
Improved Algorithms for the Global CardinalityConstraintClaude-Guy Quimper, Alejandro L�opez-Ortiz, Peter van Beek, andAlexander GolynskiUniversity of Waterloo, Waterloo, CanadaAbstra
t. We study the global
ardinality
onstraint (g

) and pro-pose an O(n1:5d) algorithm for domain
onsisten
y and an O(
n + dn)algorithm for range
onsisten
y where n is the number of variables, dthe number of values in the domain, and
 an output dependent vari-able smaller than or equal to n. We show how to prune the
ardinalityvariables in O(n2d + n2:66) steps, dete
t if g

 is universal in
onstanttime and prove that it is NP-Hard to maintain domain
onsisten
y onextended-GCC.1 Introdu
tionPrevious studies have demonstrated that designing spe
ial purpose
onstraintpropagators for
ommonly o

urring
onstraints
an signi�
antly improve theeÆ
ien
y of a
onstraint programming approa
h (e.g., [8, 11℄). In this paper westudy
onstraint propagators for the global
ardinality
onstraint (g

). A g

over a set of variables and values states that the number of variables instantiatingto a value must be between a given upper and lower bound, where the bounds
anbe di�erent for ea
h value. This type of
onstraint
ommonly o

urs in rostering,timetabling, sequen
ing, and s
heduling appli
ations (e.g., [4, 10, 13℄).Several pruning algorithms have been designed for the g

. Van Henten-ry
k et al. [14℄ express the g

 as a
olle
tion of \atleast" and \atmost"
on-straints and prunes the domain on ea
h individual
onstraint. R�egin [9℄ givesan O(n2d) algorithm for domain
onsisten
y of the g

 (where n is the num-ber of variables and d is the number of values), Puget [15℄, Quimper et al. [5℄,and Katriel and Thiel [6℄ respe
tively give an O(n logn), O(n) and O(n + d)algorithm for bounds
onsisten
y, and Le
onte [7℄ gives an �(n2) algorithm forrange
onsisten
y of the all-di�erent
onstraint, a spe
ialization of g

. In addi-tion to pruning the variable domains, Katriel and Thiel's algorithm determinesthe maximum and the minimum number of variables that
an be assigned to aspe
i�
 value for the
ase where the variable domains are intervals.We improve over R�egin's algorithm and give an O(n1:5d) algorithm for do-main
onsisten
y. In addition, we
ompute the maximum and the minimumnumber of variables that
an be assigned to a value in respe
tively O(n2d) andO(n2:66) steps for the
ase where the variable domains are not ne
essarily inter-vals (i.e., the domains
an
ontain holes) as often arises when domain
onsisten
y

is enfor
ed on the variables. We present a new algorithm for range
onsisten
ywith running time O(
n + dn) (O(
n) under
ertain
onditions) where
 is anoutput dependent variable between 1 and n. This new algorithm improves overLe
onte's algorithm for the all-di�erent
onstraint that is distributed as part ofILOG Solver [4℄. We dete
t in
onstant time if a bran
h in a sear
h tree onlyleads to solutions that satisfy the g

. This eÆ
ient test avoids useless
alls toa propagator. Finally, we study a generalized version of g

alled extended-g

and prove that it is NP-Hard to maintain domain
onsisten
y on this
onstraint.2 Problem De�nitionA
onstraint satisfa
tion problem (CSP)
onsists of a set of n variables, X =fx1; : : : ; xng; a set of values D; a �nite domain dom(xi) � D of possible valuesfor ea
h variable xi, 1 � i � n; and a
olle
tion of m
onstraints, fC1; : : : ; Cmg.Ea
h
onstraint Ci is a
onstraint over some set of variables, denoted by vars(Ci),that spe
i�es the allowed
ombinations of values for the variables in vars(Ci).Given a
onstraint C, we use the notation t 2 C to denote a tuple t|an assign-ment of a value to ea
h of the variables in vars(C)|that satis�es the
onstraintC. We use the notation t[x℄ to denote the value assigned to variable x by thetuple t. A solution to a CSP is an assignment of a value to ea
h variable thatsatis�es all of the
onstraints.We assume in this paper that the domains are totally ordered. The minimumand maximum values in the domain dom(x) of a variable x are denoted bymin(dom(x)) and max(dom(x)), and the interval notation [a; b℄ is used as ashorthand for the set of values fa; a+ 1; : : : ; bg.CSPs are usually solved by interleaving a ba
ktra
king sear
h with a seriesof
onstraint propagation phases. A CSP
an be made lo
ally
onsistent byrepeatedly removing unsupported values from the domains of its variables. Thisallows us to redu
e the domain of a variable after an assignment has been madein the ba
ktra
king sear
h phase.De�nition 1 (Support). Given a
onstraint C, a value v 2 dom(x) for avariable x 2 vars(C) is said to have:(i) a domain support in C if there exists a t 2 C su
h that v = t[x℄ andt[y℄ 2 dom(y), for every y 2 vars(C);(ii) an interval support in C if there exists a t 2 C su
h that v = t[x℄ andt[y℄ 2 [min(dom(y));max(dom(y)℄, for every y 2 vars(C).De�nition 2 (Lo
al Consisten
y). A
onstraint problem C is said to be:(i) bounds
onsistent if for ea
h x 2 vars(C), ea
h of the values min(dom(x))and max(dom(x)) has an interval support in C.(iii) range
onsistent if for ea
h x 2 vars(C), ea
h value v 2 dom(x) has aninterval support in C.

