
Improved Algorithms for the Global CardinalityConstraintClaude-Guy Quimper, Alejandro L�opez-Ortiz, Peter van Beek, andAlexander GolynskiUniversity of Waterloo, Waterloo, CanadaAbstrat. We study the global ardinality onstraint (g) and pro-pose an O(n1:5d) algorithm for domain onsisteny and an O(n + dn)algorithm for range onsisteny where n is the number of variables, dthe number of values in the domain, and an output dependent vari-able smaller than or equal to n. We show how to prune the ardinalityvariables in O(n2d + n2:66) steps, detet if g is universal in onstanttime and prove that it is NP-Hard to maintain domain onsisteny onextended-GCC.1 IntrodutionPrevious studies have demonstrated that designing speial purpose onstraintpropagators for ommonly ourring onstraints an signi�antly improve theeÆieny of a onstraint programming approah (e.g., [8, 11℄). In this paper westudy onstraint propagators for the global ardinality onstraint (g). A gover a set of variables and values states that the number of variables instantiatingto a value must be between a given upper and lower bound, where the bounds anbe di�erent for eah value. This type of onstraint ommonly ours in rostering,timetabling, sequening, and sheduling appliations (e.g., [4, 10, 13℄).Several pruning algorithms have been designed for the g. Van Henten-ryk et al. [14℄ express the g as a olletion of \atleast" and \atmost" on-straints and prunes the domain on eah individual onstraint. R�egin [9℄ givesan O(n2d) algorithm for domain onsisteny of the g (where n is the num-ber of variables and d is the number of values), Puget [15℄, Quimper et al. [5℄,and Katriel and Thiel [6℄ respetively give an O(n logn), O(n) and O(n + d)algorithm for bounds onsisteny, and Leonte [7℄ gives an �(n2) algorithm forrange onsisteny of the all-di�erent onstraint, a speialization of g. In addi-tion to pruning the variable domains, Katriel and Thiel's algorithm determinesthe maximum and the minimum number of variables that an be assigned to aspei� value for the ase where the variable domains are intervals.We improve over R�egin's algorithm and give an O(n1:5d) algorithm for do-main onsisteny. In addition, we ompute the maximum and the minimumnumber of variables that an be assigned to a value in respetively O(n2d) andO(n2:66) steps for the ase where the variable domains are not neessarily inter-vals (i.e., the domains an ontain holes) as often arises when domain onsisteny

is enfored on the variables. We present a new algorithm for range onsistenywith running time O(n + dn) (O(n) under ertain onditions) where is anoutput dependent variable between 1 and n. This new algorithm improves overLeonte's algorithm for the all-di�erent onstraint that is distributed as part ofILOG Solver [4℄. We detet in onstant time if a branh in a searh tree onlyleads to solutions that satisfy the g. This eÆient test avoids useless alls toa propagator. Finally, we study a generalized version of g alled extended-gand prove that it is NP-Hard to maintain domain onsisteny on this onstraint.2 Problem De�nitionA onstraint satisfation problem (CSP) onsists of a set of n variables, X =fx1; : : : ; xng; a set of values D; a �nite domain dom(xi) � D of possible valuesfor eah variable xi, 1 � i � n; and a olletion of m onstraints, fC1; : : : ; Cmg.Eah onstraint Ci is a onstraint over some set of variables, denoted by vars(Ci),that spei�es the allowed ombinations of values for the variables in vars(Ci).Given a onstraint C, we use the notation t 2 C to denote a tuple t|an assign-ment of a value to eah of the variables in vars(C)|that satis�es the onstraintC. We use the notation t[x℄ to denote the value assigned to variable x by thetuple t. A solution to a CSP is an assignment of a value to eah variable thatsatis�es all of the onstraints.We assume in this paper that the domains are totally ordered. The minimumand maximum values in the domain dom(x) of a variable x are denoted bymin(dom(x)) and max(dom(x)), and the interval notation [a; b℄ is used as ashorthand for the set of values fa; a+ 1; : : : ; bg.CSPs are usually solved by interleaving a baktraking searh with a seriesof onstraint propagation phases. A CSP an be made loally onsistent byrepeatedly removing unsupported values from the domains of its variables. Thisallows us to redue the domain of a variable after an assignment has been madein the baktraking searh phase.De�nition 1 (Support). Given a onstraint C, a value v 2 dom(x) for avariable x 2 vars(C) is said to have:(i) a domain support in C if there exists a t 2 C suh that v = t[x℄ andt[y℄ 2 dom(y), for every y 2 vars(C);(ii) an interval support in C if there exists a t 2 C suh that v = t[x℄ andt[y℄ 2 [min(dom(y));max(dom(y)℄, for every y 2 vars(C).De�nition 2 (Loal Consisteny). A onstraint problem C is said to be:(i) bounds onsistent if for eah x 2 vars(C), eah of the values min(dom(x))and max(dom(x)) has an interval support in C.(iii) range onsistent if for eah x 2 vars(C), eah value v 2 dom(x) has aninterval support in C.

