
1

Identifying Frequent Items in Sliding Windows over
On-Line Packet Streams

Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro

Abstract— Queries that return a list of frequently occurring items are
popular in the analysis of data streams such as real-time Internet traffic
logs. In particular, Internet traffic patterns are believed to obey the power
law, implying that most of the bandwidth is consumed by a small set of
heavy users. While several results exist for computing frequent item queries
using limited memory in the infinite stream model, in this paper we consider
the limited-memory sliding window model. This model maintains the lastN items that have arrived at any given time and forbids the storage of the
entire window in memory. We present several deterministic algorithms for
identifying frequent items in sliding windows using limited memory and
making only one pass over the data, both under arbitrary distributions and
assuming that packet types in each instance of the window conform to a
multinomial distribution. The former is a straightforward extension of ex-
isting techniques and is shown to work well when tested on TCPtraffic logs.
Our algorithms for the multinomial distribution are shown t o outperform
classical inference based on random sampling from the sliding window, but
lose their accuracy as predictors of item frequencies when the underlying
distribution is not multinomial.

Keywords— Internet traffic monitoring, on-line stream analysis, sliding
windows, frequent item queries.

I. I NTRODUCTION

On-line data streams such as TCP/IP packet streams or Web
server connection logs possess interesting computationalchar-
acteristics, such as unknown or virtually unbounded length, pos-
sibly very fast arrival rate, inability to backtrack over previously
arrived items (only one sequential pass over the data is per-
mitted), and a lack of system control over the order in which
data arrive [13]. A particular problem of interest—motivated by
traffic engineering, routing system analysis, customer billing,
and detection of anomalies such as denial-of-service attacks—
concerns statistical analysis of data streams with a focus on
newly arrived data and frequently appearing packet types. For
instance, an Internet Service Provider may be interested inmon-
itoring streams of IP packets originating from its clients and
identifying the users who consume the most bandwidth during
a given time interval; see [7], [8] for additional motivating ex-
amples. These types of queries, in which the objective is to
return a list of the most frequent items (calledtop-k queriesor
hot list queries) or items that occur above a given frequency
(calledthreshold queries), are generally known asfrequent item
queries. However, to make such analysis meaningful, band-
width usage statistics should be kept for only a limited amount
of time (for example, one hour or a single billing period) before
being replaced with new measurements. Failure to remove stale
data leads to statistics aggregated over the entire lifetime of the
stream, which are unsuitable for identifying recent usage trends.

Lukasz Golab, David DeHaan, Alejandro López-Ortiz, and J.Ian Munro are
with the School of Computer Science, University of Waterloo, Ontario, N2L
3G1, Canada. E-mails:flgolab,dedehaan,alopez-o,imunrog@uwaterloo.ca.
Erik D. Demaine is with the Massachusetts Institute of Technology (MIT) Lab-
oratory for Computer Science, 200 Technology Square, Cambridge, MA 02139,
USA. E-mail: edemaine@mit.edu. This research is partially supported by the
Natural Sciences and Engineering Research Council (NSERC)of Canada, and
by the Nippon Telegraph and Telephone Corporation.

A solution for removing stale data is to periodically reset all
statistics. This gives rise to thelandmark window model, in
which a time point (called the landmark) is chosen and statistics
are only kept for that part of a stream which falls between the
landmark and the current time. Although simple to implement, a
major disadvantage of this model is that the size of the window
varies—the window begins with size zero and grows until the
next occurrence of the landmark, at which point it is reset tosize
zero. In contrast, thesliding window modelexpires old items as
new items arrive. Two common types of sliding windows are
count-basedwindows, which maintain the lastN packets seen
at all times andtime-basedwindows, which include only those
items which have arrived in the lastt time units.

If the entire window fits in main memory, answering threshold
queries over sliding windows is simple: we maintain frequency
counts of each distinct item within the window and increment
or decrement counters as new items arrive and old items are re-
moved. However, in the worst case the entire sliding window
may need to be stored in order to identify which packet(s) to
expire at any given time. Unfortunately, when monitoring Inter-
net traffic on a backbone link, the packet stream may arrive so
fast that useful sliding windows may be too large to fit in main
memory (and the system would not be able to keep up with the
stream if the window had to be stored on disk). In this case, the
window must somehow be summarized and an answer must be
approximated on the basis of the available summary informa-
tion. One solution is to divide each sliding window into sub-
windows, store a summary of each sub-window, and re-evaluate
the query when the most recent sub-window is full. This re-
duces space usage, but induces a “jumping window” instead of
a gradually sliding window, with the jump size equal to the sub-
window size. In practice, the maximum jump size is limited by
the answer latency requirements of a particular query or appli-
cation.

A. Our Contributions

We are interested in identifying frequent items (occurring
with a frequency that exceeds a given threshold) in sliding win-
dows over on-line data streams and estimating their true fre-
quencies, while using as little space as possible and makingonly
one pass over the data. We describe three algorithms, MORE-
FREQUENTITEM, MOSTFREQUENTITEM, and OVERTHRESH-
OLD, for identifying frequent items within a packet stream ad-
hering to a multinomial distribution in each instance of the
window. Our algorithms are deterministic and avoid storing
the entire sliding window by operating in the jumping window
model, as in the Basic Window approach of Zhu and Shasha
[23]. MOREFREQUENTITEM and MOSTFREQUENTITEM—
which store only the identity of the item that was most frequent



2

in each Basic Window—identify the most frequent item, but
estimating frequency or even bounding the error in the identi-
fication is shown to become infeasible as the number of item
types grows. In contrast, OVERTHRESHOLD identifies all items
over a specified threshold frequency and may be used for fre-
quency prediction with bounded error dependent upon the al-
located memory. We demonstrate that MOREFREQUENTITEM

and OVERTHRESHOLD outperform classical inference based on
random sampling in terms of identifying items over a fixed
threshold.

