ldentifying Frequent Items in Sliding Windows over
On-Line Packet Streams

Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro ébp®rtiz, and J. lan Munro

Abstract—Queries that return a list of frequently occurring items are
popular in the analysis of data streams such as real-time Im@trnet traffic
logs. In particular, Internet traffic patterns are believed to obey the power
law, implying that most of the bandwidth is consumed by a smalset of
heavy users. While severalresults exist for computing fragent item queries
using limited memory in the infinite stream model, in this paper we consider
the limited-memory sliding window model. This model maintans the last
N items that have arrived at any given time and forbids the stoage of the
entire window in memory. We present several deterministic yorithms for
identifying frequent items in sliding windows using limited memory and
making only one pass over the data, both under arbitrary distibutions and
assuming that packet types in each instance of the window crm to a
multinomial distribution. The former is a straightforward extension of ex-
isting techniques and is shown to work well when tested on TCRaffic logs.
Our algorithms for the multinomial distribution are shown t o outperform
classical inference based on random sampling from the slidg window, but
lose their accuracy as predictors of item frequencies wherhe underlying
distribution is not multinomial.

Keywords— Internet traffic monitoring, on-line stream analysis, sliding
windows, frequent item queries.

I. INTRODUCTION

A solution for removing stale data is to periodically reskét a
statistics. This gives rise to tHandmark window modelin
which a time point (called the landmark) is chosen and siedis
are only kept for that part of a stream which falls between the
landmark and the current time. Although simple to implemant
major disadvantage of this model is that the size of the windo
varies—the window begins with size zero and grows until the
next occurrence of the landmark, at which pointit is ressize
zero. In contrast, theliding window modeéxpires old items as
new items arrive. Two common types of sliding windows are
count-basedvindows, which maintain the last packets seen
at all times andime-basedvindows, which include only those
items which have arrived in the lastime units.

If the entire window fits in main memory, answering threshold
queries over sliding windows is simple: we maintain frequyen
counts of each distinct item within the window and increment
or decrement counters as new items arrive and old items are re
moved. However, in the worst case the entire sliding window

On-line data streams such as TCP/IP packet streams or \{&#y need to be stored in order to identify which packet(s) to

server connection logs possess interesting computatobraat
acteristics, such as unknown or virtually unbounded lerutk-
sibly very fast arrival rate, inability to backtrack oveegiously

expire at any given time. Unfortunately, when monitorintgha
net traffic on a backbone link, the packet stream may arrive so
fast that useful sliding windows may be too large to fit in main

arrived items (only one sequential pass over the data is p&emory (and the system would not be able to keep up with the
mitted), and a lack of system control over the order in whicgiream if the window had to be stored on disk). In this case, th

data arrive [13]. A particular problem of interest—moteeby
traffic engineering, routing system analysis, customdinkj
and detection of anomalies such as denial-of-servicekattac

window must somehow be summarized and an answer must be
approximated on the basis of the available summary informa-
tion. One solution is to divide each sliding window into sub-

concerns statistical analysis of data streams with a focus Windows, store a summary of each sub-window, and re-evaluat
newly arrived data and frequently appearing packet types. £ne query when the most recent sub-window is full. This re-

instance, an Internet Service Provider may be interestethim
itoring streams of IP packets originating from its clientela

duces space usage, but induces a “jumping window” instead of
a gradually sliding window, with the jump size equal to thesu

identifying the users who consume the most bandwidth duriMgndow size. In practice, the maximum jump size is limited by

a given time interval; see [7], [8] for additional motivagjiex-

the answer latency requirements of a particular query oli-app

amples. These types of queries, in which the objective is €8tion-

return a list of the most frequent items (callegh-k queriesor

hot list querie$ or items that occur above a given frequencf. Our Contributions

(calledthreshold queries are generally known ggequent item

gueries However, to make such analysis meaningful, band

width usage statistics should be kept for only a limited antou) e .
dref dows over on-line data streams and estimating their true fre

t%luencies, while using as little space as possible and makilyy

of time (for example, one hour or a single billing period)

being replaced with new measurements. Failure to remole s

data leads to statistics aggregated over the entire ligetifithe
stream, which are unsuitable for identifying recent usagieds.

Lukasz Golab, David DeHaan, Alejandro Lopez-Ortiz, anthd.Munro are
with the School of Computer Science, University of Waterl@ntario, N2L
3G1, Canada. E-mails{lgolab,dedehaan,alopez-o,imu@uwaterloo.ca
Erik D. Demaine is with the Massachusetts Institute of Tedbgy (MIT) Lab-
oratory for Computer Science, 200 Technology Square, CiaigéorMA 02139,
USA. E-mail: edemaine@mit.eduThis research is partially supported by th
Natural Sciences and Engineering Research Council (NSERChanada, and
by the Nippon Telegraph and Telephone Corporation.

_We are interested in identifying frequent items (occurring
with a frequency that exceeds a given threshold) in slidimg w

one pass over the data. We describe three algorithnaszevi
FREQUENTITEM, MOSTFREQUENTITEM, and QVERTHRESH

oLD, for identifying frequent items within a packet stream ad-
hering to a multinomial distribution in each instance of the
window. Our algorithms are deterministic and avoid storing
the entire sliding window by operating in the jumping window
model, as in the Basic Window approach of Zhu and Shasha

e[23]. MOREFREQUENTITEM and MOSTFREQUENTI TEM—

which store only the identity of the item that was most fragjue

in each Basic Window—identify the most frequent item, bua randomized counting-sampling algorithm is presented &y D
estimating frequency or even bounding the error in the ideniaine et al. [7] that finds items occurring above a relatiee fr
fication is shown to become infeasible as the number of iteqmency ofl /,/nm with high probability, where is the number
types grows. In contrast,W\8RTHRESHOLD identifies all items of incoming items observed and is the number of available
over a specified threshold frequency and may be used for foeunters. This algorithm divides the stream into a coltectf
quency prediction with bounded error dependent upon the etunds, and for each round counts the occurrences/@fran-
located memory. We demonstrate thabREFREQUENTITEM domly sampled categories. At the end of each roundpilie
and O/ERTHRESHOLD outperform classical inference based owinners from the current round are compared witf2 winners
random sampling in terms of identifying items over a fixedtored from previous rounds and if the count for any curréntw