(iii) domain onsistent if for eah x 2 vars(C), eah value v 2 dom(x) has adomain support in C.When testing for bounds onsisteny, we assume, without loss of generality,that all variable domains are intervals.The global ardinality onstraint problem (g) onsiders a mathing betweenthe variables in X with the values in D. A variable x 2 X an only be assigned toa value that belongs to its domain dom(x) whih is a subset of D. An assignmentsatis�es the onstraint if and only if all values v 2 D are assigned by at leastlv variables and at most uv variables. The all-di�erent onstraint is a g suhthat lv = 0 and uv = 1 for all values v in D.The g problem an be divided in two di�erent onstraint problems. Thelower bound onstraint problem (lb) whih ensures that all values v 2 Dare assigned by at least lv variables and the upper bound onstraint problem(ub) whih ensures that all values v 2 D are assigned by at most uv variables.3 Domain ConsistenyR�egin [9℄ showed how to enfore domain onsisteny on g in O(jX j2jDj) steps.For the speial ase of the all-di�erent onstraint, domain onsisteny an beenfored in O(jX j1:5jDj). An alternative, presented in [5℄, runs in O(ujX j1:5jDj+l1:5jX jjDj1:5) where u and l are respetively the maximum uv and the maximumlv. The latter algorithm o�ers a better omplexity for ertain values of l and u.Our result onsists of an algorithm that runs in O(jX j1:5jDj) and therefore is aseÆient as the algorithm for the all-di�erent onstraint.Our approah is similar to the one used by R�egin [8℄ for propagating theall-di�erent onstraint exept that our algorithm proeeds in two passes. The�rst one makes the ub domain onsistent and the seond pass makes the lbdomain onsistent. Quimper et al. [5℄ have previously formally shown that thissuÆes to make the g domain onsistent.3.1 Mathing in a graphFor the ub and lb problems, we will need to onstrut a speial graph. FollowingR�egin [8℄, let G(hX;Di ; E) be an undireted bipartite graph suh that nodes atthe left represent variables and nodes at the right represent values. There is anedge (xi; v) in E i� the value v is in the domain dom(xi) of the variable. Let (n)be the apaity assoiated to node n suh that (xi) = 1 for all variable-nodesxi 2 X and (v) is an arbitrary non-negative value for all value-nodes v in D. Amathing M in graph G is a subset of the edges E suh that no more than (n)edges in M are adjaent to node n. We are interested in �nding a mathing Mwith maximal ardinality.The following onepts from ow and mathing theory (see [1℄) will be usefulin this ontext. Consider a graph G and a mathing M . The residual graph GMof G is the direted version of graph G suh that edges in M are oriented from

values to variables and edges in E �M are oriented from variables to values.A node n is free if the number of edges adjaent to n in M is stritly less thanthe apaity (n) of node n. An augmenting path in GM is a path with an oddnumber of links that onnets two free nodes together. If there is an augmentingpath p in GM , then there exists a mathing M 0 of ardinality jM 0j = jM j + 1that is obtained by inverting all edges in GM that belongs to the augmentingpath p. A mathing M is maximal i� there is no augmenting path in the graphGM .Hoproft and Karp [3℄ desribe an algorithm with running time O(jX j1:5jDj)that �nds a maximum mathing in a bipartite graph when the apaities (n)are equal to 1 for all nodes. We generalize the algorithm to obtain the sameomplexity when (v) � 0 for the value-nodes and (xi) = 1 for variable-nodes.The Hoproft-Karp algorithm starts with an initial empty mathing M = ;whih is improved at eah iteration by �nding a set of disjoint shortest aug-menting paths. An iteration that �nds a set of augmenting paths proeeds intwo steps.The �rst step onsists of performing a breath-�rst searh (BFS) on the resid-ual graph GM starting with the free variable-nodes. The breath-�rst searh gen-erates a forest of nodes suh that nodes at level i are at distane i from a freenode. This distane is minimal by property of BFS. Let m be the smallest levelthat ontains a free value-node. For eah node n at level i < m, we