B. Roadmap

The remainder of this paper is organized as follows. Sec-
tion II presents relevant previous work, Section III describes al-
gorithms MOREFREQUENTITEM and MOSTFREQUENTITEM,
while Section IV introduces algorithm OVERTHRESHOLD. Sec-
tion V compares the prediction error of our algorithms with ran-
dom sampling and inference for proportions, Section VI con-
cludes the paper with suggestions for future work.

II. PREVIOUS WORK

On-line analysis of network traffic has been one of the pri-
mary applications of data stream management systems; exam-
ples include Gigascope [5], QuickSAND [12], STREAM [19],
and Tribeca [22]. What follows is a brief survey of frequent item
algorithms for rapidly arriving packet streams.

A. Frequent Item Algorithms for Infinite Streams

Frequent item algorithms in the infinite stream model employ
sampling, counting, and/or hashing to generate approximate an-
swers using limited space. The main difficulty lies in findinga
small set of potentially frequent items to monitor, while being
able to catch rarely occurring items that suddenly become fre-
quent. In this context, approximation may mean a number of
things: an algorithm may either return all of the frequent item
types (and some false positives), some frequent item types (and
some false negatives), identities of the frequent items butno fre-
quency counts, or identities and approximate counts of the fre-
quent items. Note that the termspacket types, item types, and
item categoriesare used interchangeably throughout the paper.

A naive counting method for answering threshold queries ex-
amines all items as they arrive and maintains a counter for each
item type. This method takes
(n) space, wheren is the num-
ber of packets seen so far—consider a stream withn� 1 unique
packet types and one of the types occurring twice. On the other
hand, reducing memory usage by random sampling may result
in large variance when the sampled frequency is used as the es-
timator of the actual frequency, especially in the presenceof
bursty TCP/IP traffic. Estan and Varghese propose a sampled
counting algorithm to determine a superset likely to contain the
dominant packet types [8]. This algorithm uses random sam-
pling only to select whether an item is to be examined more
thoroughly; once an item is selected, all of its occurrencesare
counted (this idea also appears in Gibbons and Matias [11]).
Another counting-sampling approximate algorithm is givenby
Manku and Motwani in [16], which uses a sampling rate that
decreases with time in order to bound memory usage. Finally,

a randomized counting-sampling algorithm is presented by De-
maine et al. [7] that finds items occurring above a relative fre-
quency of1=pnm with high probability, wheren is the number
of incoming items observed andm is the number of available
counters. This algorithm divides the stream into a collection of
rounds, and for each round counts the occurrences ofm=2 ran-
domly sampled categories. At the end of each round, them=2
winners from the current round are compared withm=2 winners
stored from previous rounds and if the count for any current win-
ner is larger than the count for a stored category (from any ofthe
previous rounds), the stored list is updated accordingly.

Demaine et al. also present a counting algorithm that uses
only m counters and deterministically identifies all categories
having a relative frequency above1=(m + 1). This algorithm
is a straightforward extension of the classicalmajority count-
ing algorithm by Fischer and Salzberg [10]. This method, how-
ever, returns a superset guaranteed to contain popular items and
requires a re-scan of the data (forbidden in the on-line stream
model) to determine the exact set of frequent items. Moreover,
Manku and Motwani also show a deterministic counting algo-
rithm that maintains a counter for each distinct item seen, but
periodically deletes counters whose average frequencies since
counter creation time fall below a fixed threshold. To ensure
that frequent items are not missed by repeatedly deleting and
re-starting counters, each frequency estimate includes anerror
term that bounds the number of times that the particular item
could have occurred up to now.

Fang et al. present various hash-based frequent item algo-
rithms in [9], but each requires at least two passes over the data.
The one-pass sampled counting algorithm by Estan and Vargh-
ese may be augmented with hashing as follows. Instead of sam-
pling to decide whether to keep a counter for an item type, we
simultaneously hash each item’s key tod hash tables and add
a new counter only if alld buckets to which a particular ele-
ment hashes are large (and if the element does not already have
a counter). This reduces the number of unnecessary counters
that keep track of infrequent packet types. A similar technique
is used by Charikar et al. in [3] in conjunction with hash func-
tions that map each key to the setf�1; 1g. Finally, Cormode
and Muthukrishnan give a randomized algorithm for finding fre-
quent items in a continually changing database (via arbitrary in-
sertions and deletions) using hashing and grouping of itemsinto
subsets [4].

B. Sliding Window Algorithms

Many infinite stream algorithms, including the frequent item
algorithms described above, do not have obvious counterparts in
the sliding window model. The fundamental difference is that as
new items arrive, old items must be simultaneously evicted from
the window, meaning that (at least for some packets) timestamps
need to be stored along with packet values.

Zhu and Shasha introduce the concept ofBasic Windowsin
order to incrementally compute simple sliding window aggre-
gates [23]. The window is divided into equally-sized Basic Win-
dows and only a synopsis and a timestamp are stored for each
Basic Window. When the timestamp of the oldest Basic Win-
dow expires, that window is dropped and a fresh Basic Window
is added. This scheme works well with statistics that are incre-



3

mentally computable from a set of synopses. For example, we
may incrementally compute the sum of all items inside the cur-
rent sliding window by replacing the sum of all elements in the
oldest Basic Window with the sum of all elements in the newest
Basic Window. However, results are refreshed only after the
stream fills the current Basic Window. If the available memory
is small, then the number of synopses that may be stored is small
and hence the refresh interval is large.

In order to solve the above problem,Exponential Histograms
(EH) are introduced by Datar et al. in [6] for counting the num-
ber of ones in a stream consisting of zeros and ones. Given
an error bound�, the EH algorithm maintains Basic Windows
with exponentially varying size such that the number of win-
dows (and hence, the amount of memory needed for synopses)
is optimal. Only a synopsis and a timestamp are stored for each
Basic Window. However, in contrast to [23], the EH algorithm
returns results to within an error� at all times. The algorithm
requiresO(1� log2N ) space, whereN is the size of the window,
and it is proven that this bound is optimal for counting within
the allowed approximation error. EH may only be used with
synopses that are mergeable; that is, a synopsis for the union of
two Basic Windows must be computable from the two individ-
ual synopses. Nevertheless, some statistics that do not obey the
additive synopsis property (e.g. variance) may be re-written into
an approximate incremental formula (see Babcock et al. [2]).
Moreover, Qiao et al. have extended the EH approach to main-
tain a histogram of values within a sliding window [21].