threshold. ner is larger than the count for a stored category (from anlef
previous rounds), the stored list is updated accordingly.
B. Roadmap Demaine et al. also present a counting algorithm that uses

e%[lly m counters and deterministically identifies all categories
having a relative frequency abov¢(m + 1). This algorithm
is a straightforward extension of the classioajority count-
ing algorithm by Fischer and Salzberg [10]. This method, how
ever, returns a superset guaranteed to contain populas @ach
ﬁgquires a re-scan of the data (forbidden in the on-lineastre
model) to determine the exact set of frequent items. Momgove
Manku and Motwani also show a deterministic counting algo-
rithm that maintains a counter for each distinct item seen, b
periodically deletes counters whose average frequeniies s
On-line analysis of network traffic has been one of the préounter creation time fall below a fixed threshold. To ensure
mary applications of data stream management systems; ex@fat frequent items are not missed by repeatedly deleting an
ples include Gigascope [5], QuickSAND [12], STREAM [19]e-starting counters, each frequency estimate includesran
and Tribeca [22]. What follows is a brief survey of frequeeti term that bounds the number of times that the particular item

The remainder of this paper is organized as follows. S
tion Il presents relevant previous work, Section Il deses al-
gorithms MOREFREQUENTITEM and MOSTFREQUENTI TEM,
while Section IV introduces algorithmy@RTHRESHOLD. Sec-
tion V compares the prediction error of our algorithms wih+
dom sampling and inference for proportions, Section VI co
cludes the paper with suggestions for future work.

II. PREVIOUS WORK

algorithms for rapidly arriving packet streams. could have occurred up to now.
) . Fang et al. present various hash-based frequent item algo-
A. Frequent Item Algorithms for Infinite Streams rithms in [9], but each requires at least two passes overate d

Frequent item algorithms in the infinite stream model emploj€ One-pass sampled counting algorithm by Estan and Vargh-
sampling, counting, and/or hashing to generate approgiarat €S€ may be_augmented with hashing as follows. Instead of sam-
swers using limited space. The main difficulty lies in findag Pling to decide whether to keep a counter for an item type, we
small set of potentially frequent items to monitor, whilerige Simultaneously hash each item's keyddash tables and add
able to catch rarely occurring items that suddenly becorme f@ New counter only if alli buckets to which a particular ele-
quent. In this context, approximation may mean a number gent hashes are large (and if the element does not already hav
things: an algorithm may either return all of the frequeatiit & counter). This r_educes the number of unnecessary cognters
types (and some false positives), some frequent item tygress (_that keep track (_)f mfrequgnt pa<_:ket ty_pes. _A S|mllar teghei
some false negatives), identities of the frequent itemsbdite- 1S Used by Charikar et al. in [3] in conjunction with hash func
quency counts, or identities and approximate counts ofréne flions that map each key to the set1,1}. Finally, Cormode
quent items. Note that the terrpacket typesitem types and and M_uthukr_|shnan givea random!zed algorithm f(_)rf|nd_|regfr
item categoriesire used interchangeably throughout the papefluént items in a continually changing database (via aryitra

A naive counting method for answering threshold queries exe"tions and deletions) using hashing and grouping of itatos
amines all items as they arrive and maintains a counter fir e£UPSets [4]-
item type. This method také¥(n) space, where is the num-
ber of packets seen so far—consider a stream withl unique
packet types and one of the types occurring twice. On the otheMany infinite stream algorithms, including the frequentrite
hand, reducing memory usage by random sampling may resalgorithms described above, do not have obvious countsripar
in large variance when the sampled frequency is used as thetbs sliding window model. The fundamental difference i4 Hsa
timator of the actual frequency, especially in the presesfce new items arrive, old items must be simultaneously eviateohf
bursty TCP/IP traffic. Estan and Varghese propose a sampted window, meaning that (at least for some packets) timgssa
counting algorithm to determine a superset likely to canthe need to be stored along with packet values.
dominant packet types [8]. This algorithm uses random sam-Zhu and Shasha introduce the concepBakic Windowsn
pling only to select whether an item is to be examined mooeder to incrementally compute simple sliding window aggre
thoroughly; once an item is selected, all of its occurrerares gates [23]. The window is divided into equally-sized BasioW
counted (this idea also appears in Gibbons and Matias [1-dhws and only a synopsis and a timestamp are stored for each
Another counting-sampling approximate algorithm is gibgn Basic Window. When the timestamp of the oldest Basic Win-
Manku and Motwani in [16], which uses a sampling rate thaow expires, that window is dropped and a fresh Basic Window
decreases with time in order to bound memory usage. Finallyadded. This scheme works well with statistics that areeinc

B. Sliding Window Algorithms

mentally computable from a set of synopses. For example, items with frequency higher than a threshéldith a one sided

may incrementally compute the sum of all items inside the cierror, i.e. there are no false positives.

rent sliding window by replacing the sum of all elements ia th

oldest Basic Window with the sum of all elements in the newest V. IDENTIFYING THE MOST FREQUENTITEM:

Basic Window. However, results are refreshed only after the MULTINOMIAL DISTRIBUTION

stream fills the current Basic Window. If the available meyor | this section, we present an algorithm for identifying the

is small, then the number of synopses that may be stored ib Stgyst frequent item in a sliding window where distinct packet

and hence the refresh interval is large. types can be characterized by a multinomial distributiore W
In order to solve the above probleBxponential Histograms show that the algorithm works well when only two categories a