assign a listL(n) of nodes adjaent to node n that are at level i + 1. We set L(n) = ; forevery node at level m or higher.The seond step of the algorithm uses a stak to perform a depth-�rst searh(DFS). The DFS starts from a free variable-node and is only allowed to branhfrom a node n to a node in L(n). When the algorithm branhes from node n1 ton2, it deletes n2 from L(n1). If the DFS reahes a free value-node, the algorithmmarks this node as non-free, lears the stak, and pushes a new free variable-node that has not been visited onto the stak. This DFS generates a forest oftrees whose roots are free variable-nodes. If a tree also ontains a free value-node, then the path from the root to this free-value node is an augmenting path.Changing the orientation of all edges that lie on the augmenting paths generatesa mathing of greater ardinality.In our ase, to �nd a mathing when apaities of value-nodes (v) are non-negative, we onstrut the dupliated graph G0 where value-nodes v are dupli-ated (v) times and the apaity of eah node is set to 1. Clearly, a mathingin G0 orresponds to a mathing in G and an be found by the Hoproft-Karpalgorithm. We an simulate a trae of the Hoproft-Karp algorithm run on graphG0 by diretly using graph G. We simply let the DFS visit (n)�degM (n) timesa free-node n where degM (n) is the number of edges in M adjaent to node n.This simulates the visit of the free dupliated nodes of node n in G. Even if weallow multiple visits of a same node, we maintain the onstraint that an edgeannot be traversed more than one in the DFS. The running time omplexityfor a DFS is still bounded by the number of edges O(jX jjDj).

Hoproft and Karp proved that if s is the ardinality of a maximum ar-dinality mathing, then O(ps) iterations are suÆient to �nd this maximumardinality mathing. In our ase, s is bounded by jX j and the omplexity ofeah BFS and DFS is bounded by the number of edges in GM i.e. O(jX jjDj).The total omplexity is therefore O(jX j1:5jDj). We will run this algorithm twie,�rst with (v) = uv to obtain a mathing Mu and then with (v) = lv to obtaina mathing Ml.3.2 Pruning the DomainsUsing the algorithm desribed in the previous setion, we ompute a mathingMu in graph G suh that apaities of variable-nodes are set to (xi) = 1 andapaities of value-nodes are set to (v) = uv. A mathingMu learly orrespondsto an assignment that satis�es the ub if it has ardinality jX j i.e. if eah variableis assigned to a value.Consider now the same graphG where apaities of variable-nodes are (xi) =1 but apaities of value-nodes are set to (v) = lv. A maximum mathing Mlof ardinality jMlj = P lv represents a partial solution that satis�es the lb.Variables that are not assigned to a value an in fat be assigned to any valuein their domain and still satisfy the lb.Pruning the domains onsists of �nding the edges that annot be part of amathing. From ow theory, we know that an edge an be part of a mathing i�it belongs to a strongly onneted omponent or it lies on a path starting fromor leading to a free node.R�egin's algorithm prunes the domains by �nding all strongly onneted om-ponents and agging all edges that lie on a path starting or �nishing at a freenode. This an be done in O(jX jjDj) using DFS as desribed in [12℄. Finally,Quimper et al. [5℄ proved that pruning the domains for the ub and then pruningthe domains for the lb is suÆient to prune the domains for the g.3.3 Dynami CaseIf during the propagation proess another onstraint removes a value from adomain, we would like to eÆiently reintrodue domain onsisteny over uband lb. R�egin [8℄ desribes how to maintain a maximum mathing under edgedeletion and maintain domain onsisteny in O(ÆjX jjDj) where Æ is the numberof deleted edges. His algorithm an also be applied to ours.4 Pruning the Cardinality VariablesPruning the ardinality variables lv and uv seems like a natural operation toapply to g. To give a simple example, if variable uv onstrains the value vto be assigned to at most 100 variables while there are less than 50 variablesinvolved in the problem, it is lear that the uv an be redued to a lower value.