Finally, random sampling from a window of sizeN is ad-
dressed by Babcock, Datar, and Motwani in [1]. Two algorithms
are shown:Chain Samplingfor count-based windows andPri-
ority Samplingfor time-based windows.

III. M OTIVATION AND SIMPLE ALGORITHM FOR

ARBITRARY DISTRIBUTIONS

The two existing techniques for computing statistics over slid-
ing windows (Basic Windows and EH) cannot easily handle top-k queries. For example, if each Basic Window stores counts of
the top five categories, we would ignore a frequent category that
consistently places sixth. Moreover, the fact that an item type
appears in a top-k synopsis in any one Basic Window does not
mean that this type is one of thek most frequent types in the
entire sliding window (a bursty packet type that dominates one
Basic Window may not appear in any other Basic Windows at
all). Likewise, the frequent item algorithms for infinite streams
do not present obvious opportunities for extension to the slid-
ing window model. The counters used in the counting methods
could be split and a timestamp assigned to each sub-counter;
this essentially reduces to the Basic Window method with item
counts stored in the synopses. Similarly, hash tables couldbe
split in the same way, resulting in a Basic Window approach
with hash tables stored in the synopses. Space usage could
be improved by incorporating periodic garbage collection to re-
move infrequent items or items which are about to expire. How-
ever, the side effects of the former are that infrequent items that
suddenly arrive in large bursts and rise in frequency above the
threshold may be missed, while the latter artificially narrows the
sliding window.

In [?] we proposed the algorithm FREQUENT, that identifies

items with frequency higher than a thresholdÆ with a one sided
error, i.e. there are no false positives.

IV. I DENTIFYING THE MOST FREQUENT ITEM:
MULTINOMIAL DISTRIBUTION

In this section, we present an algorithm for identifying the
most frequent item in a sliding window where distinct packet
types can be characterized by a multinomial distribution. We
show that the algorithm works well when only two categories are
present, but becomes computationally expensive as the number
of categories increases. In the next section, we modify the algo-
rithm to instead identify items occurring above a given thresh-
old, and we show that solving this problem is significantly eas-
ier. We begin by considering count-based windows and extend
our approach to time-based windows in Section V-B.1. We con-
tinue to assume that reporting the most frequent item need not
be available at all times, but instead a slight refresh delayis per-
mitted (as in the jumping window model).

A. Two Flows

In the simplest case of only two packet types, call themx andy, whose actual relative frequenciespx andpy sum to one, we
wish to determine which of the two types occurs in the window
with higher frequency and give an estimate for that frequency.
Using the Basic Window approach, a simple exact algorithm is
to store counters that contain the difference of the number ofx-items versus the number ofy-items in each Basic Window.
Summing the counters over all Basic Windows gives the differ-
ence in the observed counts, from which percentage frequencies
may be obtained if the size of the sliding window is known. In
what follows, we show that if the sliding window conforms to
a binomial distribution, we need only record the identity ofthe
more frequent item in each Basic Window in order to estimate
item frequencies.

A.1 A Simple Algorithm

The following algorithm divides the sliding window of sizeN into a set ofn equally-sized Basic Windows, each of which
is summarized by an entry in a queue. Statistics are refreshed
everyb = N=n items.

Algorithm MOREFREQUENTITEM

1. Initialize global countersfx andfy to zero.
2. Repeat:

(a) Initialize local counterslx andly to zero.
(b) For each elemente in the nextb elements:

If e is of typex:
Incrementlx.

Otherwise:
Incremently.

(c) Add a summary containing the type of the “winner”
(larger local counter) to the back of queueQ, and
increment the corresponding global counter.
(d) If sizeOf(Q) > N=b:

(i) Remove the summary from the front ofQ and
decrement the corresponding global counter.
(ii) Output the identity and value of the larger
global counter.



4

Since a single bit can identify the “winner” between two
flows, MOREFREQUENTITEM requiresO(N=b) space and�(1)
amortized time.

Each time a Basic Window is filled, MOREFREQUENTITEM

outputs the identity of the item expected to be more frequent
in the sliding window. Suppose that the output item isx. The
algorithm also supplies a frequencyfx of the Basic Windows
dominated byx. However, it is not immediately clear howfx is
related to the actual relative frequencypx of itemx.

Proposition 1: Consider the random variablew defined as
follows.w = � 1 if x is the more frequent item in a Basic Window0 otherwise

(1)
Then,w constitutes a Bernoulli variable.

Proof: The probability of success is the same for all Basic
Windows as they all have the same size. Success occurs with
probabilityBx equal to the probability that typex is more fre-
quent than typey within the Basic Window. That is,Bx is the
probability that typex occursd b2eOr more times in a Basic Win-
dow of sizeb, given by Equation (2); recall that item typesx andy conform to a binomial distribution, where the probability that
a given elemente belongs to typex is px and the probability
that e belongs to typey is py = 1 � px. Failure occurs with
probability1�Bx.Bx = bXi=d b2 e� bi �pix(1� px)b�i (2)

Corollary 1: Since the probability of typex winning in any
one Basic Window is independent of its probability of winning
in any other Basic Window, the sum ofn Bernoulli variables as
defined in Equation (1) is a Binomial variable with parametersn andBx.

The frequencyfx output by MOREFREQUENTITEM may be
used to calculate an observed relative frequencyB̂x thatx is the
winner of a Basic Window.B̂x = fx=n (3)

This value can then be substituted in Equation (2) in order to
obtainp̂x, the expected relative frequency of itemx. Unfortu-
nately, Equation (2) cannot be solved in closed-form forp̂x (see
Appendix for partial results). Thus, numerical methods must be
used in order to obtain a value for̂px for a givenB̂x.