(EH) are introduced by Datar et al. in [6] for counting the RUMhresent, but becomes computationally expensive as theeumb

ber of ones in a stream consisting of zeros and ones. Gi§ftategories increases. In the next section, we modify e a

an error bound, the EH algorithm maintains Basic Windowsithm to instead identify items occurring above a given shre

with exponentially varying size such that the number of wins|d, and we show that solving this problem is significantlg-ea

dows (and hence, the amount of memory needed for Ssynopsgg) we begin by considering count-based windows and extend

is optimal. Only a synopsis and a timestamp are stored fdr eagyr approach to time-based windows in Section V-B.1. We con-

Basic Window. However, in contrast to [23], the EH algorithrinue to assume that reporting the most frequent item need no

returns results to within an errerat all times. The algorithm pe ayajlable at all times, but instead a slight refresh dislagr-
requiresD (2 log” N) space, wheré is the size of the window, mitted (as in the jumping window model).

and it is proven that this bound is optimal for counting withi

the allowed approximation error. EH may only be used with. Two Flows
synopses that are mergeable; that is, a synopsis for the ohio .
two Basic Windows must be computable from the two individ- In the simplest case of only two packet types, call theand

g , whose actual relative frequencigs andp, sum to one, we
ual synopses. Nevertheless, some statistics that do nptbe - . . d 85 Py . :
- . . p wish to determine which of the two types occurs in the window
additive synopsis property (e.g. variance) may be re-gmiihto

. : ith higher frequency and give an estimate for that frequenc
an approximate incremental formula (see Babcock et al. [Zﬂsing the Basic Window approach, a simple exact algorithm is

M_oreov_er, Qiao et al. have e_zxt_endeo_l t_he EH approach to MA8 store counters that contain the difference of the number o
tain a histogram of values within a sliding window [21]. z-items versus the number gfitems in each Basic Window.
Finally, random sampling from a window of siZ€ is ad-

Summing the counters over all Basic Windows gives the differ

dressed by Babcock, Datar, and Motwani in [1]. Two algor'ﬂ;hn% . . :
] :) : : nce in the observed counts, from which percentage freiggenc
are shown.Chain Samplindor count-based windows arfefi- may be obtained if the size of the sliding window is known. In

ority Samplingor time-based windows. what follows, we show that if the sliding window conforms to
a binomial distribution, we need only record the identitytlod
more frequent item in each Basic Window in order to estimate

item frequencies.
The two existing techniques for computing statistics olidr s

ing windows (Basic Windows and EH) cannot easily handle top=1 A Simple Algorithm
k queries. For example, if each Basic Window stores counts of.

. . . The following algorithm divides the sliding window of size
the top five categories, we would ignore a frequent categuy UV into a set of equally-sized Basic Windows, each of which
consistently places sixth. Moreover, the fact that an itgpet ’

. D o is summarized by an entry in a queue. Statistics are refdeshe
appears in a to-synopsis in any one Basic Window does ng

mean that this type is one of themost frequent types in the éveryb = N/n items.

entire sliding window (a bursty packet type that dominates oAlgorithm MOREFREQUENTI TEM

Basic Window may not appear in any other Basic Windows at1. Initialize global counterg, andf, to zero.
all). Likewise, the frequent item algorithms for infiniteesams 2. Repeat:

do not present obvious opportunities for extension to tfee sl (a) Initialize local counterg, andi, to zero.
ing window model. The counters used in the counting methods (b) For each elemenrtin the nexth elements:
could be split and a timestamp assigned to each sub-counter; If e is of typez:

IIl. M OTIVATION AND SIMPLE ALGORITHM FOR
ARBITRARY DISTRIBUTIONS

this essentially reduces to the Basic Window method withmite Increment,,.

counts stored in the synopses. Similarly, hash tables dwaild Otherwise:

split in the same way, resulting in a Basic Window approach Increment,,.

with hash tables stored in the synopses. Space usage could(c) Add a summary containing the type of the “winner”
be improved by incorporating periodic garbage collectmret (larger local counter) to the back of quefjeand

move infrequentitems or items which are about to expire. How increment the corresponding global counter.

ever, the side effects of the former are that infrequentstdmt (d) If sizeOf(Q) > N/b:

suddenly arrive in large bursts and rise in frequency abbee t (i) Remove the summary from the front §fand
threshold may be missed, while the latter artificially nausahe decrement the corresponding global counter.
sliding window. (i) Output the identity and value of the larger

In [?] we proposed the algorithmREQUENT, that identifies global counter.

Since a single bit can identify the “winner” between twsource of error stems from the quality Bf. as an estimate for
flows, MOREFREQUENTITEM requiresD(N/b) space an®®(1) B,. Now, B, is a Binomial random variable (by Corollary f,,
amortized time. is a Binomial random variable, anfd, is simply a normalized

Each time a Basic Window is filled, BREFREQUENTITEM form of f.). Using the Hoeffding bound along with a symmetry
outputs the identity of the item expected to be more frequesrigument gives the following.
in the sliding window. Suppose that the output itemrisThe
algorithm also supplies a frequengy of the Basic Windows Pr {(Bx —A)<B, < (Bx 4 A)} > 1 — 9¢—2nA? (5)
dominated by:. However, it is not immediately clear hofy is
related to the actual relative frequeneyof itemz. The right-hand side is the confidence level, so by settirmttie

Proposition 1: Consider the random variable defined as gesijred confidence (e.g. 0.95) we can solveXgnote that: is
follows. fixed by the choice o). BecauseB, in Equation (2) increases

{ 1 if z is the more frequent item in a Basic Window ™monotonically withp,,, we can find lower and upper bounds for
w =

0 otherwise p by numerically computing solutions to Equation (2) for the
(1) PointsB, = (B, — A) andB, = (B. + A), respectively. This
Then,w constitutes a Bernoulli variable. process is illustratedin Figure 1, showiBg on the vertical axis

Proof: The probability of success is the same for all Basignd the bounds fqs,. on the horizontal axis.
Windows as they all have the same size. Success occurs with
probability B, equal to the probability that type is more fre-
guent than type within the Basic Window. That isB,, is the
probability that type: occurs[g] Or more times in a Basic Win- 0.65
dow of sizeb, given by Equation (2); recall that item typesnd
y conform to a binomial distribution, where the probabilityat 06
a given element belongs to typer is p, and the probability
thate belongs to type; is p, = 1 — p,. Failure occurs with
probabilityl — B,.. 05