(iii) domain
onsistent if for ea
h x 2 vars(C), ea
h value v 2 dom(x) has adomain support in C.When testing for bounds
onsisten
y, we assume, without loss of generality,that all variable domains are intervals.The global
ardinality
onstraint problem (g

)
onsiders a mat
hing betweenthe variables in X with the values in D. A variable x 2 X
an only be assigned toa value that belongs to its domain dom(x) whi
h is a subset of D. An assignmentsatis�es the
onstraint if and only if all values v 2 D are assigned by at leastlv variables and at most uv variables. The all-di�erent
onstraint is a g

 su
hthat lv = 0 and uv = 1 for all values v in D.The g

 problem
an be divided in two di�erent
onstraint problems. Thelower bound
onstraint problem (lb
) whi
h ensures that all values v 2 Dare assigned by at least lv variables and the upper bound
onstraint problem(ub
) whi
h ensures that all values v 2 D are assigned by at most uv variables.3 Domain Consisten
yR�egin [9℄ showed how to enfor
e domain
onsisten
y on g

 in O(jX j2jDj) steps.For the spe
ial
ase of the all-di�erent
onstraint, domain
onsisten
y
an beenfor
ed in O(jX j1:5jDj). An alternative, presented in [5℄, runs in O(ujX j1:5jDj+l1:5jX jjDj1:5) where u and l are respe
tively the maximum uv and the maximumlv. The latter algorithm o�ers a better
omplexity for
ertain values of l and u.Our result
onsists of an algorithm that runs in O(jX j1:5jDj) and therefore is aseÆ
ient as the algorithm for the all-di�erent
onstraint.Our approa
h is similar to the one used by R�egin [8℄ for propagating theall-di�erent
onstraint ex
ept that our algorithm pro
eeds in two passes. The�rst one makes the ub
 domain
onsistent and the se
ond pass makes the lb
domain
onsistent. Quimper et al. [5℄ have previously formally shown that thissuÆ
es to make the g

 domain
onsistent.3.1 Mat
hing in a graphFor the ub
 and lb
 problems, we will need to
onstru
t a spe
ial graph. FollowingR�egin [8℄, let G(hX;Di ; E) be an undire
ted bipartite graph su
h that nodes atthe left represent variables and nodes at the right represent values. There is anedge (xi; v) in E i� the value v is in the domain dom(xi) of the variable. Let
(n)be the
apa
ity asso
iated to node n su
h that
(xi) = 1 for all variable-nodesxi 2 X and
(v) is an arbitrary non-negative value for all value-nodes v in D. Amat
hing M in graph G is a subset of the edges E su
h that no more than
(n)edges in M are adja
ent to node n. We are interested in �nding a mat
hing Mwith maximal
ardinality.The following
on
epts from
ow and mat
hing theory (see [1℄) will be usefulin this
ontext. Consider a graph G and a mat
hing M . The residual graph GMof G is the dire
ted version of graph G su
h that edges in M are oriented from

values to variables and edges in E �M are oriented from variables to values.A node n is free if the number of edges adja
ent to n in M is stri
tly less thanthe
apa
ity
(n) of node n. An augmenting path in GM is a path with an oddnumber of links that
onne
ts two free nodes together. If there is an augmentingpath p in GM , then there exists a mat
hing M 0 of
ardinality jM 0j = jM j + 1that is obtained by inverting all edges in GM that belongs to the augmentingpath p. A mat
hing M is maximal i� there is no augmenting path in the graphGM .Hop
roft and Karp [3℄ des
ribe an algorithm with running time O(jX j1:5jDj)that �nds a maximum mat
hing in a bipartite graph when the
apa
ities
(n)are equal to 1 for all nodes. We generalize the algorithm to obtain the same
omplexity when
(v) � 0 for the value-nodes and
(xi) = 1 for variable-nodes.The Hop
roft-Karp algorithm starts with an initial empty mat
hing M = ;whi
h is improved at ea
h iteration by �nding a set of disjoint shortest aug-menting paths. An iteration that �nds a set of augmenting paths pro
eeds intwo steps.The �rst step
onsists of performing a breath-�rst sear
h (BFS) on the resid-ual graph GM starting with the free variable-nodes. The breath-�rst sear
h gen-erates a forest of nodes su
h that nodes at level i are at distan
e i from a freenode. This distan
e is minimal by property of BFS. Let m be the smallest levelthat
ontains a free value-node. For ea
h node n at level i < m, we assign a listL(n) of nodes adja
ent to node n that are at level i + 1. We set L(n) = ; forevery node at level m or higher.The se
ond step of the algorithm uses a sta
k to perform a depth-�rst sear
h(DFS). The DFS starts from a free variable-node and is only allowed to bran
hfrom a node n to a node in L(n). When the algorithm bran
hes from node n1 ton2, it deletes n2 from L(n1). If the DFS rea
hes a free value-node, the algorithmmarks this node as non-free,
lears the sta
k, and pushes a new free variable-node that has not been visited onto the sta
k. This DFS generates a forest oftrees whose roots are free variable-nodes. If a tree also
ontains a free value-node, then the path from the root to this free-value node is an augmenting path.Changing the orientation of all edges that lie on the augmenting paths generatesa mat
hing of greater
ardinality.In our
ase, to �nd a mat
hing when
apa
ities of value-nodes
(v) are non-negative, we
onstru
t the dupli
ated graph G0 where value-nodes v are dupli-
ated
(v) times and the
apa
ity of ea
h node is set to 1. Clearly, a mat
hingin G0
orresponds to a mat
hing in G and
an be found by the Hop
roft-Karpalgorithm. We
an simulate a tra
e of the Hop
roft-Karp algorithm run on graphG0 by dire
tly using graph G. We simply let the DFS visit
(n)�degM (n) timesa free-node n where degM (n) is the number of edges in M adja
ent to node n.This simulates the visit of the free dupli
ated nodes of node n in G. Even if weallow multiple visits of a same node, we maintain the
onstraint that an edge
annot be traversed more than on
e in the DFS. The running time
omplexityfor a DFS is still bounded by the number of edges O(jX jjDj).