We will show in the next two setions how to shrink the ardinality lower boundslv and ardinality upper bounds uv.In general, the pruned bounds on the ardinality variables obtained by ouralgorithm are at least as tight as those obtained by Katriel and Thiel's algorithm[6℄, and an be stritly tighter in the ase where domain onsisteny has beenenfored on the (ordinary) variables.4.1 Growing the Lower BoundsLet G be the value graph where node apaities are set to (xi) = 1 for variable-nodes and (a) = ua for value-nodes. For a spei� value v, we want to �nd thesmallest value lv suh that there exists a mathing M of ardinality jX j thatsatis�es the apaity onstraints suh that degM (v) = lv .We onstrut a maximum ardinality mathingMu that satis�es the apaityonstraints of G. For eah mathed value v (i.e. degMu(v) > 0), we reate a graphGv and Mvu that are respetively a opy of graph G and mathing Mvu to whihwe removed all edges adjaent to value-node v. The partial mathing Mvu anbe transformed into a maximum ardinality mathing by repeatedly �nding anaugmenting path using a DFS and applying this path to Mvu . This is done inO(degMu(v)jX jjDj) steps. Let Cv be the ardinality of the maximum mathing.Lemma 1. Any mathing Mu in G of ardinality jX j requires degMu(v) to beat least jMuj � Cv.Proof. If by removing all edges onneted to value-node v the ardinality of amaximum mathing in a graph drops from jM j to Cv then at least jM j � Cvedges in M were adjaent to value-node v and ould not be replaed by otheredges. Therefore value-node v is required to be adjaent to jM j�Cv edges in Min order to obtain a mathing of ardinality jX j. utSine Mu is a maximum mathing, we have Pv degMu(v) = jX j and there-fore the time required to prune all ardinality lower bounds for all values isO(Pv degMu(v)jX jjDj) = O(jX j2jDj).4.2 Pruning Upper BoundsWe want to know what is the maximum number of variables that an be assignedto a value v without violating the lb; i.e. how many variables an be assigned tovalue v while other values w 2 D are still assigned to at least lw variables. Weonsider the residual graph GMl . If there exists a path from a free variable-nodeto the value-node v then there exists a mathing M 0l that has one more variableassigned to v than mathing Ml and that still satis�es the lb.Lemma 2. The number of edge-disjoint paths from free variable-nodes to value-node v an be omputed in O(jX j2:66) steps.