0.55

b b . i 0451 ————— 77,4!':;,
By=) < ; >p;(1 —ps) () g
i=[%] 04T i !
] 0.35 " } |
Corollary 1: Since the probability of type winning in any 044 046 048 Q5 052 051 05

one Basic Window is independent of its probability of wingin
in any other Basic Window, the sum afBernoulli variables as

defined in Equation (1) is a Binomial variable with parametef'd 1+ Solving forz numerically. The three lines correspondiy — A, Be,

andB, + A. Suppose that the algorithm return&ga value of 0.45. Then,
nandB;. with 95% certainty the true value gf, lies in the interval0.456,0.488],
The frequencyyf,, output by MOREFREQUENTITEM may be as shown in the figure.

used to calculate an observed relative frequeBgyhatz is the

i f a Basic Window.
winnerota basic Yindow, It should be noted that because the Basic Window size-

B, = f./n (3) curs inthe bounds of the summation in Equation (2), the &oic
of b has a large impact on the error in predicting As b in-
This value can then be substituted in Equation (2) in order ¢geases, the following behaviour may be observed.
obtainp,, the expected relative frequency of item Unfortu- 1. The prediction erroA surroundingB,, increases because
nately, Equation (2) cannot be solved in closed-formpfo(see the number of Basic Windows used to make the prediction, de-
Appendix for partial results). Thus, numerical methodsties ¢reases.
used in order to obtain a value fgx for a givenB,. 2. The graph of3, vs. p, degrades from a linear function to a
step function centered aroupd = 0.5.
Figure 2 demonstrates the effect of changirfgr a window
We will make use of the following result due to Hoeffdingyf size v = 10000. It shows the curves, as a function Obs,
[14]. Consider a sample afitems from a Binomial distribution along with the curve®?, — A andB, + A that bound the 95%
and an observed frequency ff The following is Hoeffding’s confidence region. The three graphs demonstrate the folgpwi
bound on the deviation of the observed frequency from the trjalues ofb: (a) 5 (b) 50 (c) 500.
frequencyp. The observation thas, as a function of, degrades to a step
function with increasing is crucial for characterizing the effect
Pr {i —p> A} < em A (4) of Basic Window size on prediction error. For small values,of
n algorithm MoREFREQUENTITEM predicts a wide range of val-
We assume that the numerical methods used to optdiom ues forp,., while for large values of, the useful prediction range
B, are not a significant source of error; therefore, the primafyr p,. is very small. However, the prediction error immediately

A.2 Bounding the Error

0; 0.2 0.4 ‘bx 0.6 0.8 1

@) (b) (©

Fig. 2. Effect of Basic Window size on inference error fér= 10000 and (a)) = 5, (b)b = 50, and (c)b = 500.

about the poinp, = 0.5 remains tight a$ grows. The net ef- computep, given estimates foB,., B, and B,, we must solve
fect is that as the choice of Basic Window size ranges ftdm a non-linear system of two equations and two unknowns (the
N, MOREFREQUENTITEM’s usefulness as a frequency predicthird equation is eliminated by rewriting, in terms ofp,. and
tor diminishes, but its accuracy as a Boolean test for ifignt p,).
the majority item remains. Since the algorithm’s space @sag In the general case af packet types, to estimatg we must
is inversely proportional té, we conclude that there is a directsolve a non-linear system @f- 1 equations and— 1 unknowns,
tradeoff between space and the accuracy of the frequeney prbere the number of terms within each equation grows combi-
diction, but the simple identification of the majority iteroeb natorially ind. Even if we restrict the problem to simply bound-
not illustrate this tradeoff. ing the prediction error in the identification éfas the most

The space requirement of algorithmddTFREQUENTITEM frequent item, we cannot translate the width of the Hoeffdin
consists of two parts: the working space needed to creatéaunded error surroundirig; to a range surrounding without
summary for the current Basic Window, and the storage spasving the entire system.
needed for the summaries of the Basic Windows. In the worstBecause thélost Frequent Item Probleris a simplification
case, the working space requiregn(b, d) local counters of of the more generalop-k Problem the above results demon-
size logh. For storage, there ar®’/b summaries each re- strate that it is infeasible to extrapolate a solution totthek
quiring log d bits. There are also at mo${/b global coun- problem with bounded error using only a set of sub-solutions
ters of sizelog (N/b). This gives a total space bound oftop- lists for portions of the total window) and the assumption
O(min(b,d) logb + & logd + % log &). The time complex- of a multinomial distribution of packet types.
ity of MOSTFREQUENTITEM is O(b) for each pass through the
outer loop. Since each pass consurhesriving elements, this V. THRESHOLD QUERIES MULTINOMIAL DISTRIBUTION
givesO(1) amortized time per element. A. The Algorithm

The largest weakness of this algorithm lies in the intratitgb o)))
of using the output valug; in order to estimate the relative fre- 1he complexity involved in using algorithm &BTFRE-
quencyp; of the most frequent itern In fact, even just bounding QUENTITEM is due to the interdependence among flows inher-
the error on the identity ofis intractable for largel. Consider €Nt in the concept of a winner for each Basic Window. Because
the case of three item typesy, andz. In the case of two item of the dependencies involved in the creation of the store(_al sy
types,B, in Equation (2) was constructed by summing the prolfPSes, we cannot use_the synopses to solve for_the relaa-vg fr
abilities of all possible cases wherewas in majority within a duency of one flow without simultaneously solving the entire
Basic Window. These cases were easily identified as exaci¥stem. Clearly, if we wish to solve for the frequencies dion
those where: occurred at least? | times. However, in the caseSélected flows, we must eliminate the inter-flow dependencie

of three categories, the testunt(x) > ¢ is a necessary but nottha1t exist W'th'n the store_d Synopses.
- One way to introduce independence is to replace the concept

sufficient criterion for identifying a majority by, because:’s ¢ wi imolvi X -
majority also depends on its count being greater than patid ot winner (imp ying comparison among peers) wikthiever
(implying comparison against an external standard). Asra co

z. This gives rise to the equation O o
sequence, rather than each Basic Window resulting in gxactl

b b N = ' o one winner, each Basic Window may result in the recognition
B, = Z < ; > P Z < j > p;p‘;—“ﬂ) of zero or more achievers. The following algorithm employs a
i=[2] 3=0 user-defined threshold/m to create a synopsis for each Basic
Window.