Hop
roft and Karp proved that if s is the
ardinality of a maximum
ar-dinality mat
hing, then O(ps) iterations are suÆ
ient to �nd this maximum
ardinality mat
hing. In our
ase, s is bounded by jX j and the
omplexity ofea
h BFS and DFS is bounded by the number of edges in GM i.e. O(jX jjDj).The total
omplexity is therefore O(jX j1:5jDj). We will run this algorithm twi
e,�rst with
(v) = uv to obtain a mat
hing Mu and then with
(v) = lv to obtaina mat
hing Ml.3.2 Pruning the DomainsUsing the algorithm des
ribed in the previous se
tion, we
ompute a mat
hingMu in graph G su
h that
apa
ities of variable-nodes are set to
(xi) = 1 and
apa
ities of value-nodes are set to
(v) = uv. A mat
hingMu
learly
orrespondsto an assignment that satis�es the ub
 if it has
ardinality jX j i.e. if ea
h variableis assigned to a value.Consider now the same graphG where
apa
ities of variable-nodes are
(xi) =1 but
apa
ities of value-nodes are set to
(v) = lv. A maximum mat
hing Mlof
ardinality jMlj = P lv represents a partial solution that satis�es the lb
.Variables that are not assigned to a value
an in fa
t be assigned to any valuein their domain and still satisfy the lb
.Pruning the domains
onsists of �nding the edges that
annot be part of amat
hing. From
ow theory, we know that an edge
an be part of a mat
hing i�it belongs to a strongly
onne
ted
omponent or it lies on a path starting fromor leading to a free node.R�egin's algorithm prunes the domains by �nding all strongly
onne
ted
om-ponents and
agging all edges that lie on a path starting or �nishing at a freenode. This
an be done in O(jX jjDj) using DFS as des
ribed in [12℄. Finally,Quimper et al. [5℄ proved that pruning the domains for the ub
 and then pruningthe domains for the lb
 is suÆ
ient to prune the domains for the g

.3.3 Dynami
 CaseIf during the propagation pro
ess another
onstraint removes a value from adomain, we would like to eÆ
iently reintrodu
e domain
onsisten
y over ub
and lb
. R�egin [8℄ des
ribes how to maintain a maximum mat
hing under edgedeletion and maintain domain
onsisten
y in O(ÆjX jjDj) where Æ is the numberof deleted edges. His algorithm
an also be applied to ours.4 Pruning the Cardinality VariablesPruning the
ardinality variables lv and uv seems like a natural operation toapply to g

. To give a simple example, if variable uv
onstrains the value vto be assigned to at most 100 variables while there are less than 50 variablesinvolved in the problem, it is
lear that the uv
an be redu
ed to a lower value.