A.2 Bounding the Error

We will make use of the following result due to Hoeffding
[14]. Consider a sample ofn items from a Binomial distribution
and an observed frequency off . The following is Hoeffding’s
bound on the deviation of the observed frequency from the true
frequencyp.

Pr
�fn � p � �� � e�2n�2

(4)

We assume that the numerical methods used to obtainp̂x fromB̂x are not a significant source of error; therefore, the primary

source of error stems from the quality of̂Bx as an estimate forBx. Now,Bx is a Binomial random variable (by Corollary 1,fx
is a Binomial random variable, andBx is simply a normalized
form of fx). Using the Hoeffding bound along with a symmetry
argument gives the following.

Pr
n(B̂x ��) � Bx � (B̂x +�)o > 1� 2e�2n�2

(5)

The right-hand side is the confidence level, so by setting it to the
desired confidence (e.g. 0.95) we can solve for� (note thatn is
fixed by the choice ofb). BecauseBx in Equation (2) increases
monotonically withpx, we can find lower and upper bounds forpx by numerically computing solutions to Equation (2) for the
pointsBx = (B̂x ��) andBx = (B̂x +�), respectively. This
process is illustrated in Figure 1, showingBx on the vertical axis
and the bounds forpx on the horizontal axis.

Fig. 1. Solving forp̂x numerically. The three lines correspond tôBx��, B̂x,
andB̂x +�. Suppose that the algorithm returns âBx value of 0.45. Then,
with 95% certainty the true value ofpx lies in the interval[0:456;0:488℄,
as shown in the figure.

It should be noted that because the Basic Window sizeb oc-
curs in the bounds of the summation in Equation (2), the choice
of b has a large impact on the error in predictingpx. As b in-
creases, the following behaviour may be observed.
1. The prediction error� surroundingB̂x increases becausen,
the number of Basic Windows used to make the prediction, de-
creases.
2. The graph ofB̂x vs. px degrades from a linear function to a
step function centered aroundpx = 0:5.

Figure 2 demonstrates the effect of changingb for a window
of sizeN = 10000. It shows the curveB̂x as a function ofpx,
along with the curveŝBx �� andB̂x +� that bound the 95%
confidence region. The three graphs demonstrate the following
values ofb: (a) 5 (b) 50 (c) 500.

The observation that̂Bx as a function ofpx degrades to a step
function with increasingb is crucial for characterizing the effect
of Basic Window size on prediction error. For small values ofb,
algorithm MOREFREQUENTITEM predicts a wide range of val-
ues forpx, while for large values ofb, the useful prediction range
for px is very small. However, the prediction error immediately



5

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bx

0.2 0.4 0.6 0.8 1px

(a) (b) (c)

Fig. 2. Effect of Basic Window size on inference error forN = 10000 and (a)b = 5, (b) b = 50, and (c)b = 500.

about the pointpx = 0:5 remains tight asb grows. The net ef-
fect is that as the choice of Basic Window size ranges from1 toN , MOREFREQUENTITEM ’s usefulness as a frequency predic-
tor diminishes, but its accuracy as a Boolean test for identifying
the majority item remains. Since the algorithm’s space usage
is inversely proportional tob, we conclude that there is a direct
tradeoff between space and the accuracy of the frequency pre-
diction, but the simple identification of the majority item does
not illustrate this tradeoff.

The space requirement of algorithm MOSTFREQUENTITEM

consists of two parts: the working space needed to create a
summary for the current Basic Window, and the storage space
needed for the summaries of the Basic Windows. In the worst
case, the working space requiresmin(b; d) local counters of
size log b. For storage, there areN=b summaries each re-
quiring log d bits. There are also at mostN=b global coun-
ters of sizelog (N=b). This gives a total space bound ofO(min(b; d) log b + Nb logd + Nb log Nb ). The time complex-
ity of M OSTFREQUENTITEM is O(b) for each pass through the
outer loop. Since each pass consumesb arriving elements, this
givesO(1) amortized time per element.

The largest weakness of this algorithm lies in the intractability
of using the output valuefi in order to estimate the relative fre-
quencypi of the most frequent itemi. In fact, even just bounding
the error on the identity ofi is intractable for larged. Consider
the case of three item typesx, y, andz. In the case of two item
types,Bx in Equation (2) was constructed by summing the prob-
abilities of all possible cases wherex was in majority within a
Basic Window. These cases were easily identified as exactly
those wherex occurred at leastd b2e times. However, in the case
of three categories, the test
ount(x) � b3 is a necessary but not
sufficient criterion for identifying a majority byx, becausex’s
majority also depends on its count being greater than bothy andz. This gives rise to the equationBx = bXi=d b3 e� bi � pix8<:b�iXj=0� b� ij � pjypb�(i+j)z� b�iXj=i+1� b� ij �hpjyp1�(i+j)z + p1�(i+j)y pjzi9=;(6)

with analogous equations existing forBy andBz. In order to

computepx given estimates forBx, By andBz, we must solve
a non-linear system of two equations and two unknowns (the
third equation is eliminated by rewritingpz in terms ofpx andpy).

In the general case ofd packet types, to estimatepi we must
solve a non-linear system ofd�1 equations andd�1 unknowns,
where the number of terms within each equation grows combi-
natorially ind. Even if we restrict the problem to simply bound-
ing the prediction error in the identification ofi as the most
frequent item, we cannot translate the width of the Hoeffding-
bounded error surroundinĝBi to a range surroundinĝpi without
solving the entire system.

Because theMost Frequent Item Problemis a simplification
of the more generalTop-k Problem, the above results demon-
strate that it is infeasible to extrapolate a solution to thetop-k
problem with bounded error using only a set of sub-solutions
(top-k lists for portions of the total window) and the assumption
of a multinomial distribution of packet types.

