Lego-stack poly-gon is constructed in the above manner. In the mth rake the target has distancejxmj from the entrance point. Hence, the total distance traveled by the robot is atleast �Pkm�1j=0 cj�n+ ckm x̂m+ �Cn � 1n�Dm+ jxmj and the competitive ratio C ofthe strategy is bounded from below by�Pkm�1j=0 cj�n+ ckm x̂m + �Cn � 1n�Dm + jxmjDm + 2jxmj :We observe that Dm � m � 2jxmj since the robot moves at least one step in eachiteration and, thus, the length of a shortest path from s to t is Dm + 2jxmj � m.Hence, by using the taylor series expansion for 1=(1 + x), Observation 1 and thefact that m = n3 we obtainC � �Cn � 1n�DmDm + 2jxmj � �Cn � 1n� 11 + 2jxmjDm � �Cn � 1n��1� 2jxmjDm �� �Cn � 1n��1� 20n2n3 � 20n2� = Cn �O� 1n� = 9�O� 1logn� ;10
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Figure 8: Searching on the real line.for n > 20. This concludes the proof.4. Searching on the Real LineIn this section we prove Theorem 4. In fact, we consider the more general settingof searching on the real line. Here, we assume that the robot is located at the origins and the target t is located elsewhere on the line. The robot can only detect t if itstands on top of it. We assume that we are given a lower bound of 1 distance uniton the minimal and an upper bound of D distance units on the maximal distanceto the target.A strategy to search for t works as follows. The robot starts at s and travelsto one side, say to the left. At some point, say at a distance of x0 to s, it decidesthat it has traveled far enough to the left and returns to s. It travels a distance ofx1 to the right and returns to s again to explore the left side again and so on. Forillustration see Figure ??. Obviously, the values xi which denote the distance thatthe robot travels to the left or to the right of s|depending on whether i is even orodd|suÆce to characterize a search strategy completely. Note that since an upperbound of D on the distance to t is known, the strategy consists of a �nite numberof steps which we assume to be (x0; : : : ; x2n+1).34.0.3. *The Competitive RatioAssume that the target is discovered in Step k + 2, say to the left of the origin.The ray to the left of the origin was visited the last time before Step k + 2 in Stepk. Hence, the distance d of the target is greater than xk. The distance traveled bythe robot to discover t is d+2Pk+1i=0 xi. The competitive ratio of Step k is given bysupd>xk d+ 2Pk+1i=0 xid = 1 + 2Pk+1i=0 xixksince d can be placed arbitrarily close to xk by an adversary. The competitive ratioC of the strategy is now given as the maximum of the competitive ratios of theSteps k with 0 � k � 2n, that is, C = max0�k�2n 1 + 2(Pk+1i=0 xi)=xk . It can beshown that, if D = 1, then the competitive ratio of the strategy is minimized ifxi = 2i 1;2;7. This results in a competitive ratio of 9.3Note that the number 2n + 2 of steps of a strategy is not related to the width 2n of a rakewhich is a distance measurement and corresponds to D. The reason why we choose the numberof steps to be 2n + 2 instead of n is due to the fact that we will work with sequences that haveabout half as many elements as X. 11