Proof. We �rst observe that a value-node in GMl that is not adjaent to anyedge in Ml annot reah a variable-node (by de�nition of a residual graph).These nodes, with the exeption of node v, annot lead to a path from a freevariable-node to node v. We therefore reate a graph GvMl by removing from GMlall nodes that are not adjaent to an edge in Ml exept for node v. To the graphGvMl , we add a speial node s alled the soure node and we add edges from sto all free-variable nodes. Sine there are at most jX j mathed variable-nodes,we obtain a graph of at most 2jX j+ 1 nodes and O(jX j2) edges.The number of edge-disjoint paths from the free variable-nodes to value-nodev is equal to the maximum ow between s and v. A maximum ow in a diretedbipartite graph where edge apaities are all 1 an be omputed in O(n1:5m)where n is the number of nodes and m the number of edges (see Theorem 8.1in [1℄). In our ase, we obtain a omplexity of O(jX j2:66). utThe maximum number of variables that an be assigned to value v is equal tothe number of edges adjaent to v in Ml plus the number of edge-disjoint pathsbetween the free-nodes and node v. We ompute a ow problem for omputingthe new upper bounds uv of eah value and prune the upper bound variables inO(jDjjX j2:66) steps.5 Range ConsistenyEnforing range onsisteny onsists of removing values in variable domains thatdo not have an interval support. Sine we are only interested in interval support,we assume without loss of generality that variable domains are represented byintervals dom(xi) = [a; b℄.Using notation from [7, 5℄, we let C(S) represent the number of variableswhose domain is fully ontained in set S and I(S) represent the number ofvariables whose domains interset set S.Maximal (Minimal) Capaity The maximal (minimal) apaity dSe (bS)of set S is the maximal (minimal) number of variables that an be assignedto the values in S. We have dSe =Pv2S uv and bS =Pv2S lv.Hall Interval A Hall interval is an interval H � D suh that the number ofvariables whose domain is ontained in H is equal to the maximal apaityof H . More formally, H is a Hall interval i� C(H) = dHe.Failure Set A failure set is a set F � D suh that there are fewer variableswhose domains interset F than its minimal apaity; i.e., F is a failure seti� I(F) < bF .Unstable Set An Unstable set is a set U � D suh that the number of variableswhose domain intersets U is equal to the minimal apaity of U . The set Uis unstable i� I(U) = bU.Stable Interval A Stable interval is an interval that ontains more variabledomains than its lower apaity and that does not interset any unstable orfailure set, i.e. S is a stable interval i� C(S) > bS, S\U = ; and S\F = ;for all unstable sets U and failure sets F . A stable interval S is maximal ifthere is no stable interval S0 suh that F � F 0.

A basi Hall interval is a Hall interval that annot be expressed as the unionof two or more Hall intervals. We use the following lemmas taken from [7, 5℄.Lemma 3 ([7℄). A variable annot be assigned to a value in a Hall interval ifits whole domain is not ontained in this Hall interval.Lemma 4 ([5℄). A variable whose domain intersets an unstable set annot beinstantiated to a value outside of this set.Lemma 5 ([5℄). A variable whose domain is ontained in a stable interval anbe assigned to any value in its domain.We show that ahieving range onsisteny is redued to the problem of �ndingthe Hall intervals and the unstable sets and pruning the domains aording toLemma 3 and Lemma 4. Leonte's �(jX j2) algorithm (implemented in ILOG)enfores range onsisteny for the all-di�erent onstraint (lv = 0 and uv = 1).Leonte proves the optimality of his algorithm with the following example.Example 1 (Leonte 96 page 24 [7℄). Let x1; : : : ; xn be n variables whose domainsontain distint odd numbers ranging from 1 to 2n � 1 and let xn+1; : : : ; x2nbe n variables whose domains are [1; 2n � 1℄. An algorithm maintaining rangeonsisteny needs to remove the n odd numbers from n variable domains whihis done in �(n2).We introdue an algorithm that ahieves range onsisteny in O(t + CjX j)where C � jX j and t is the time required to sort jX j variables by lower andupper bounds. If C = jX j then we obtain an O(jX j2) algorithm but we an alsoobtain an algorithm that is as fast as sorting the variables in the absene of Hallintervals and unstable sets.The �rst step of our algorithm is to make the variables bounds onsistentusing already existing algorithms [5, 6℄. We then study basi Hall intervals andbasi unstable sets in bounds onsistent problems.In order to better understand the distribution of Hall intervals, unstable sets,and stable intervals over the domain D, we introdue the notion of a harater-isti interval. A harateristi interval I is an interval in D i� for all variabledomains, both bounds of the domain are either in I or outside of I .A basi harateristi interval is a harateristi interval that annot be ex-pressed as the union of two or more harateristi intervals. A harateristiinterval an always be expressed as the union of basi harateristi intervals.Lemma 6. In a bounds onsistent problem, a basi Hall interval is a basi har-ateristi interval.Proof. In a bounds onsistent problem, no variables have a bound within a Hallinterval and the other bound outside of the Hall interval. Therefore every basiHall interval is a basi harateristi interval. utLemma 7. In a bounds onsistent problem, a maximum stable interval is aharateristi interval.