B bz_f < b—i > {p,»pl_(iﬂ) +p1_(i+j)p,} (6) _ The space complexity of algorithm@RTHRESHOLD s at
J yrz y ? mostm times worse than that of BISTFREQUENTI TEM, with a
worst case bound @ (min(b, d) log b+ =X log d+ =X log &)
with analogous equations existing fby, and B.. In order to whered is the total number of item types in the system. The time

j=i+1

complexity isO(min(m, b) 4 b) per iteration of the outer loop,
which still yieldsO(1) amortized time.

We now proceed to resolve two issues related to algorithm
OVERTHRESHOLD. Firstly, we identify the relation between
the frequencyf, output by the algorithm and the true relative
frequencyp,. Secondly, we investigate how to calculate the re-
quired value ofr used in step 5(d) of the algorithm. We first
note that, as in section IV-A, we can define a Bernoulli random
variable

(7)

1 if count(x) > b/m in a Basic Window
w = . -
0 otherwise

0.4 px 0.6 0.8 1

whose probability of succeds, is given by the sum of the prob-
abilities for all scenarios where exceeds the threshold. In theFi 3 Effoct of threshold barameter on mference errore Tiree curves
construction .Of .qu'.latlon (2) in section IV-A we e_pr0|te_d3th ’ correspond td,; — A, B}fandB} + A for the 95% confidence level.
fact that “majority” in the case of two categories is equévdl

to surpassing a threshold §5/27. In this more general case

of an arbitrary threshold, our new equation #8r becomes the B. Possible Extensions

following.

B.1 Handling Time-based Sliding Windows

b Algorithm FREQUENT does not require uniformly sized Ba-
B, = Z < b > Pl —py)t (8) sic Windows, therefore it may be used with time-based wirglow

1o t without any modifications. The other algorithms also workwi
time-based windows (where Basic Windows of possibly differ

_ _ _) ent sizes span equal time intervals) due to the followingltes
Observe that unlike Equation (6), this equation relaiesto from probability theory.

P without dependence on the relative frequencies of any othefrheorem 1:A Poisson trial; is a success with probability

items. p; and failure with probabilityl — p;. Suppose thatt is the
To address the first issue, note that each oufplibduces a sum ofn independent Poisson triats with probabilitiesp; for

value B, = f./n which is an approximation for the tru8, 1 < i < n. Hoeffding’s theorem states thadt may be upper-

of Equation (8). The frequencids, ..., f;} are expected to bounded by a Binomial random variable with parameters:

follow a Multinomial distribution with parameters, B;, B, andp = %Z?ﬂpi.

..., By, so the marginal distribution fof,, (and henceB,) fol- Unfortunately, Hoeffding’s bound for the sum of Poissoalgi

lows a Binomial distribution. Therefore, we can directlypgp is known to be (potentially much) looser than the bound on the

the Hoeffding bound from Equation (5) to quantify the ermor isum of Bernoulli trials. Alternatively, we may use Cherneff

this approximation. The result is that the observationseriad bound for Poisson trials (see, e.g. [18]).

section IV-A.2 regarding the effect afon the shape of the curve

and the error in prediction all directly apply, with the geale B.2 Top+ Estimation using Counts

e

ization that the step function centers around the peint 1/m Recall that algorithm @ERTHRESHOLD computes lists of
rather tharp, = 1/2. Figure 3 demonstrates the curve assoGems that occur with frequencies exceeding a user-defined
ated with the values/ = 10000, b = 50, andm = 10. threshold. The following is a possible extension that cotepu

The fact that the accuracy of frequency prediction centeadlist of thek most frequent items. Consider the general case
around the relative thresholdm used to create the synopsesf d distinct flows and some threshotd In addition to storing
implies thatl /m should be chosen very close to the actual dée boolean information of whether or not an item exceeded th
sired reporting threshold. Let us assume thyat is the desired threshold in a given Basic Window, we also store the counts of
reporting threshold. Then, the value foshould be the expectedall the items above the threshold. After computing the list o
value forB, whenp,. equals the reporting threshdldm, which all the items that exceed the threshold in the entire windw,
can be calculated by substitutingm for p, in Equation (8). there are more thahsuch items, then we increase the threshold
This value forr gives the most likely list of flows that have aslightly and eliminate all the items whose counts do not egce
relative frequency over/m; however, the solution may containthe new threshold. We continue this procedure until theee ar
either false negatives (high frequency flows not identified) exactlyk items left.
false positives (low frequency flows incorrectly identifie@®y The above suggests a more general approach of assigning dif-
adding (subtracting) the valug to (from) =, we can guaran- ferent thresholds for various item types. That is, for itgmwets
tee with the confidence level associated withhat the solution =z, y, z andw, we could choose to include itemon our above-
contains no false positives (negatives), with the tradinaff the the-threshold lists only if its relative frequency is ab@é and
solution is more likely to contain false negatives (posisiv include other items if their frequencies are above 0.35.sThi

would be an appropriate strategy if we knew that slightly
more popular than the other item types. This method could be
improved by incorporating feedback from recent sliding win

dows and deciding whether to increase or decrease threshold| ¢4l — -
for various items. This idea, however, is beyond the scope of - B
this paper as it is more akin to probabilistic counting froated _ }
synopses than to frequent item queries. 031 r
B.3 Reducing Space Usage o2l 7
We propose two extensions of algorithnvERTHRESHOLD /
that reduce space usage: randomly sampling items to belstore ot
in the synopses and deleting parts of older synopses if a&part S/
ular item has already exceeded the global threshold. Int$te fi L —
approach, if an item exceeds the threshold in a given Basie Wi o 100 560 360 760 500

dow, we flip a biased coin and store the item with probability b

and ignore it with probability N h'_ThIS SCh_er_ne reduces S_pac%ig. 4. Prediction error of algorithm MREFREQUENTITEM (lower curve) and

and does not affect the running time, but it introduces an-add ~ random sampling (upper curve).