We will show in the next two se
tions how to shrink the
ardinality lower boundslv and
ardinality upper bounds uv.In general, the pruned bounds on the
ardinality variables obtained by ouralgorithm are at least as tight as those obtained by Katriel and Thiel's algorithm[6℄, and
an be stri
tly tighter in the
ase where domain
onsisten
y has beenenfor
ed on the (ordinary) variables.4.1 Growing the Lower BoundsLet G be the value graph where node
apa
ities are set to
(xi) = 1 for variable-nodes and
(a) = ua for value-nodes. For a spe
i�
 value v, we want to �nd thesmallest value lv su
h that there exists a mat
hing M of
ardinality jX j thatsatis�es the
apa
ity
onstraints su
h that degM (v) = lv .We
onstru
t a maximum
ardinality mat
hingMu that satis�es the
apa
ity
onstraints of G. For ea
h mat
hed value v (i.e. degMu(v) > 0), we
reate a graphGv and Mvu that are respe
tively a
opy of graph G and mat
hing Mvu to whi
hwe removed all edges adja
ent to value-node v. The partial mat
hing Mvu
anbe transformed into a maximum
ardinality mat
hing by repeatedly �nding anaugmenting path using a DFS and applying this path to Mvu . This is done inO(degMu(v)jX jjDj) steps. Let Cv be the
ardinality of the maximum mat
hing.Lemma 1. Any mat
hing Mu in G of
ardinality jX j requires degMu(v) to beat least jMuj � Cv.Proof. If by removing all edges
onne
ted to value-node v the
ardinality of amaximum mat
hing in a graph drops from jM j to Cv then at least jM j � Cvedges in M were adja
ent to value-node v and
ould not be repla
ed by otheredges. Therefore value-node v is required to be adja
ent to jM j�Cv edges in Min order to obtain a mat
hing of
ardinality jX j. utSin
e Mu is a maximum mat
hing, we have Pv degMu(v) = jX j and there-fore the time required to prune all
ardinality lower bounds for all values isO(Pv degMu(v)jX jjDj) = O(jX j2jDj).4.2 Pruning Upper BoundsWe want to know what is the maximum number of variables that
an be assignedto a value v without violating the lb
; i.e. how many variables
an be assigned tovalue v while other values w 2 D are still assigned to at least lw variables. We
onsider the residual graph GMl . If there exists a path from a free variable-nodeto the value-node v then there exists a mat
hing M 0l that has one more variableassigned to v than mat
hing Ml and that still satis�es the lb
.Lemma 2. The number of edge-disjoint paths from free variable-nodes to value-node v
an be
omputed in O(jX j2:66) steps.

Proof. We �rst observe that a value-node in GMl that is not adja
ent to anyedge in Ml
annot rea
h a variable-node (by de�nition of a residual graph).These nodes, with the ex
eption of node v,
annot lead to a path from a freevariable-node to node v. We therefore
reate a graph GvMl by removing from GMlall nodes that are not adja
ent to an edge in Ml ex
ept for node v. To the graphGvMl , we add a spe
ial node s
alled the sour
e node and we add edges from sto all free-variable nodes. Sin
e there are at most jX j mat
hed variable-nodes,we obtain a graph of at most 2jX j+ 1 nodes and O(jX j2) edges.The number of edge-disjoint paths from the free variable-nodes to value-nodev is equal to the maximum
ow between s and v. A maximum
ow in a dire
tedbipartite graph where edge
apa
ities are all 1
an be
omputed in O(n1:5m)where n is the number of nodes and m the number of edges (see Theorem 8.1in [1℄). In our
ase, we obtain a
omplexity of O(jX j2:66). utThe maximum number of variables that
an be assigned to value v is equal tothe number of edges adja
ent to v in Ml plus the number of edge-disjoint pathsbetween the free-nodes and node v. We
ompute a
ow problem for
omputingthe new upper bounds uv of ea
h value and prune the upper bound variables inO(jDjjX j2:66) steps.5 Range Consisten
yEnfor
ing range
onsisten
y
onsists of removing values in variable domains thatdo not have an interval support. Sin
e we are only interested in interval support,we assume without loss of generality that variable domains are represented byintervals dom(xi) = [a; b℄.Using notation from [7, 5℄, we let C(S) represent the number of variableswhose domain is fully
ontained in set S and I(S) represent the number ofvariables whose domains interse
t set S.Maximal (Minimal) Capa
ity The maximal (minimal)
apa
ity dSe (bS
)of set S is the maximal (minimal) number of variables that
an be assignedto the values in S. We have dSe =Pv2S uv and bS
 =Pv2S lv.Hall Interval A Hall interval is an interval H � D su
h that the number ofvariables whose domain is
ontained in H is equal to the maximal
apa
ityof H . More formally, H is a Hall interval i� C(H) = dHe.Failure Set A failure set is a set F � D su
h that there are fewer variableswhose domains interse
t F than its minimal
apa
ity; i.e., F is a failure seti� I(F) < bF
.Unstable Set An Unstable set is a set U � D su
h that the number of variableswhose domain interse
ts U is equal to the minimal
apa
ity of U . The set Uis unstable i� I(U) = bU
.Stable Interval A Stable interval is an interval that
ontains more variabledomains than its lower
apa
ity and that does not interse
t any unstable orfailure set, i.e. S is a stable interval i� C(S) > bS
, S\U = ; and S\F = ;for all unstable sets U and failure sets F . A stable interval S is maximal ifthere is no stable interval S0 su
h that F � F 0.

A basi
 Hall interval is a Hall interval that
annot be expressed as the unionof two or more Hall intervals. We use the following lemmas taken from [7, 5℄.Lemma 3 ([7℄). A variable
annot be assigned to a value in a Hall interval ifits whole domain is not
ontained in this Hall interval.Lemma 4 ([5℄). A variable whose domain interse
ts an unstable set
annot beinstantiated to a value outside of this set.Lemma 5 ([5℄). A variable whose domain is
ontained in a stable interval
anbe assigned to any value in its domain.We show that a
hieving range
onsisten
y is redu
ed to the problem of �ndingthe Hall intervals and the unstable sets and pruning the domains a