Proof. Quimper et al. [5℄ proved that in a bounds onsistent problem, stableintervals and unstable sets form a partition of the domain D. Therefore, either avariable domain intersets an unstable set and has both bounds in this unstableset or it does not interset an unstable set and is fully ontain in a stable interval.Consequently, a maximum stable interval is a harateristi interval. utLemma 8. Any unstable set an be expressed by the union and the exlusion ofbasi harateristi intervals.Proof. Let U be an unstable set and I be the smallest interval that overs U .Sine any variable domain that intersets U has both bounds in U , then I is aharateristi interval. Moreover, I � U forms a series of intervals that are in Ibut not in U . A variable domain ontained in I must have either both bounds inan interval of I�U suh that it does not interset U or either have both boundsin U . Therefore the intervals of I 0 = I�U are harateristi intervals and U anbe expressed as U = I � I 0. ut5.1 Finding the Basi Charateristi IntervalsUsing the properties of basi harateristi intervals, we suggest a new algorithmthat makes a problem range onsistent and has a time omplexity of O(t+ H)where t is the time omplexity for sorting n variables and H is the number ofbasi harateristi intervals. This algorithm proeeds in four steps:1. Make the problem bounds onsistent in O(t+ jX j) steps (see [5℄).2. Sort the variables by inreasing lower bounds in O(t) steps.3. Find the basi harateristi intervals in O(jX j) steps.4. Prune the variable domains in O(jX j) steps.Step 1 and Step 2 are trivial sine we an use existing algorithms. We fousour attention on Steps 3 and 4.Step 3 of our algorithm �nds the basi harateristi intervals. In order todisover these intervals, we maintain a stak S of intervals that are the poten-tial basi harateristi intervals. We initialize the stak by pushing the in�niteinterval [�1;1℄. We then proess eah variable domain in asending order oflower bound. Let I be the urrent variable domain and I 0 the interval on top ofthe stak. If the variable domain is ontained in the interval on top of the stak(I � I 0), then the variable domain ould potentially be a harateristi intervaland we push it on the stak. If the variable domain I has its lower bound in theinterval I 0 on top of the stak and its upper bound outside of this interval, thenneither I or I 0 an be harateristi intervals, although the interval I [I 0 ouldpotentially be a harateristi interval. In this ase, we pop I 0 o� the stak andwe assign I to be I [I 0. We repeat the operation until I is ontained in I 0. Notethat at any time, the stak ontains a set of nested intervals.If we proess a variable domain whose lower bound is greater than the upperbound of the interval I 0 on the stak, then by onstrution of the stak, I 0 is a

basi harateristi interval that we print and pop o� of the stak. We repeat theoperation until the urrent variable domain intersets the interval on the stak.Algorithm 1 proesses all variables and prints the basi harateristi inter-vals in inreasing order of upper bounds. In addition to this task, it also identi�eswhih kind of harateristi intervals the algorithm prints: a Hall interval, a Sta-ble interval or an interval that ould ontain values of an unstable set. This isdone by maintaining a ounter 1 that keeps trak of how many variable do-mains are ontained in an interval on the stak. Counter 2 is similar but onlyounts the �rst bA variables ontained in eah sub-harateristi interval A. Aharateristi interval I is a stable interval if 2 is greater than bI and mightontain values of an unstable set if 2 is equal to bI. We ignore harateristiintervals with 2 < bI sine those intervals are not used to de�ne Hall intervals,stable intervals or unstable sets.Input : X are the variable domains sorted by non dereasing lower boundsResult : Prints the basi harateristi intervals and spei�es if they are Hallintervals, stable intervals or ontain values of an unstable