V. THRESHOLD QUERIES: MULTINOMIAL DISTRIBUTION

A. The Algorithm

The complexity involved in using algorithm MOSTFRE-
QUENTITEM is due to the interdependence among flows inher-
ent in the concept of a winner for each Basic Window. Because
of the dependencies involved in the creation of the stored syn-
opses, we cannot use the synopses to solve for the relative fre-
quency of one flow without simultaneously solving the entire
system. Clearly, if we wish to solve for the frequencies of only
selected flows, we must eliminate the inter-flow dependencies
that exist within the stored synopses.

One way to introduce independence is to replace the concept
of winner (implying comparison among peers) withachiever
(implying comparison against an external standard). As a con-
sequence, rather than each Basic Window resulting in exactly
one winner, each Basic Window may result in the recognition
of zero or more achievers. The following algorithm employs a
user-defined threshold1=m to create a synopsis for each Basic
Window.

The space complexity of algorithm OVERTHRESHOLD is at
mostm times worse than that of MOSTFREQUENTITEM, with a
worst case bound ofO(min(b; d) logb+mNb log d+mNb log Nb )
whered is the total number of item types in the system. The time



6

complexity isO(min(m; b) + b) per iteration of the outer loop,
which still yieldsO(1) amortized time.

We now proceed to resolve two issues related to algorithm
OVERTHRESHOLD. Firstly, we identify the relation between
the frequencyfx output by the algorithm and the true relative
frequencypx. Secondly, we investigate how to calculate the re-
quired value of� used in step 5(d) of the algorithm. We first
note that, as in section IV-A, we can define a Bernoulli random
variablew = � 1 if 
ount(x) � b=m in a Basic Window0 otherwise

(7)

whose probabilityof successBx is given by the sum of the prob-
abilities for all scenarios wherex exceeds the threshold. In the
construction of Equation (2) in section IV-A we exploited the
fact that “majority” in the case of two categories is equivalent
to surpassing a threshold ofdb=2e. In this more general case
of an arbitrary threshold, our new equation forBx becomes the
following. Bx = bXi=d bm e� bi �pix(1� px)b�i (8)

Observe that unlike Equation (6), this equation relatesBx topx without dependence on the relative frequencies of any other
items.

To address the first issue, note that each outputfx induces a
value B̂x = fx=n which is an approximation for the trueBx
of Equation (8). The frequenciesff1; : : : ; fdg are expected to
follow a Multinomial distribution with parametersn, B1, B2,
. . . , Bd, so the marginal distribution forfx (and henceB̂x) fol-
lows a Binomial distribution. Therefore, we can directly apply
the Hoeffding bound from Equation (5) to quantify the error in
this approximation. The result is that the observations made in
section IV-A.2 regarding the effect ofb on the shape of the curve
and the error in prediction all directly apply, with the general-
ization that the step function centers around the pointpx = 1=m
rather thanpx = 1=2. Figure 3 demonstrates the curve associ-
ated with the valuesN = 10000, b = 50, andm = 10.

The fact that the accuracy of frequency prediction centers
around the relative threshold1=m used to create the synopses
implies that1=m should be chosen very close to the actual de-
sired reporting threshold. Let us assume that1=m is the desired
reporting threshold. Then, the value for� should be the expected
value forBx whenpx equals the reporting threshold1=m, which
can be calculated by substituting1=m for px in Equation (8).
This value for� gives the most likely list of flows that have a
relative frequency over1=m; however, the solution may contain
either false negatives (high frequency flows not identified)or
false positives (low frequency flows incorrectly identified). By
adding (subtracting) the value� to (from) � , we can guaran-
tee with the confidence level associated with� that the solution
contains no false positives (negatives), with the tradeoffthat the
solution is more likely to contain false negatives (positives).

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px

Fig. 3. Effect of threshold parameter on inference error. The three curves
correspond toB̂x ��, B̂x, andB̂x + � for the 95% confidence level.

B. Possible Extensions

B.1 Handling Time-based Sliding Windows

Algorithm FREQUENT does not require uniformly sized Ba-
sic Windows, therefore it may be used with time-based windows
without any modifications. The other algorithms also work with
time-based windows (where Basic Windows of possibly differ-
ent sizes span equal time intervals) due to the following result
from probability theory.

Theorem 1:A Poisson trialai is a success with probabilitypi and failure with probability1 � pi. Suppose thatA is the
sum ofn independent Poisson trialsai with probabilitiespi for1 � i � n. Hoeffding’s theorem states thatA may be upper-
bounded by a Binomial random variableB with parametersn
andp = 1nPni=1 pi.
Unfortunately, Hoeffding’s bound for the sum of Poisson trials
is known to be (potentially much) looser than the bound on the
sum of Bernoulli trials. Alternatively, we may use Chernoff’s
bound for Poisson trials (see, e.g. [18]).

B.2 Top-k Estimation using Counts

Recall that algorithm OVERTHRESHOLD computes lists of
items that occur with frequencies exceeding a user-defined
threshold. The following is a possible extension that computes
a list of thek most frequent items. Consider the general case
of d distinct flows and some threshold� . In addition to storing
the boolean information of whether or not an item exceeded the
threshold in a given Basic Window, we also store the counts of
all the items above the threshold. After computing the list of
all the items that exceed the threshold in the entire window,if
there are more thank such items, then we increase the threshold
slightly and eliminate all the items whose counts do not exceed
the new threshold. We continue this procedure until there are
exactlyk items left.

The above suggests a more general approach of assigning dif-
ferent thresholds for various item types. That is, for item typesx, y, z andw, we could choose to include itemx on our above-
the-threshold lists only if its relative frequency is above0.4 and
include other items if their frequencies are above 0.35. This



7

would be an appropriate strategy if we knew thatx is slightly
more popular than the other item types. This method could be
improved by incorporating feedback from recent sliding win-
dows and deciding whether to increase or decrease thresholds
for various items. This idea, however, is beyond the scope of
this paper as it is more akin to probabilistic counting from data
synopses than to frequent item queries.