4.0.4. *Biased StrategiesWe say a search strategy is biased if one side is favored over the other. Forinstance, the robot may explore the ray to the left much farther than the ray tothe right. Of course, the overall competitive ratio of such a strategy is at least 9as mentioned above. However, suppose that the competitive ratios for the left andright sides are considered separately. We de�ne the left competitive ratio Lk of Step2k to be the competitive ratio if the target is placed on the left side and is foundin Step 2k+2; analogously, we de�ne the right competitive ratio Rk of Step 2k+1;that is, Lk = 1 + 2P2k+1i=0 xix2k and Rk = 1 + 2P2k+2i=0 xix2k+1 :Let Cav = max0�k�n�1(Lk +Rk)=2 which we call the average competitive ratio ofX . Within this framework Theorem 4 can now be stated as follows.Theorem 40 If X is a strategy to search for a target on the real line whose distanceis at most D to s and CavD is its average competitive ratio, then CavD � 9�72=(logD�8). We use the following approach to prove a lower bound on CavD . Assume thatstrategy X consists of 2n + 2 steps and the average competitive ratio of X is lessthan 9 (otherwise the theorem is trivially true). Let bC2n+2 be twice the minimalaverage competitive ratio that a positive sequence consisting of 2n+2 elements canachieve. In particular, CavD � bC2n+2=2. We compute a lower bound C�n on bC2n+2.Then, we show that C�n � 18� 36=n which implies that CavD � 9� 18=n.Finally, we observe that since8 � Lk + Rk2 � 1 = P2k+1i=0 xix2k + P2k+2i=0 xix2k+1 � x2k+1x2k + x2k+2x2k+1 ;for 0 � k � n� 1, the ratio x2k+2=x2k is bounded by 16 and, therefore, D � x2n �16n+1x0. Hence, logD � 4(n+1)+logx0 � 4(n+1)+4 and CavD � 9�72=(logD�8)which proves Theorem 40.Hence, in the remaining section it is our aim to show the following lemma.Lemma 2 There is a C�n with C�n � bC2n+2 such thatC�n � 18� 36n :Once we have shown Lemma 2, Theorem 40 follows by our above considerations.Since the proof of Lemma 2 is somewhat involved we show the claim in several stepswhich are formulated as lemmas.4.0.5. *Computing a Lower Bound on bC2n+2In the following letX be a sequence consisting of 2n+2 elements (x0; : : : ; x2n+1).We de�ne lk = x2k and rk = x2k+1, for 0 � k � n. Furthermore, let Lk =Pki=0 liand Rk =Pki=0 rk . Lk is half the distance traversed on the left side and Rk is half12



the distance traversed on the right side. As above let Lk be the left competitive ofStep 2k and Rk the right competitive ratio of Step 2k + 1, that is,Lk = 1 + 2P2k+1j=0 xjx2k = 1 + 2Lk +Rklkand Rk = 1 + 2P2k+2j=0 xjx2k+1 = 1 + 2Lk+1 +Rkrk :If there is a 0 � k � n � 1 such that Lk + Rk � 18, then we are done. Hence, weassume in the following that Lk +Rk < 18, for all 0 � k � n� 1.Lemma 3 For all positive sequences X of length 2n + 2 with Lk + Rk < 18, for0 � k � n � 1, there is a sequence 
 = (
1;
2; : : : ;
n�1) with 
k 2 [1=4; 12], for1 � k � n� 1 such thatmax0�k�n�1Lk +Rk � max1�k�n�2 6 + 
k + 4
k+1 + 2s2(
k + 2)�1 + 2
k+1�:(2)Proof. L 2et Lk and Rk be de�ned as above. For 1 � k � n� 1, we set
k = 2Lk�1 +Rk�1lk :The sequence (
1; : : : ;
n�1) is called the residue sequence of X . Lk can now beexpressed as followsLk = 1 + 2Lk +Rklk = 3 + 2Lk�1 +Rk�1lk + 2rklk = 3 + 
k + 2rklkwhich implies that rk = (Lk � 3� 
k) lk2 : (3)Moreover, Lk = 1 + 2Lk +Rklk ) 2(Lk +Rk) = (Lk � 1)lk (4)and 
k+1 = 2Lk +Rklk+1 (4)= (Lk � 1) lklk+1 or lk+1lk = Lk � 1
k+1 : (5)We �rst show that 
k 2 [1=4; 12], for all 1 � k � n � 1. 