setS empty stakpush(S; h[�1;1℄; 0; 0i)Add a dummy variable that fores all elements to be popped o� of the stak onterminationX X [[max(D) + 1;max(D) + 3℄for x 2 X dowhile max(top(S):interval) < min(dom(x)) dohI; 1; 2i pop(S)if dIe = 1 then print \Hall Interval": Ielse if bI < 2 then print \Stable Interval": Ielse if bI = 2 then print \Might Contain Values from Unstable Sets": IhI 0; 01; 02i pop(S)push(hI 0; 1 + 01; 02 +min(2; bI)i)I dom(x), 1 1, 2 1while max(top(S):interval) � max(I) dohI 0; 01; 02i pop(S)I I [I 01 1 + 012 2 + 02push(S; hI; 1; 2i)Algorithm 1: Prints the basi harateristi intervals in a bounds onsistentproblem.Algorithm 1 runs in O(jX j) steps sine a variable domain an be pushed onthe stak, popped o� the stak, and merged with another interval only one.One the basi harateristi intervals are listed in non-dereasing order ofupper bounds, we an easily enfore range onsisteny on the variable domains.We simultaneously iterate through the variable domains and the harateristi

intervals both sorted by non-inreasing order of upper bounds. If a variable xiis only ontained in harateristi intervals that ontain values of an unstableset, then we remove all harateristi intervals stritly ontained in the variabledomain. We also remove from the domain of xi the values whose lower apaitylv is null. In order to enfore the ub, we remove a Hall interval H from allvariable domains that is not ontained in H .Removing the harateristi intervals from the variable domains requires atmost O(jX j) steps where � jX j is the number of harateristi intervals.Removing the values whith null lower apaities requires at most O(jX jjDj)instrutions but an require no work at all if lower apaities lv are all null or allpositive. If lower apaities are all positive, no values need to be removed fromthe variable domains. If they are all null, the problem does not have unstable setsand only Hall intervals need to be onsidered. The �nal running time omplexityis either O(jX j) or O(jX j+ jDjjX j) depending if lower apaities are all null,all positive, or mixed.Example: Consider the following bounds onsistent problem where D = [1; 6℄,lv = 1, and uv = 2 for all v 2 D. Let the variable domains be dom(xi) = [2; 3℄ for1 � i � 4, dom(x5) = [1; 6℄, dom(x6) = [1; 4℄, dom(x7) = [4; 6℄, and dom(x8) =[5; 5℄. Algorithm 1 identi�es the Hall interval [2; 3℄ and the two harateristiintervals [5; 5℄ and [1; 6℄ that ontain values of an unstable set. Variable domainsdom(x5) to dom(x8) are only ontained in harateristi intervals that mightontain values of unstable sets. We therefore remove the harateristi intervals[2; 3℄ and [5; 5℄ that are strily ontained in the domains of x5, x6, and x7.The Hall interval [2; 3℄ must be removed from the variable domains that stritlyontain it, i.e. the value 2 and 3 must be removed from the domain of variablesx6 and x8. After removing the values, we obtain a range onsistent problem.5.2 Dynami CaseWe want to maintain range onsisteny when a variable domain dom(xi) is modi-�ed by the propagation of other onstraints. Notie that if the bounds of dom(xi)hange, new Hall intervals or unstable sets an appear in the problems requir-ing other variable domains to be pruned. We only need to prune the domainsaording to these new Hall intervals and unstable sets.We make the variable domains bounds onsistent and �nd the harateristiintervals as before in O(t + jX j) steps. We ompare the harateristi intervalswith those found in the previous omputation and perform a linear san tomark all new harateristi intervals. We perform the pruning as explained inSetion 5.1. Sine we know whih harateristi intervals were already presentduring last omputation, we an avoid pruning domains that have already beenpruned.If no new Hall intervals or unstable sets are reated, the algorithm runs inO(t + jX j) steps. If variable domains need to be pruned, the algorithm runs inO(t + jX j) whih is proportional to the number of values removed from thedomains.