B.3 Reducing Space Usage

We propose two extensions of algorithm OVERTHRESHOLD

that reduce space usage: randomly sampling items to be stored
in the synopses and deleting parts of older synopses if a partic-
ular item has already exceeded the global threshold. In the first
approach, if an item exceeds the threshold in a given Basic Win-
dow, we flip a biased coin and store the item with probabilityh
and ignore it with probability1� h. This scheme reduces space
and does not affect the running time, but it introduces an addi-
tional source of error. This demonstrates an interesting tradeoff
between using space in order to straighten out the error curve
(as in Figure 2, improving the range ofpx that can be predicted)
and using space to tighten the prediction error within the usable
part of the curve.

The second improvement essentially eliminates redundant in-
formation and works as follows. Suppose that an item would
have to occur on at least 20 out of 100 top-k lists in order to
exceed a given threshold. Suppose further that flowx occurs on
60 such lists. If we removed every second occurrence of flowx
from the top-k lists, we would still have 30 such occurrences and
we would still conclude thatx exceeds the threshold (although
we could not even attempt an estimation of the true frequency
of x). However, this would introduce error for skewed data as
the window slides. A better solution would be to remove flowx from the 30 oldest lists on which it occurs, which does not
introduce any error into future windows. In either case, this re-
duction in space comes at a cost of increased processing timeto
locate the oldest items to delete.

VI. COMPARISON WITH RANDOM SAMPLING

We are interested in comparing the accuracy in iden-
tifying high frequency categories between our algorithms
(MOREFREQUENT-ITEM and OVERTHRESHOLD) and classical
inference for proportions. Let̂p be the sample proportion (ob-
served count divided by the sample sizen). The interval within
which the true proportionp lies may be calculated as follows.p 2 [p̂� z�S; p̂+ z�S℄ (9)

The value ofz� is the percentile of the standard normal distri-
bution that corresponds to a given confidence level (z� = 1:960
for 95% confidence,z� = 2:576 for 99% confidence), whileS is
the standard error of the sample given by the following equation.S =r p̂(1� p̂)n (10)

This inference method relies on the normal approximation toBi-
nomial distributions and may be used ifnp � 5 andn(1� p) �5. Moreover, we introduce the finite population correction fac-
tor, which is used when sampling is performed from a finite

0

0.1

0.2

0.3

0.4

100 200 300 400 500
b

Fig. 4. Prediction error of algorithm MOREFREQUENTITEM (lower curve) and
random sampling (upper curve).

population. In this scenario, the population size is equal to the
sliding window size because we have assumed that each sliding
window conforms to a multinomial distribution. With the cor-
rection for finite population, assuming sample sizen and sliding
window (population) sizeN , the standard error becomes the fol-
lowing. S =r p̂(1� p̂)n rN � nN � 1 (11)

In our experiments, the error metric is taken to be the maxi-
mum expected error when the sample proportion is equal to the
threshold at the 95% confidence level. For instance, in the two-
flow majority case, we compare the range ofp that algorithm
MOREFREQUENTITEM returns whenB̂x = 0:5 with the confi-
dence interval predicted by Equations (9) and (11) forp̂ = 0:5.
We fixN , the size of the sliding window, to be10000, and inves-
tigate the consequences of increasing the Basic Window sizeb,
(or equivalently, decreasingk, the number of Basic Windows).
To ensure fairness, we allow the random sampling algorithm to
utilize the same amount of memory that our algorithms require
in the worst case. Furthermore, we undercharge the random
sampling algorithm by ignoring the space costs associated with
maintaining a windowed random sample (see Babcock, Datar,
and Motwani [1] for more details regarding these costs).

A. Performance of AlgorithmMOREFREQUENTITEM

We begin the performance comparison by considering algo-
rithm MOREFREQUENTITEM in the role of an identifier of the
majority between two categories. Figure 4 shows the error (i.e.
the length of the interval within which the true value ofpx lies
with 95% confidence) as a function ofb. The upper curve cor-
responds to classical inference, the lower curve to MOREFRE-
QUENTITEM.

It can be seen that algorithm MOREFREQUENTITEM outper-
forms classical inference for all values ofb. For instance, ifb = 100, the algorithm’s error is only one-fifth of the error in
random sampling. As the value ofb approaches400, our algo-
rithm’s advantage in minimizing the error reaches one orderof



8

magnitude. As seen in Figure 2 in Section 4, increasingb has lit-
tle effect on the approximation error of MOREFREQUENTITEM

at the decision point, while at the same time reducing the space
requirements (and unfortunately, increasing the refresh delay).
In contrast, random sampling performs increasingly poorlyasb
gets large because the ratio of the sample size to the population
size decreases. We conclude that MOREFREQUENTITEM is the
superior algorithm for the examined parameters.

B. Performance of AlgorithmOVERTHRESHOLD

We now compare the worst-case performance of algorithm
OVERTHRESHOLD with classical inference for many categories
with three threshold values: 0.5, 0.1, and 0.01. The value ofN
remains fixed at10000 and the confidence level is still 95%. We
assume that the number of distinct itemsd is at least as large asb. Results are shown in Figure 5 for threshold values of (a) 0.5
(b) 0.1 and (c) 0.01. The (approximately) linear function isthe
error of OVERTHRESHOLD, while the curve corresponds to the
error in random sampling.

We first note that the error in classical inference is no longer
a monotonically increasing function ofb. This is so because the
space complexity of algorithm OVERTHRESHOLD depends onb
(in the worst case, we need to store the entire current Basic Win-
dow in memory since we assumed thatd � b) and onmNb (the
number of synopses stored times the maximum number of items
that may possibly exceed the given threshold of1m ). Thus, asb increases, our algorithm must allocate more working storage
for the current Basic Window, which allows the classical infer-
ence algorithm to use a larger sample size. This explains why
the error in random sampling eventually begins to decrease as b
increases, as seen in Figures 5(a) and 5(b).