ording toLemma 3 and Lemma 4. Le
onte's �(jX j2) algorithm (implemented in ILOG)enfor
es range
onsisten
y for the all-di�erent
onstraint (lv = 0 and uv = 1).Le
onte proves the optimality of his algorithm with the following example.Example 1 (Le
onte 96 page 24 [7℄). Let x1; : : : ; xn be n variables whose domains
ontain distin
t odd numbers ranging from 1 to 2n � 1 and let xn+1; : : : ; x2nbe n variables whose domains are [1; 2n � 1℄. An algorithm maintaining range
onsisten
y needs to remove the n odd numbers from n variable domains whi
his done in �(n2).We introdu
e an algorithm that a
hieves range
onsisten
y in O(t + CjX j)where C � jX j and t is the time required to sort jX j variables by lower andupper bounds. If C = jX j then we obtain an O(jX j2) algorithm but we
an alsoobtain an algorithm that is as fast as sorting the variables in the absen
e of Hallintervals and unstable sets.The �rst step of our algorithm is to make the variables bounds
onsistentusing already existing algorithms [5, 6℄. We then study basi
 Hall intervals andbasi
 unstable sets in bounds
onsistent problems.In order to better understand the distribution of Hall intervals, unstable sets,and stable intervals over the domain D, we introdu
e the notion of a
hara
ter-isti
 interval. A
hara
teristi
 interval I is an interval in D i� for all variabledomains, both bounds of the domain are either in I or outside of I .A basi

hara
teristi
 interval is a
hara
teristi
 interval that
annot be ex-pressed as the union of two or more
hara
teristi
 intervals. A
hara
teristi
interval
an always be expressed as the union of basi

hara
teristi
 intervals.Lemma 6. In a bounds
onsistent problem, a basi
 Hall interval is a basi

har-a
teristi
 interval.Proof. In a bounds
onsistent problem, no variables have a bound within a Hallinterval and the other bound outside of the Hall interval. Therefore every basi
Hall interval is a basi

hara
teristi
 interval. utLemma 7. In a bounds
onsistent problem, a maximum stable interval is a
hara
teristi
 interval.

Proof. Quimper et al. [5℄ proved that in a bounds
onsistent problem, stableintervals and unstable sets form a partition of the domain D. Therefore, either avariable domain interse
ts an unstable set and has both bounds in this unstableset or it does not interse
t an unstable set and is fully
ontain in a stable interval.Consequently, a maximum stable interval is a
hara
teristi
 interval. utLemma 8. Any unstable set
an be expressed by the union and the ex
lusion ofbasi

hara
teristi
 intervals.Proof. Let U be an unstable set and I be the smallest interval that
overs U .Sin
e any variable domain that interse
ts U has both bounds in U , then I is a
hara
teristi
 interval. Moreover, I � U forms a series of intervals that are in Ibut not in U . A variable domain
ontained in I must have either both bounds inan interval of I�U su
h that it does not interse
t U or either have both boundsin U . Therefore the intervals of I 0 = I�U are
hara
teristi
 intervals and U
anbe expressed as U = I � I 0. ut5.1 Finding the Basi
 Chara
teristi
 IntervalsUsing the properties of basi

hara
teristi
 intervals, we suggest a new algorithmthat makes a problem range
onsistent and has a time
omplexity of O(t+
H)where t is the time
omplexity for sorting n variables and H is the number ofbasi

hara
teristi
 intervals. This algorithm pro
eeds in four steps:1. Make the problem bounds
onsistent in O(t+ jX j) steps (see [5℄).2. Sort the variables by in
reasing lower bounds in O(t) steps.3. Find the basi

hara
teristi
 intervals in O(jX j) steps.4. Prune the variable domains in O(
jX j) steps.Step 1 and Step 2 are trivial sin
e we
an use existing algorithms. We fo
usour attention on Steps 3 and 4.Step 3 of our algorithm �nds the basi

hara
teristi
 intervals. In order todis
over these intervals, we maintain a sta
k S of intervals that are the poten-tial basi

hara
teristi
 intervals. We initialize the sta
k by pushing the in�niteinterval [�1;1℄. We then pro
ess ea
h variable domain in as
ending order oflower bound. Let I be the
urrent variable domain and I 0 the interval on top ofthe sta
k. If the variable domain is
ontained in the interval on top of the sta
k(I � I 0), then the variable domain
ould potentially be a
hara
teristi
 intervaland we push it on the sta
k. If the variable domain I has its lower bound in theinterval I 0 on top of the sta
k and its upper bound outside of this interval, thenneither I or I 0
an be
hara
teristi
 intervals, although the interval I [I 0
ouldpotentially be a
hara
teristi
 interval. In this
ase, we pop I 0 o� the sta
k andwe assign I to be I [I 0. We repeat the operation until I is
ontained in I 0. Notethat at any time, the sta
k
ontains a set of nested intervals.If we pro
ess a variable domain whose lower bound is greater than the upperbound of the interval I 0 on the sta
k, then by
onstru
tion of the sta
k, I 0 is a

basi

hara
teristi
 interval that we print and pop o� of the sta
k. We repeat theoperation until the
urrent variable domain interse
ts the interval on the sta
k.Algorithm 1 pro
esses all variables and prints the basi