tional source of error. This demonstrates an interestaxgmff

between using space in order to straighten out the errorecurv

(as in Figure 2, improving the range f that can be predicted) population. In this scenario, the population size is eqoidhe

and using space to tighten the prediction error within trebles sliding window size because we have assumed that eachgslidin

part of the curve. window conforms to a multinomial distribution. With the eor
The second improvement essentially eliminates redundantiection for finite population, assuming sample sizand sliding

formation and works as follows. Suppose that an item woudndow (population) sizéV, the standard error becomes the fol-

have to occur on at least 20 out of 100 thpists in order to lowing.

exceed a given threshold. Suppose further that flavecurs on

60 such lists. If we removed every second occurrence of flow g \/ﬁ(l - D) \/N —n

n N -1

from the top# lists, we would still have 30 such occurrences and (11)

we would still conclude that exceeds the threshold (although) o)
we could not even attempt an estimation of the true frequency!n OUr €xperiments, the error metric is taken to be the maxi-
of). However, this would introduce error for skewed data 48UM expected error when the sample proportion is equal to the
the window slides. A better solution would be to remove floffireshold at the 95% confidence level. For instance, in tioe tw

z from the 30 oldest lists on which it occurs, which does ndow majority case, we compare the rangepofhat algorithm
introduce any error into future windows. In either cases tei M OREFREQUENTITEM returns whenB, = 0.5 with the confi-

duction in space comes at a cost of increased processingaim@ence interval predicted by Equations (9) and (11)ifer 0.5.
locate the oldest items to delete. We fix NV, the size of the sliding window, to #8000, and inves-

tigate the consequences of increasing the Basic Windowbsize
VI. COMPARISON WITH RANDOM SAMPLING (or equivalently, decreasing, the number of Basic Windows).
. To ensure fairness, we allow the random sampling algorithm t
We are interested in comparing the accuracy in iden-.. - .
. —utilize the same amount of memory that our algorithms reqjuir
tifying high frequency categories between our algorithms

i in the worst case. Furthermore, we undercharge the random
(MOREFREQUENT TEM and QVERTHRESHOLD) and classical sampling algorithm by ignoring the space costs associatdéd w
inference for proportions. Lei be the sample proportion (ob- pling alg Y19 9 P

served count divided by the sample sige The interval within maintaining a windowed rand_om samp_le (see Babcock, Datar,
. o and Motwani [1] for more details regarding these costs).
which the true proportiop lies may be calculated as follows.

e e A. Performance of AlgorithrivlOREFREQUENTI TEM
pelp—="8p+ 25 (9)

The value ofz* is the percentile of the standard normal distri
bution that corresponds to a given confidence levekt 1.960 aiority between two categories. Figure 4 shows the errer (i
for 95% confidence;™ = 2.576 for 99% confidence), whil§'is e |ength of the interval within which the true valuesef lies
the standard error of the sample given by the following equat ity 9504 confidence) as a function bf The upper curve cor-
_ _ responds to classical inference, the lower curve R¥YFRE-
o_ [p1=P) (10) QUENTITEM.
n It can be seen that algorithm®REFREQUENTI TEM outper-
This inference method relies on the normal approximatiddito forms classical inference for all values bf For instance, if
nomial distributions and may be usechi > 5 andn(1 —p) > b = 100, the algorithm’s error is only one-fifth of the error in
5. Moreover, we introduce the finite population correctioc-fa random sampling. As the value bfapproached00, our algo-
tor, which is used when sampling is performed from a finitethm’s advantage in minimizing the error reaches one ooder

We begin the performance comparison by considering algo-
fithm MOREFREQUENTITEM in the role of an identifier of the

magnitude. As seen in Figure 2 in Section 4, increasings lit- which are two of the most frequent protocol types in the trace
tle effect on the approximation error of REFREQUENTITEM Thus, we use the two protocol types as category identifiénsra

at the decision point, while at the same time reducing theespahan source IP addresses as in the previous experimentiZEhe s
requirements (and unfortunately, increasing the refreday). of the modified trace is 385534 connections. We executed the
In contrast, random sampling performs increasingly poasly algorithm over one hundred sliding windows of size 1000(wit
gets large because the ratio of the sample size to the papulatandomly chosen starting points. Results are shown in Ei§ur
size decreases. We conclude thabREFREQUENTITEM is the The two curves represent the lower and upper frequencygredi

superior algorithm for the examined parameters. tion ranges for 99% confidence, while the points represemt th
) values ofB, and the corresponding true valueygffor the two
B. Performance of Algorithf®VERTHRESHOLD packet types. Figure 6 (a) corresponds to Basic Window size

We now compare the worst-case performance of algoritih+ 5, Figure 6 (b) tb = 25, and Figure 6 (c) té = 125. In all
OVERTHRESHOLD with classical inference for many categorie§ases, the S-shaped prediction curve of our algorithm (wése
with three threshold values: 0.5, 0.1, and 0.01. The valu¥ of sumes an underlying binomial distribution) does not makeh t
remains fixed at0000 and the confidence level is still 95%. Weapproximately linear prediction curve of the experimewulatia.
assume that the number of distinct itedhis at least as large asIn particular, the winning protocol’s frequency is conersty
b. Results are shown in Figure 5 for threshold values of (a) 0/8derestimated (the observed values lie to the right of tee p
(b) 0.1 and (c) 0.01. The (approximately) linear functiothis diction curves) because of the burstiness of the data. Shidiei
error of OVERTHRESHOLD, while the curve corresponds to theProtocol type wins in a particular Basic Window, it might acc
error in random sampling. in this window exclusively. On the other hand, the frequency