k � 12 followsimmediately from Lk+Rk � 18, 
k+3 � Lk, and 3 � Rk. We show that 
k � 1=4by contradiction. So assume that 
k < 1=4. Then,1=4 � 
k = 2Lk�1 +Rk�1lk13



which implies that lk � 8(Lk�1 +Rk�1) and, therefore,Lk�1 +Rk�1 > Rk�1 = 1 + 2Lk +Rk�1rk�1 = 1 + 2Lk�1 + lk +Rk�1rk�1� 1 + 2Lk�1 +Rk�1 + 8(Lk�1 +Rk�1)rk�1= 19 + 18Lk�1 +Rk�2rk�1 > 18in contradiction to the assumption that Lk�1 +Rk�1 < 18.Next we show Equation 2. From Equations 3, 4, and 5 we obtain that, for1 � k � n� 2,Lk +Rk = Lk + 1 + 2Lk+1 +Rkrk= Lk + 1 + 2 lk+1 + Lk +Rkrk(3;4)= Lk + 1 + 2lk+1 + (Lk � 1)lk(Lk � 3� 
k) lk2= Lk + 1 + 2 Lk � 1Lk � 3� 
k + 4lk+1(Lk � 3� 
k)lk(5)= Lk + 1 + 2 Lk � 1Lk � 3� 
k + 4(Lk � 1)(Lk � 3� 
k)
k+1= Lk + 1 + 2(Lk � 1) 1 + 2=
k+1Lk � 3� 
k :Let f(Lk;
k;
k+1) = Lk + 1 + 2(Lk � 1) 1 + 2=
k+1Lk � 3� 
k :Taking the derivative of f w.r.t. Lk yields@f@Lk (Lk;
k;
k+1) = 1 + 2 1 + 2=
k+1Lk � 3� 
k �1� Lk � 1Lk � 3� 
k�Hence, f has (at most) two extrema in Lk at3 + 
k � 2q4
2k+1 + 2
2k+1
k + 8
k+1 + 4
k+1
k2
k+1 :Since f ! �1 as Lk ! �1, f ! 1 as Lk ! 1, and f has a polar point atLk = 3+
k, one extremum which is contained in (�1; 3+
k) is a local maximumof f , and the other extremum which is contained in (3+
k;1) is a local minimum.Since by Equation 3 Lk > 3 + 
k, we only need to consider the minimum of f in(3 + 
k;1). The value of Lk at the minimum isLk(
k;
k+1) = 3 + 
k + 2q4
2k+1 + 2
2k+1
k + 8
k+1 + 4
k+1
k2
k+1 :14



In particular, Lk + Rk � f(Lk(
k;
k+1);
k;
k+1), for 1 � k � n � 2. If we setg(
k;
k+1) = f(Lk(
k;
k+1);
k;
k+1), that is,g(
k;
k+1) = 6 + 
k + 4
k+1 + 2s2(
k + 2)�1 + 2
k+1�;then, max0�k�n�1 Lk +Rk � max1�k�n�2 g(
k;
k+1) as claimed.By Lemma 3 the minimal value C�n of max1�k�n�2 g(
k;
k+1) taken over allsequences (
1; : : : ;
n�1) with 
k 2 [1=4; 12] is a lower bound on bC2n+2. Thiscompletes the �rst step.4.0.6. *Optimal Residue SequencesSo now we are concerned with �nding a residue sequence (
1;
2; : : : ;
n�1) with
k 2 [1=4; 12] such that max1�k�n�2 g(
k;
k+1) is minimized. More precisely, let� : [1=4; 12]n�1 �! IR with �(
1;
2; : : : ;
n�1) = max1�k�n�2 g(
k;
k+1) andC�n = inf~
2[1=4;12]n�1 �(~
). As we observed above C�n is a lower bound on bC2n+2.We �rst show that, for a �xed n, there is a special residue sequence ~
� =(
�1;
�2; : : : ;
�n�1) such that �(~
�) = C�n and, in addition, g(
�k;
�k+1) = C�n, forall 1 � k � n� 2.Lemma 4 There is a sequence (
�1;
�2; : : : ;
�n�1) 2 [1=4; 12]n�1 such thatg(
�k;
�k+1) = C�n, for all 1 � k � n� 2.Proof. F 2irst note that there is, indeed, a sequence ~
� 2 [1=4; 12]n�1 with �(~
�) = C�nsince � is a continuous mapping on a compact domain and, therefore, assumes itsminimum (and maximum).Let G� be the set of positive sequences G = (g1; g2; : : : ; gn�2) of length n � 2such that gk = g(
k;
k+1), for some sequence (
1;
2; : : : ;
n�1) 2 [1=4; 12]n�1and max1�k�n�2 gk = C�n. By the above argument G� is not empty. Consider asequence G� 2 G� such that the number of elements gk in G� with gk = C�n isminimized. We claim that G� = (C�n; C�n; : : : ; C�n).The proof is by contradiction. So assume that G� 6= (C�n; C�n; : : : ; C�n). Letgk 2 G� such that gk = C�n and either gk�1 < gk or gk+1 < gk. Since G� is notconstant, such a gk clearly exists. Consider the derivatives of gk = g(
k;
k+1)w.r.t. 