hara
teristi
 inter-vals in in
reasing order of upper bounds. In addition to this task, it also identi�eswhi
h kind of
hara
teristi
 intervals the algorithm prints: a Hall interval, a Sta-ble interval or an interval that
ould
ontain values of an unstable set. This isdone by maintaining a
ounter
1 that keeps tra
k of how many variable do-mains are
ontained in an interval on the sta
k. Counter
2 is similar but only
ounts the �rst bA
 variables
ontained in ea
h sub-
hara
teristi
 interval A. A
hara
teristi
 interval I is a stable interval if
2 is greater than bI
 and might
ontain values of an unstable set if
2 is equal to bI
. We ignore
hara
teristi
intervals with
2 < bI
 sin
e those intervals are not used to de�ne Hall intervals,stable intervals or unstable sets.Input : X are the variable domains sorted by non de
reasing lower boundsResult : Prints the basi

hara
teristi
 intervals and spe
i�es if they are Hallintervals, stable intervals or
ontain values of an unstable setS empty sta
kpush(S; h[�1;1℄; 0; 0i)Add a dummy variable that for
es all elements to be popped o� of the sta
k onterminationX X [[max(D) + 1;max(D) + 3℄for x 2 X dowhile max(top(S):interval) < min(dom(x)) dohI;
1;
2i pop(S)if dIe =
1 then print \Hall Interval": Ielse if bI
 <
2 then print \Stable Interval": Ielse if bI
 =
2 then print \Might Contain Values from Unstable Sets": IhI 0;
01;
02i pop(S)push(hI 0;
1 +
01;
02 +min(
2; bI
)i)I dom(x),
1 1,
2 1while max(top(S):interval) � max(I) dohI 0;
01;
02i pop(S)I I [I 0
1
1 +
01
2
2 +
02push(S; hI;
1;
2i)Algorithm 1: Prints the basi

hara
teristi
 intervals in a bounds
onsistentproblem.Algorithm 1 runs in O(jX j) steps sin
e a variable domain
an be pushed onthe sta
k, popped o� the sta
k, and merged with another interval only on
e.On
e the basi

hara
teristi
 intervals are listed in non-de
reasing order ofupper bounds, we
an easily enfor
e range
onsisten
y on the variable domains.We simultaneously iterate through the variable domains and the
hara
teristi

intervals both sorted by non-in
reasing order of upper bounds. If a variable xiis only
ontained in
hara
teristi
 intervals that
ontain values of an unstableset, then we remove all
hara
teristi
 intervals stri
tly
ontained in the variabledomain. We also remove from the domain of xi the values whose lower
apa
itylv is null. In order to enfor
e the ub
, we remove a Hall interval H from allvariable domains that is not
ontained in H .Removing the
hara
teristi
 intervals from the variable domains requires atmost O(
jX j) steps where
 � jX j is the number of
hara
teristi
 intervals.Removing the values whith null lower
apa
ities requires at most O(jX jjDj)instru
tions but
an require no work at all if lower
apa
ities lv are all null or allpositive. If lower
apa
ities are all positive, no values need to be removed fromthe variable domains. If they are all null, the problem does not have unstable setsand only Hall intervals need to be
onsidered. The �nal running time
omplexityis either O(
jX j) or O(
jX j+ jDjjX j) depending if lower
apa
ities are all null,all positive, or mixed.Example: Consider the following bounds
onsistent problem where D = [1; 6℄,lv = 1, and uv = 2 for all v 2 D. Let the variable domains be dom(xi) = [2; 3℄ for1 � i � 4, dom(x5) = [1; 6℄, dom(x6) = [1; 4℄, dom(x7) = [4; 6℄, and dom(x8) =[5; 5℄. Algorithm 1 identi�es the Hall interval [2; 3℄ and the two
hara
teristi
intervals [5; 5℄ and [1; 6℄ that
ontain values of an unstable set. Variable domainsdom(x5) to dom(x8) are only
ontained in
hara
teristi
 intervals that might
ontain values of unstable sets. We therefore remove the
hara
teristi
 intervals[2; 3℄ and [5; 5℄ that are stri
ly
ontained in the domains of x5, x6, and x7.The Hall interval [2; 3℄ must be removed from the variable domains that stri
tly
ontain it, i.e. the value 2 and 3 must be removed from the domain of variablesx6 and x8. After removing the values, we obtain a range
onsistent problem.5.2 Dynami
 CaseWe want to maintain range
onsisten
y when a variable domain dom(xi) is modi-�ed by the propagation of other
onstraints. Noti
e that if the bounds of dom(xi)
hange, new Hall intervals or unstable sets
an appear in the problems requir-ing other variable domains to be pruned. We only need to prune the domainsa

ording to these new Hall intervals and unstable sets.We make the variable domains bounds
onsistent and �nd the
hara
teristi
intervals as before in O(t + jX j) steps. We
ompare the
hara
teristi
 intervalswith those found in the previous
omputation and perform a linear s
an tomark all new
hara
teristi
 intervals. We perform the pruning as explained inSe
tion 5.1. Sin
e we know whi
h
hara
teristi
 intervals were already presentduring last
omputation, we
an avoid pruning domains that have already beenpruned.If no new Hall intervals or unstable sets are
reated, the algorithm runs inO(t + jX j) steps. If variable domains need to be pruned, the algorithm runs inO(t +
jX j) whi
h is proportional to the number of values removed from thedomains.