We first note that the error in classical inference is no long@f the losing protocol is often overestimated because tsiedp
a monotonically increasing function bf This is so because theprotocol may not occur at all in the Basic Windows in which
space Comp|exity of algorithm\EIRTHRESHOLD depends on it does not win. We conclude that algOl’ithn‘mEFREQUEN'

(in the worst case, we need to store the entire current Baisic Wl TEM should be used (especially as a frequency predictor) only
dow in memory since we assumed tﬁalz b) and On% (the if it is known that the Underlying distribution is (Or may bﬂ-a
number of synopses stored times the maximum number of iteRi§ximated as) binomial.

that may possibly exceed the given threshold%o)t Thus, as .

b increases, our algorithm must allocate more working smraa' Performance of AlgorithrVERTHRESHOLD

for the current Basic Window, which allows the classicakinf Results of experiments with algorithmnv®RTHRESHOLD are
ence algorithm to use a larger sample size. This explains wétyown in Figure 7. We are again using the full TCP trace and
the error in random sampling eventually begins to decrease anow consider each of the 53 protocol types present in the trac
increases, as seen in Figures 5(a) and 5(b). to represent a distinct item type. The sliding window size is

Our second observation deals with the degradation in th8000. The two curves represent the lower and upper freguenc
worst-case performance of algorithmvERTHRESHOLD (rel- prediction ranges for 99% confidence, while the data poéys r
ative to random sampling) for very small threshold valuesesent the actudp,, B,) pairs generated from the test data. We
Clearly, a smaller threshold value allows more items to estcefix the Basic Window size at 25 and test threshold values & 0.0
the threshold in a given Basic Window, thereby increasirg tlifFigure 7 (a)), 0.12 (Figure 7 (b)), and 0.24 (Figure 7 (c3.bk-
upper bound on the sizes of our synopses. Neverthelessfag, in many cases the frequencies of the popular packestyp
seen in Figure 5(a), our algorithm outperforms random sargpl are underestimated due to the burstiness of the data. Nptabl
when the threshold is 0.5. In Figure 5(b), we see that when teme of the less frequent protocol types are not as bursty as
threshold is lowered to 0.1, our algorithm performs better fthe most popular types and are well approximated by our multi
b > 25. In Figure 5(c), further decreasing the threshold to 0.Gfomial algorithm. Again, we conclude that algorithm®RE-
leads to a value df > 250 for which algorithm QFERTHRESH FREQUENTITEM and O/ERTHRESHOLD should not be used if
OLD is more precise than random sampling. the underlying data cannot be approximated by a multinomial

It should be noted that these results represent the waosst-cdistribution.
behaviour of algorithm @ERTHRESHOLD, where the maximal
number of items exceeds the threshold in a given Basic Window VIl. CONCLUSIONS

and must be recorded in the synopses. Relaxing this conditio we presented algorithms for detecting frequent items ih sli
leads to a relative improvement in the performance of our-alging windows defined over packet streams. Our algorithms use
rithm versus random sampling. In the “best” case of only twgmited memory (less than the size of the window) and work in
flows, we only require one counter in order to decide which floye jumping window model. We considered the general case, in
was more frequent within the current Basic Window. Thus, thghich item types conform to an arbitrary distribution ane-pr
amount of memory available to store a random sample is smak@nted a simple algorithm that works well with bursty TCP/IP
and our algorithm enjoys a greater relative advantage (gpe Fstreams containing a small set of popular item types. We also
ure 4). narrowed down our focus to data conforming to a multino-
mial distributionand devised algorithms for answering#fold
gueries, and to some extent for inferring the actual freqigsn

In order to test algorithm MREFREQUENTITEM, we have of items, in this model. These algorithms were shown to out-
edited the TCP log and retained only smtp and ftp packefserform classical inference from a windowed random sample,

C. Performance of AlgorithilOREFREQUENTITEM

0.1 / o ~ 0.04 0.006
.) ~__
// \\
/ ~—_
/ ~ 0.03
ooer | / booa]
/ /
[oot / ,
0.06 | ,,,}f
‘ .002
0.04 [— 0.01; | /
//777777 “ "‘
160 260,300 200 500 160 200300 200 500 100 200300 200 500
(@) (b) (c)

@) (b) (©

Fig. 6. Accuracy of algorithm MREFREQUENT TEM with our experimental data. The curves represent estinfatgdency bounds, while the points show the
actual frequencies of item types in the TCP trace. The Basddw size is 5 in part (a), 25 in part (b), and 125 in part (c).

0.8

0.6
BX

0.4

0.2

0.6 0.8 1

0.6 0.8 1 0 0.2 0.4 px 0.6 0.8 1

px

@) (b) (c)

Fig. 7. Accuracy of algorithm @eRTHRESHOLDwith our experimental data. The curves represent estinfezgdency bounds, while the points show the actual
frequencies of item types in the TCP trace. The thresholgevial0.08 in part (a), 0.12 in part (b), and 0.24 in part (c).

but performed poorly on the TCP connection stream, in whichodel, where query results are refreshed upon arrival di eac

packet types do not conform to a multinomial distribution. new packet. This may be done either by bounding the error in
Our future work includes theoretical analysis of algorithfU" lgorithms due to under-counting the newest Basic Windo

FREQUENT in order to provide bounds on the probability oftnd Over-counting the oldest Basic Window that has payted

false negatives and the relative error in frequency estimat Piréd, or perhaps by exploiting the Exponential Histogram a

given a fixed amount of memory and the allowed answer repd?f2ach and its recent extensions in order to extract fretijuen
ing latency. For instance, if the underlying data conformato©CcUrming values. Finally, this work may also be considexed

power law distribution, we suspect a correlation betwegtne 2 first step towards solving the more general problem of recon
size of the synopses required to guarantee some error boufijcting @ probability distribution of a random variableeg

and the power law coefficient. Another possible improvemefPlY an indication of its extreme-case behaviour.
concerns translating our results to the gradually slidimpaw