k and 
k+1. We obtain@gk@
k = @g@
k (
k;
k+1) = 1 +vuut2�1 + 2
k+1�
k + 2 > 0 (6)and @gk@
k+1 = @g@
k+1 (
k ;
k+1) = � 4
2k+1 � 2 p2(
k + 2)�1 + 2
k+1�
2k+1 < 0: (7)Hence, if gk�1 < gk, then we can decrease 
k, which increases gk�1 = g(
k�1;
k)and decreases gk = g(
k;
k+1), such that gk and gk�1 < C�n. In this way we obtain15



a new sequence G0. The number of elements g0i 2 G0 with g0i = C�n is one less thanfor G�. Note that if gk is the only element of G� with gk = C�n, then we have, in fact,decreased the value of maxG� in contradiction to our choice of G� 2 G�. Hence,there are less elements inG0 that are equal to C�n than inG� again in contradiction tothe choice of G�. Similarly, if gk+1 < gk, then we can increase 
k+1 which decreasesgk = g(
k;
k+1) and increases gk+1 = g(
k+1;
k+2) and the same argumentapplies. Hence, there is a sequence (
�1; : : : ;
�n�1) with g(
�k;
�k+1) = C�n, for all1 � k � n� 2, as claimed.In fact, the proof of Lemma 4 implies a stronger result.Corollary 1 All sequences ~
 = (
1;
2; : : : ;
n�1) 2 [1=4; 12]n�1 with �(~
) = C�nsatisfy g(
k;
k+1) = C�n, for 1 � k � n� 2.4.0.7. *A Recurrence EquationIn the following let (
1;
2; : : : ;
n�1) be a sequence with 
k 2 [1=4; 12] suchthat g(
k;
k+1) = C�n, for all 1 � k � n� 2. With the help of Lemma 4 we nowcan derive a recurrence equation for the sequence (
k).Lemma 5 For all 1 � k � n� 2,
k = h(C�n;
k+1) = C�n � 2 + 4
k+1 � 2p2s (
k+1 + 2)(C�n � 2)
k+1 : (8)Proof. B 2y assumption the sequence (
k) satis�es the equation6 + 
k + 4
k+1 + 2s2(
k + 2)�1 + 2
k+1� = C�n;for all 1 � k � n � 1. If we solve the above equation for 
k, then there are twopossible solutions for 
k
k = C�n � 2 + 4
k+1 + 2p2s (
k+1 + 2)(C�n � 2)
k+1or 
k = C�n � 2 + 4
k+1 � 2p2s (
k+1 + 2)(C�n � 2)
k+1In order to see that 
k equals the second solution we note that we only have toconsider 
k 2 [1=4; 12]. Inequalities 6 and 7 imply that C�n � g(1=4; 12) � 10 and,hence, min
k+12[1=4;12]C�n � 2 + 4
k+1 + 2p2s (
k+1 + 2)(C�n � 2)
k+1 � 16:9which contradicts 
k � 12. Therefore, 
k is given by Equation 8.16
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Figure 9: (a) For 
 > 1=4, h(16:5;
) is completely below the diagonal of the �rstquadrant and after a few iterations 
k becomes negative. (b) The graph of h(18;
)touches the diagonal in the point (2; 2) and an in�nite number of positive values of
k are possible.4.0.8. *Bounding the Number of StepsRecurrence equation 8 limits the number of elements the sequence(
1;
2; : : : ;
n�1) can consist of for a given C�n. This can be seen by visualiz-ing the dynamics of recurrence equation 8. In the following we refer to Figure ??.Let C be a �xed value. Consider the graph Gh;C of the function h(C; �). We obtain
k if we start on the x-axis at 
k+1 and go vertically up to Gh;C . At the intersec-tion point (
k+1; h(C;
k+1)) = (
k+1;
k) of Gh;C with the vertical line through
k+1 we continue horizontally until we intersect the diagonal of the �rst quadrant,in the point (
k;
k). At this point we again continue vertically until we intersectGh;C in (
k;
k�1) and so on (see Figure ??).We will show that C = 18 is the �rst value for whichGh;C intersects the diagonal.Therefore, if C < 18, then 
k becomes negative or at least smaller than 1=4 aftersome number of steps, say m. Since we require that 
k � 1=4, for all 1 � k � n�1,the length n� 1 of the sequence (
k) is at most m� 1. In following we show thatm is bounded by 36=(18� C).We �rst show that 
k actually becomes negative or smaller than 1=4 after anumber of steps. To see this consider the roots of h(C;
k) which are given byz1 = 4C � 10 � 8p2pC � 2(C � 10) and z2 = 4C � 10 + 8p2pC � 2(C � 10) :It is easy to see that h(C;
k) is positive, for 
k 2 [0; z1) and 
k 2 (z2;1) andnegative for 
k 2 (z1; z2). Moreover, z1 decreases as C increases, if C � 10, and,
17