6 UniversalityA
onstraint C is universal for a problem if any tuple t su
h that t[x℄ 2 dom(x)satis�es the
onstraint C. We study under what
onditions a given g

 behaveslike the universal
onstraint. We show an algorithm that tests in
onstant timeif the lb
 or the ub
 are universal. If both the lb
 and the ub
 a

ept any variableassignment then the g

 is universal. This implies there is no need to run apropagator on the g

 sin
e we know that all values have a support. Our resultholds for domain, range, and bounds
onsisten
y.6.1 Universality of the Lower Bound ConstraintLemma 9. The lb
 is universal for a problem if and only if for ea
h value v 2 Dthere exists at least lv variables x su
h that dom(x) = fvg.Proof. (= If for ea
h value v 2 D there are lv variables x su
h that dom(x) =fvg then it is
lear that any variable assignment satis�es the lb
.=) Suppose for a lb
 problem there is a value v 2 D su
h that there are lessthan lv variables whose domain only
ontains value v. Therefore, an assignmentwhere all variables that are not bounded to v are assigned to a value otherthan v would not satisfy the lb
. This proves that lb
 is not universal under thisassumption. utThe following algorithm veri�es if the lb
 is universal in O(jX j+ jDj) steps.1. Create a ve
tor t su
h that t[v℄ = lv for all v 2 D.2. For all domains that
ontain only one value v, de
rement t[v℄ by one.3. The lb
 is universal if and only if no
omponents in t are positive.We
an easily make the algorithm dynami
 under the modi�
ation of variabledomains. We keep a
ounter
 that indi
ates the number of positive
omponentsin ve
tor t. Ea
h time a variable gets bound to a single value v, we de
rement t[v℄by one. If t[v℄ rea
hes the value zero, we de
rement
 by one. The lb
 be
omesuniversal when
 rea
hes zero. Using this strategy, ea
h time a variable domainis pruned, we
an
he
k in
onstant time if the lb
 be
omes universal.6.2 Universality of the Upper Bound ConstraintLemma 10. The ub
 is universal for a problem if and only if for ea
h valuev 2 D there exists at most uv variable domains that
ontain v.Proof. (= Trivially, if for ea
h value v 2 D there are uv or fewer variabledomains that
ontain v, there is no assignment that
ould violate the ub
 andtherefore the ub
 is universal.=) Suppose there is a value v su
h that more than uv variable domains
ontain v. If we assign all these variables to the value v, we obtain an assignmentthat does not satisfy the ub
. ut

To test the universality of the ub
, we
ould
reate a ve
tor a su
h thata[v℄ = I(fvg)� uv. The ub
 is universal i� no
omponents of a are positive. Inorder to perform faster update operations, we represent the ve
tor a by a ve
tort that we initialize as follows: t[min(D)℄ �umin(D) and t[v℄ uv�1 � uv formin(D) < v � max(D). Assuming variable domains are initially intervals, forea
h variable xi 2 X , we in
rement the value of t[min(dom(xi))℄ by one andde
rement t[max(dom(xi)) + 1℄ by one. Let i be an index initialized to valuemin(D). The following identity
an be proven by indu
tion.a[v℄ = I(fvg)� uv = vXj=i t[j℄ (1)Index i divides the domain of values D in two sets: the values v smaller thani are not
ontained in more than uv variable domains while other values
anbe
ontained in any number of variable domains. We maintain index i to bethe highest possible value. If index i rea
hes a value greater than max(D) thenall values v in D are
ontained in less than uv variable domains and thereforethe ub
 is universal. Algorithm 2 in
reases index i to the �rst value v that is
ontained in more than uv domains. The algorithm also updates ve
tor t su
hthat Equation 1 is veri�ed for all values greater than or equal to i.while (i � max(D)) and (t[i℄ � 0) doi i+ 1 ;if i � max(D) thent[i℄ t[i℄ + t[i� 1℄;Algorithm 2: Algorithm used for testing the universality of the ub
 that in
reasesindex i to the smallest value v 2 D
ontained in more than uv domains. Thealgorithm also modi�es ve
tor t to validate Equation 1 when v � i.Suppose a variable domain gets pruned su
h that all values in interval [a; b℄are removed. To maintain the invariant given by Equation 1 for values greaterthan or equal to i, we update our ve
tor t by removing 1 from
omponentt[max(a; i)℄ and adding one to
omponent t[max(b + 1; i)℄. We then run Algo-rithm 2 to in
rease index i. If i > max(D) then the ub
 is universal sin
e novalue is
ontained in more domains than its maximal
apa
ity.Initializing ve
tor t and in
reasing iterator i until i > max(D) requiresO(jX j + jDj) steps. Therefore,
he
king universality ea
h time an interval ofvalues is removed from a variable domain is a
hieved in amortized
onstanttime.