10

REFERENCES tion (2), that is, the probability of flow winning a particular

[1] B. Babcock, M. Datar, R. Motwani. Sampling from a Movingatlow ~ Basic Window in the case of only two flows.
over Streaming Data. IRroceedings of the 13th SIAM-ACM Symposium

on Discrete Algorithms (SODA2002, pp. 633—634. b
[2] BC Babcogk, M. Datar, R. Motwani, L. O’Callaghan. Sllglrw_md_ow B, = Z < >px(1 _ px) : (12)
omputations over Data Streams. To appea@M Symp. on Principles
of Database Systems (POD3)ine 2003. i=[5]
[3] M. Charikar, K. Chen, M. Farach-Colton. Finding freqaéems in data . L . .
streams. InProceedings of the 29th International Colloquium on AuS0Iving the summation in Equation (12), we obtain
tomata, Languages and Programming (ICALRDO02, pp. 693-703.
[4] G. Cormode, S. Muthukrishnan. What's Hot and What's Notacking
Most Frequent Items Dynamically. To appeaA8M Symp. on Principles b [b2
of Database Systems (PODS)ine 2003. B, = b pz2 (1 —py) 31
[5] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, O. Spatdch8igaS- |—§-|
cope: High Performance Network Monitoring with an SQL Iféee. In b b p
Proceedings of the ACM Int. Conf. on Management of Data (SIGY H <[[_] — b, 1], 1+ [_], v > (13)
2002, p. 623. 2 2 py—1

[6] M. Datar, A. Gionis, P. Indyk, R. Motwani. Maintainingréam Statistics

over Sliding Windows. IrProceedings of the 13th SIAM-ACM Symposiunyyhere the generalized Hypergeometric functﬂbf{nl n]
on Discrete Algorithms (SODA2002, pp. 635—-644. . . > gD

[7] E.Demaine, A. Lopez-Ortiz, J. lan Munro. Frequency i@stiion of Inter- [dh e dm]? Z) is defined as
net Packet Streams with Limited SpacePimceedings of the 10th Euro-

pean Symposium on Algorithms (ES2002, pp. 348—360. oo T4 . Llnitk) .k

[8] C. Estan, G. Varghese. New Directions in Traffic Measuratand Ac- H(n,d,z) = Z i=1 T(n;) (14)
counting. InProceedings of the ACM SIGCOMM Internet Measurement e, I d +’“) o1
Workshop2001, pp. 75-80. k=0

[9] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwanillllman. Com-
puting Iceberg Queries Efficiently. Proceedings of the 24th Int. Conf. on
Very Large Databases (VLDB1998, pp. 299-310. 00
[10] M. Fischer and S. Salzberg. Finding a majority amdhgotes: Solution F(z) — / et 1y (15)
0

where the Gamma functidf(z) is

to problem 81-5 (Journal of Algorithms, June 1981)Jburnal of Algo-
rithms 3(4):362—-380, December 1982.

[11] P. Gibbons, Y. Matias. New Sampling-Based Summaryis$ies for Im- Maple is unable to analytically solve fpg. in Equation (12).
proving Approximate Query Answers. IRroceedings of the ACM Int. ia i ; ;
Conf. on Management of Data (SIGMQDPOS, pp. 331-342, This is also the case for mu_ltlple flows and an arbitrary

[12] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, M. J. Stsa threshold—the only difference is th@@ is replaced byrb
QUuickSAND: Quick Summary and Analysis of Network Datawhere(< 7 < 1is the threshold.

DIMACS Technical Report 2001-43, Dec. 2001. Available at
http://citeseer.nj.nec.com/gilbert01quicksand.html

[13] L. Golab, M. T. Ozsu. Issues in Data Stream Managemetmtap'
pear in SIGMOD Record Volume 32, Number 2, June 2003. Ex-
tended version available &ttp://db.uwaterloo.ca/"ddbms/
publications/stream/streamsurvey.pdf

[14] W. Hoeffding. Probability Inequalities for Sums of erdjed Random Vari-
ables. InAmerican Statistical Association Journ&B:13-30, 1963.

[15] The Internet Traffic Archivehttp://ita.ee.lbl.gov

[16] G. Manku, R. Motwani. Approximate Frequency Counts roBata
Streams. IrProceedings of the 28th Int. Conf. on Very Large Data Bases
(VLDB), 2002, pp. 346-357.

[17] Maple Version 8http://www.maplesoft.com

[18] R.Motwani, P. Raghavan. RandomlzedAIgorlthms Cadgw University
Press, 1995.

[19] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.taxa G.

Manku, C. QOlston, J. Rosenstein, R. Varma. Query Processipgrox-
imation, and Resource Management in a Data Stream Manag¥
tem. InProceedings of the 1st Biennial Conf. on Innovative Datd. Res
(CIDR), 2003, pp. 245-256.

[20] V. Paxson, S. Floyd. Wide-Area Traffic: The Failure of$3mn Modeling.
In IEEE/ACM Transactions on Networking(3):226—244, June 1995.

[21] L. Qiao, D. Agrawal, A. El Abbadi. Supporting Sliding Wiow Queries
for Continuous Data Streams. To appeadbth Int. Conf. on Scientific
and Statistical Database Management (SSDBMJy 9-11, 2003.

[22] M. Sullivan, A. Heybey. Tribeca: A System for Managingrge Databases
of Network Traffic. InProceedings of the USENIX Annual Technical Conf.

1998.

[23] Y. Zhu, D. Shasha. StatStream: Statistical Monitor@igrhousands of
Data Streams in Real Time. Proceedings of the 28th Int. Conf. on Very
Large Data Bases (VLDBR002, pp. 358-369.

APPENDIX
RELATING B, AND p,

The following calculations have been performed in Maple
8.00 [17]. Here, we show that the closed form solution of Equa
tion (2) is impractical to compute. We begin by restating &qu