therefore, z1 assumes its maximum for the minimal value of C. Hence,z1 � limC!10+ 4C � 10 � 8p2pC � 2(C � 10) � 1=4and 
k 2 [z2;1), for all 1 � k � n� 1.Lemma 6 If 10 � C < 18, then the maximum number m of elements 
k with
k 2 [z2; 12], for all 1 � k � m, and 
k = h(C;
k+1), for all 1 � k � m� 1, is atmost 36=(18� C).Proof. W 2e claim that 
k � 
k�1 � (18� C)=3; (9)for 
k;
k�1 2 [z2;1) and 10 � C < 18. Since z2 � 
1, and 
k � 12, this impliesthat m � 12� z2min1�k�n�1 
k � 
k�1 � 12� z2(18� C)=3 � 3618� Cas claimed.In order to see (9) we observe that by Lemma 5
k � 
k�1 = 
k � C + 2� 4
k + 2s2(
k + 2)(C � 2)
k def= q(
k; C):We consider the derivative qC of q w.r.t. C.qC(
k; C) = s 2(
k + 2)
k(C � 2) � 1 = p2s2=
k + 1(C � 2) � 1 � p2s2=z2 + 1(C � 2) � 1= s�8pC � 2 + 4p2 +pC � 2C(pC � 2 + 2p2) (C � 2) � 1 = �r 2C � 2 � �0:35:If q(
k; 18) � 0, then
k�
k�1 = q(
k; C) � q(
k; C)�q(
k ; 18) = Z 18C �qC(
k; 
) d
 � 0:35(18�C)which proves (9).It remains to be shown thatq(
k; 18) = 
k � 16� 4
k + 2r32
k + 2
k � 0;for 
k 2 [z2; 12). Since 
k � 16� 4=
k < 0, it suÆces to show that128
k + 2
k � �16 + 4
k � 
k�2 :If we multiply by 
2k, the above inequality is equivalent to showing that the functionq1(
k) = 128
k(
k+2)�(16
k+(2�
k)(2+
k))2 = �
4k+32
3k�120
2k+128
k�1618



is non-negative on [z2; 12). The function q1 has three extrema, one at 11�p105,one at 2, and one at 11 +p105. Obviously, the extremum at 2 is a minimum withq1(2) = 0. Hence, we only need to check the boundary values q1(1=4) � 8:99 > 0and q1(12) = 18800 > 0. Hence, q1 is non-negative. This concludes the proof.We are now in a position to �nally prove Lemma 2 and, thus, Theorem 40.Proof. [ 2Lemma 2] By Lemma 3 C�n is a lower bound for bC2n+2. By Lemma 4 there is asequence ~
� = (
�1;
�2; : : : ;
�n�1) with 
�k 2 [1=4; 12] such that g(
�k;
�k+1) = C�n,for all 1 � k � n� 2. Lemma 5 implies that ~
� satis�es the recurrence equation
�k = h(C�n;
�k+1);for all 1 � k � n� 2. By our previous considerations 
�k 2 [z2; 12], for all 1 � k �n� 1. Hence, we can apply Lemma 6 andn � 3618� C�n or C�n � 18� 36nwhich concludes the proof.Notice that an unbiased strategy can be viewed as a special case of a biasedstrategy; therefore, Theorem 40 also implies a lower bound for unbiased strategies;however, the converse does not hold. In this sense Theorem 40 is the stronger result.For other results about unbiased searching on the real line up to a given distancesee 8;14.Corollary 2 (13) Let CD be the competitive ratio for �nding a target point on thereal line under a given strategy X if the target is placed at a distance of at most Dto s. Then, CD � 9�O(1= logD).Proof. T 2he proof is by contradiction. Assume that CD < 9 � 72=(logD � 8). Then,CavD < 9� 72=(logD � 8) since CD = max1�k�n�1fLk; Rkg|a contradiction.5. ConclusionsWe have presented lower bounds for streets and generalized streets. In streets, weprovide a lower bound ofp2�O(1=pn) for the competitive ratio of any deterministicstrategy that a robot may use to search in a rectilinear street if the coordinates ofthe target are given in advance to the robot. Here, n is the Euclidean distance fromthe start point to the target.In G-streets, we provide a simple example, that settles the competitive ratio ofsearching in orthogonal G-streets w.r.t. the L2-metric. We show that p82 is a lowerbound which matches the competitive ratio of the best known algorithm. Secondly,we also investigate if it is an advantage for the robot if it is given the location of thetarget in advance. We show that there are polygons for every strategy that forcethe robot to walk at least nine times the length of the shortest path from s to t.Our lower bounds are based on a new result about searching on the real line.Here, we show that the average competitive ratio of any strategy to search on thereal line is at least 9�O(1= logD) if the target is placed anywhere within D to theorigin. 19
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