7 NP-Completeness of Extended-GCCWe now
onsider a generalized version of g

 that we
all extended-g

. For ea
hvalue v 2 D, we
onsider a set of
ardinalities K(v). We want to �nd a solutionwhere value v is assigned to k variables su
h that k 2 K(v). We prove that it isNP-Complete to determine if there is an assignment that satis�es this
onstraintand therefore that it is NP-Hard to enfor
e domain
onsisten
y on extended-g

.Consider a CNF formula
onsisting of n
lauses ^ni=1_jCji , where ea
h literalCji is either a variable xk or its negation xk. We
onstru
t the
orrespondingbipartite graph G as follows. On the left side, we put a set of verti
es namedxk for ea
h boolean variable o

urring in the formula, and set of verti
es namedCji for ea
h literal. On the right side, we put a set of verti
es named xk and xk(for ea
h variable xk on the left side), and a set of verti
es named Ci for ea
hof n
lauses in the formula. We
onne
t variables xk on the left side with bothliterals xk and xk on the right side,
onne
t Cji with the
orresponding literalon the right side, and
onne
t Cji with the
lause Ci where it o

urs. De�ne thesets K(l) as f0; degG(l)g for ea
h literal l and K(Ci) as [0; degG(Ci)�1℄ for ea
h
lause Ci.For example, the CNF formula (x1 _ x2) ^ (x1 _ x2) is represented as thegraph in Figure 1
C1

1

C1
2

C2
1

C2
2

x1

x2

C1

C2

x1

x1

x2

x2

{0,2}

{0,3}

{0,1}

{0,1}

{0,1}

{0,2}

Fig. 1. Graph for (x1 _ x2) ^ (x1 _ x2)Let A be some assignment of boolean variables, the
orresponding mat
hingM
an be
onstru
ted as follows. Mat
h ea
h vertex xk on the left side withliteral xk if A[xk ℄ is true and with xk otherwise. The vertex Cji is mat
hedwith its literal if the logi
al value of this literal is true and with the
lause Ciotherwise. In this mat
hing, all the true literals l are mat
hed with all possibledeg(l) verti
es on the left side and all the false ones are mat
hed to none. The
lause Ci is satis�ed by A i� at least one of its literals Cji is true and hen
e is notmat
hed with Ci. So the degM (Ci) 2 K(Ci) i� Ci is satis�ed by A. On the otherhand, the
onstraints K(l) ensure that there are no other possible mat
hings inthis graph. Namely, exa
tly one of degM (xk) = 0 or degM (xk) = 0
an be true.

These
onditions determine the mates of all variables xk as well as the mates ofall literals Cji . Thus, the mat
hings and satisfying assignments are in one to one
orresponden
e and we proved the following.Lemma 11. SAT is satis�able if and only if there exists a generalized mat
hingM in graph G.This shows that determining the satis�ability of extended-GCC is NP-
ompleteand enfor
ing domain
onsisten
y on the extended-GCC is NP-hard.8 Con
lusionsWe presented faster algorithms to maintain domain and range
onsisten
y forthe g

. We showed how to eÆ
iently prune the
ardinality variables and testg

 for universality. We �nally showed that extended-g

 is NP-Hard.Referen
es1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin Network Flows: Theory, Algorithms,and Appli
ations. Prenti
e Hall, �rst edition, 1993.2. P. Hall. On representatives of subsets. J. of the London Mathemati
al So
iety,pages 26{30, 1935.3. J. Hop
roft and R. Karp n 52 algorithm for maximummat
hings in bipartite graphsSIAM Journal of Computing 2:225-2314. ILOG S. A. ILOG Solver 4.2 user's manual, 1998.5. C.-G. Quimper, P. van Beek, A. L�opez-Ortiz, A. Golynski, and S. B. Sadjad. AneÆ
ient bounds
onsisten
y algorithm for the global
ardinality
onstraint. CP-2003 and Extended Report CS-2003-10, 2003.6. I. Katriel, and S. Thiel. Fast Bound Consisten
y for the Global Cardinality Con-straint CP-2003, 2003.7. M. Le
onte. A bounds-based redu
tion s
heme for
onstraints of di�eren
e. In theConstraint-96 Int'l Workshop on Constraint-Based Reasoning. 19{28, 1996.8. J.-C. R�egin. A �ltering algorithm for
onstraints of di�eren
e in CSPs. In AAAI-1994, pages 362{367.9. J.-C. R�egin. Generalized ar

onsisten
y for global
ardinality
onstraint. InAAAI-1996, pages 209{215.10. J.-C. R�egin and J.-F. Puget. A �ltering algorithm for global sequen
ing
onstraints.In CP-1997, pages 32{46.11. K. Stergiou and T. Walsh. The di�eren
e all-di�eren
e makes. In IJCAI-1999,pages 414{419.12. R. Tarjan Depth-�rst sear
h and linear graph algorithms. SIAM Journal of Com-puting 1:146-160.13. P. Van Hentenry
k, L. Mi
hel, L. Perron, and J.-C. R�egin. Constraint programmingin OPL. In PPDP-1999, pages 98{116.14. P. Van Hentenry
k, H. Simonis, and M. Din
bas. Constraint satisfa
tion using
onstraint logi
 programming. Arti�
ial Intelligen
e, 58:113{159, 1992.15. J.-C. R�egin and J.-F. Puget. A �ltering algorithm for global sequen
ing
onstraints.In CP-1997, pages 32{46.