Our second observation deals with the degradation in the
worst-case performance of algorithm OVERTHRESHOLD (rel-
ative to random sampling) for very small threshold values.
Clearly, a smaller threshold value allows more items to exceed
the threshold in a given Basic Window, thereby increasing the
upper bound on the sizes of our synopses. Nevertheless, as
seen in Figure 5(a), our algorithmoutperforms random sampling
when the threshold is 0.5. In Figure 5(b), we see that when the
threshold is lowered to 0.1, our algorithm performs better forb > 25. In Figure 5(c), further decreasing the threshold to 0.01
leads to a value ofb > 250 for which algorithm OVERTHRESH-
OLD is more precise than random sampling.

It should be noted that these results represent the worst-case
behaviour of algorithm OVERTHRESHOLD, where the maximal
number of items exceeds the threshold in a given Basic Window,
and must be recorded in the synopses. Relaxing this condition
leads to a relative improvement in the performance of our algo-
rithm versus random sampling. In the “best” case of only two
flows, we only require one counter in order to decide which flow
was more frequent within the current Basic Window. Thus, the
amount of memory available to store a random sample is smaller
and our algorithm enjoys a greater relative advantage (see Fig-
ure 4).

C. Performance of AlgorithmMOREFREQUENTITEM

In order to test algorithm MOREFREQUENTITEM, we have
edited the TCP log and retained only smtp and ftp packets,

which are two of the most frequent protocol types in the trace.
Thus, we use the two protocol types as category identifiers rather
than source IP addresses as in the previous experiment. The size
of the modified trace is 385534 connections. We executed the
algorithm over one hundred sliding windows of size 10000 with
randomly chosen starting points. Results are shown in Figure 6.
The two curves represent the lower and upper frequency predic-
tion ranges for 99% confidence, while the points represent the
values ofBx and the corresponding true values ofpx for the two
packet types. Figure 6 (a) corresponds to Basic Window sizeb = 5, Figure 6 (b) tob = 25, and Figure 6 (c) tob = 125. In all
cases, the S-shaped prediction curve of our algorithm (which as-
sumes an underlying binomial distribution) does not match the
approximately linear prediction curve of the experimentaldata.
In particular, the winning protocol’s frequency is consistently
underestimated (the observed values lie to the right of the pre-
diction curves) because of the burstiness of the data. That is, if a
protocol type wins in a particular Basic Window, it might occur
in this window exclusively. On the other hand, the frequency
of the losing protocol is often overestimated because the losing
protocol may not occur at all in the Basic Windows in which
it does not win. We conclude that algorithm MOREFREQUEN-
TITEM should be used (especially as a frequency predictor) only
if it is known that the underlying distribution is (or may be ap-
proximated as) binomial.

D. Performance of AlgorithmOVERTHRESHOLD

Results of experiments with algorithm OVERTHRESHOLDare
shown in Figure 7. We are again using the full TCP trace and
now consider each of the 53 protocol types present in the trace
to represent a distinct item type. The sliding window size is
10000. The two curves represent the lower and upper frequency
prediction ranges for 99% confidence, while the data points rep-
resent the actual(px; Bx) pairs generated from the test data. We
fix the Basic Window size at 25 and test threshold values of 0.08
(Figure 7 (a)), 0.12 (Figure 7 (b)), and 0.24 (Figure 7 (c)). As be-
fore, in many cases the frequencies of the popular packet types
are underestimated due to the burstiness of the data. Notably,
some of the less frequent protocol types are not as bursty as
the most popular types and are well approximated by our multi-
nomial algorithm. Again, we conclude that algorithms MORE-
FREQUENTITEM and OVERTHRESHOLD should not be used if
the underlying data cannot be approximated by a multinomial
distribution.

VII. C ONCLUSIONS

We presented algorithms for detecting frequent items in slid-
ing windows defined over packet streams. Our algorithms use
limited memory (less than the size of the window) and work in
the jumping window model. We considered the general case, in
which item types conform to an arbitrary distribution and pre-
sented a simple algorithm that works well with bursty TCP/IP
streams containing a small set of popular item types. We also
narrowed down our focus to data conforming to a multino-
mial distributionand devised algorithms for answering threshold
queries, and to some extent for inferring the actual frequencies
of items, in this model. These algorithms were shown to out-
perform classical inference from a windowed random sample,



9

0.04

0.06

0.08

0.1

100 200 300 400 500
b

0.01

0.02

0.03

0.04

100 200 300 400 500
b

0.002

0.004

0.006

100 200 300 400 500
b

(a) (b) (c)

Fig. 5. Prediction error of algorithm OVERTHRESHOLD(linear function) and random sampling (curve) for three threshold values: (a) 0.5, (b) 0.1, and (c) 0.01.

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px
0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px -0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bx

0.2 0.4 0.6 0.8 1px

(a) (b) (c)

Fig. 6. Accuracy of algorithm MOREFREQUENTITEM with our experimental data. The curves represent estimatedfrequency bounds, while the points show the
actual frequencies of item types in the TCP trace. The Basic Window size is 5 in part (a), 25 in part (b), and 125 in part (c).

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px 0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px 0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1px

(a) (b) (c)

Fig. 7. Accuracy of algorithm OVERTHRESHOLDwith our experimental data. The curves represent estimatedfrequency bounds, while the points show the actual
frequencies of item types in the TCP trace. The threshold value is 0.08 in part (a), 0.12 in part (b), and 0.24 in part (c).

but performed poorly on the TCP connection stream, in which
packet types do not conform to a multinomial distribution.

Our future work includes theoretical analysis of algorithm
FREQUENT in order to provide bounds on the probability of
false negatives and the relative error in frequency estimation,
given a fixed amount of memory and the allowed answer report-
ing latency. For instance, if the underlying data conform toa
power law distribution, we suspect a correlation betweenk (the
size of the synopses required to guarantee some error bound)
and the power law coefficient. Another possible improvement
concerns translating our results to the gradually sliding window

model, where query results are refreshed upon arrival of each
new packet. This may be done either by bounding the error in
our algorithms due to under-counting the newest Basic Window
and over-counting the oldest Basic Window that has partially ex-
pired, or perhaps by exploiting the Exponential Histogram ap-
proach and its recent extensions in order to extract frequently
occurring values. Finally, this work may also be consideredas
a first step towards solving the more general problem of recon-
structing a probability distribution of a random variable given
only an indication of its extreme-case behaviour.



10

REFERENCES

[1] B. Babcock, M. Datar, R. Motwani. Sampling from a Moving Window
over Streaming Data. InProceedings of the 13th SIAM-ACM Symposium
on Discrete Algorithms (SODA), 2002, pp. 633–634.

[2] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan. Sliding Window
Computations over Data Streams. To appear inACM Symp. on Principles
of Database Systems (PODS), June 2003.

[3] M. Charikar, K. Chen, M. Farach-Colton. Finding frequent items in data
streams. InProceedings of the 29th International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2002, pp. 693–703.

[4] G. Cormode, S. Muthukrishnan. What’s Hot and What’s Not:Tracking
Most Frequent Items Dynamically. To appear inACM Symp. on Principles
of Database Systems (PODS), June 2003.

[5] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, O. Spatscheck. GigaS-
cope: High Performance Network Monitoring with an SQL Interface. In
Proceedings of the ACM Int. Conf. on Management of Data (SIGMOD),
2002, p. 623.

[6] M. Datar, A. Gionis, P. Indyk, R. Motwani. Maintaining Stream Statistics
over Sliding Windows. InProceedings of the 13th SIAM-ACM Symposium
on Discrete Algorithms (SODA), 2002, pp. 635–644.

[7] E. Demaine, A. Lopez-Ortiz, J. Ian Munro. Frequency Estimation of Inter-
net Packet Streams with Limited Space. InProceedings of the 10th Euro-
pean Symposium on Algorithms (ESA), 2002, pp. 348–360.

[8] C. Estan, G. Varghese. New Directions in Traffic Measurement and Ac-
counting. InProceedings of the ACM SIGCOMM Internet Measurement
Workshop, 2001, pp. 75–80.

[9] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J.Ullman. Com-
puting Iceberg Queries Efficiently. InProceedingsof the 24th Int. Conf. on
Very Large Databases (VLDB), 1998, pp. 299–310.

[10] M. Fischer and S. Salzberg. Finding a majority amongN votes: Solution
to problem 81-5 (Journal of Algorithms, June 1981). InJournal of Algo-
rithms, 3(4):362–380, December 1982.

[11] P. Gibbons, Y. Matias. New Sampling-Based Summary Statistics for Im-
proving Approximate Query Answers. InProceedings of the ACM Int.
Conf. on Management of Data (SIGMOD), 1998, pp. 331–342.

[12] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, M. J. Strauss.
QuickSAND: Quick Summary and Analysis of Network Data.
DIMACS Technical Report 2001-43, Dec. 2001. Available at
http://citeseer.nj.nec.com/gilbert01quicksand.html .

[13] L. Golab, M. T. Ozsu. Issues in Data Stream Management. To ap-
pear in SIGMOD Record, Volume 32, Number 2, June 2003. Ex-
tended version available athttp://db.uwaterloo.ca/˜ddbms/
publications/stream/streamsurvey.pdf .

[14] W. Hoeffding. Probability Inequalities for Sums of BoundedRandom Vari-
ables. InAmerican Statistical Association Journal, 58:13–30, 1963.

[15] The Internet Traffic Archive.http://ita.ee.lbl.gov .
[16] G. Manku, R. Motwani. Approximate Frequency Counts over Data

Streams. InProceedings of the 28th Int. Conf. on Very Large Data Bases
(VLDB), 2002, pp. 346–357.

[17] Maple Version 8,http://www.maplesoft.com .
[18] R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
[19] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G.

Manku, C. Olston, J. Rosenstein, R. Varma. Query Processing, Approx-
imation, and Resource Management in a Data Stream Management Sys-
tem. InProceedings of the 1st Biennial Conf. on Innovative Data Syst. Res
(CIDR), 2003, pp. 245–256.

[20] V. Paxson, S. Floyd. Wide-Area Traffic: The Failure of Poisson Modeling.
In IEEE/ACM Transactions on Networking, 3(3):226–244, June 1995.

[21] L. Qiao, D. Agrawal, A. El Abbadi. Supporting Sliding Window Queries
for Continuous Data Streams. To appear in15th Int. Conf. on Scientific
and Statistical Database Management (SSDBM), July 9-11, 2003.

[22] M. Sullivan, A. Heybey.Tribeca: A System for Managing Large Databases
of Network Traffic. InProceedingsof the USENIX Annual Technical Conf.,
1998.

[23] Y. Zhu, D. Shasha. StatStream: Statistical Monitoringof Thousands of
Data Streams in Real Time. InProceedings of the 28th Int. Conf. on Very
Large Data Bases (VLDB), 2002, pp. 358–369.

APPENDIX

RELATING Bx AND px
The following calculations have been performed in Maple

8.00 [17]. Here, we show that the closed form solution of Equa-
tion (2) is impractical to compute. We begin by restating Equa-

tion (2), that is, the probability of flowx winning a particular
Basic Window in the case of only two flows.Bx = bXi=d b2 e� bi �pix(1� px)b�i (12)

Solving the summation in Equation (12), we obtainBx = � bd b2e �pd b2 ex (1� px)b�d b2 eH �[d b2e � b; 1℄; 1+ d b2e; pxpx � 1� (13)

where the generalized Hypergeometric functionH([n1; :::; nj℄,[d1; :::; dm℄; z) is defined asH(n; d; z) = 1Xk=0Qji=1 �(ni+k)�(ni) zkQmi=1 �(di+k)�(di) k! (14)

where the Gamma function�(z) is�(z) = Z 10 e�ttz�1dt (15)

Maple is unable to analytically solve forpx in Equation (12).
This is also the case for multiple flows and an arbitrary
threshold—the only difference is thatd b2e is replaced by�b
where0 � � � 1 is the threshold.