6 UniversalityA onstraint C is universal for a problem if any tuple t suh that t[x℄ 2 dom(x)satis�es the onstraint C. We study under what onditions a given g behaveslike the universal onstraint. We show an algorithm that tests in onstant timeif the lb or the ub are universal. If both the lb and the ub aept any variableassignment then the g is universal. This implies there is no need to run apropagator on the g sine we know that all values have a support. Our resultholds for domain, range, and bounds onsisteny.6.1 Universality of the Lower Bound ConstraintLemma 9. The lb is universal for a problem if and only if for eah value v 2 Dthere exists at least lv variables x suh that dom(x) = fvg.Proof. (= If for eah value v 2 D there are lv variables x suh that dom(x) =fvg then it is lear that any variable assignment satis�es the lb.=) Suppose for a lb problem there is a value v 2 D suh that there are lessthan lv variables whose domain only ontains value v. Therefore, an assignmentwhere all variables that are not bounded to v are assigned to a value otherthan v would not satisfy the lb. This proves that lb is not universal under thisassumption. utThe following algorithm veri�es if the lb is universal in O(jX j+ jDj) steps.1. Create a vetor t suh that t[v℄ = lv for all v 2 D.2. For all domains that ontain only one value v, derement t[v℄ by one.3. The lb is universal if and only if no omponents in t are positive.We an easily make the algorithm dynami under the modi�ation of variabledomains. We keep a ounter that indiates the number of positive omponentsin vetor t. Eah time a variable gets bound to a single value v, we derement t[v℄by one. If t[v℄ reahes the value zero, we derement by one. The lb beomesuniversal when reahes zero. Using this strategy, eah time a variable domainis pruned, we an hek in onstant time if the lb beomes universal.6.2 Universality of the Upper Bound ConstraintLemma 10. The ub is universal for a problem if and only if for eah valuev 2 D there exists at most uv variable domains that ontain v.Proof. (= Trivially, if for eah value v 2 D there are uv or fewer variabledomains that ontain v, there is no assignment that ould violate the ub andtherefore the ub is universal.=) Suppose there is a value v suh that more than uv variable domainsontain v. If we assign all these variables to the value v, we obtain an assignmentthat does not satisfy the ub. ut

To test the universality of the ub, we ould reate a vetor a suh thata[v℄ = I(fvg)� uv. The ub is universal i� no omponents of a are positive. Inorder to perform faster update operations, we represent the vetor a by a vetort that we initialize as follows: t[min(D)℄ �umin(D) and t[v℄ uv�1 � uv formin(D) < v � max(D). Assuming variable domains are initially intervals, foreah variable xi 2 X , we inrement the value of t[min(dom(xi))℄ by one andderement t[max(dom(xi)) + 1℄ by one. Let i be an index initialized to valuemin(D). The following identity an be proven by indution.a[v℄ = I(fvg)� uv = vXj=i t[j℄ (1)Index i divides the domain of values D in two sets: the values v smaller thani are not ontained in more than uv variable domains while other values anbe ontained in any number of variable domains. We maintain index i to bethe highest possible value. If index i reahes a value greater than max(D) thenall values v in D are ontained in less than uv variable domains and thereforethe ub is universal. Algorithm 2 inreases index i to the �rst value v that isontained in more than uv domains. The algorithm also updates vetor t suhthat Equation 1 is veri�ed for all values greater than or equal to i.while (i � max(D)) and (t[i℄ � 0) doi i+ 1 ;if i � max(D) thent[i℄ t[i℄ + t[i� 1℄;Algorithm 2: Algorithm used for testing the universality of the ub that inreasesindex i to the smallest value v 2 D ontained in more than uv domains. Thealgorithm also modi�es vetor t to validate Equation 1 when v � i.Suppose a variable domain gets pruned suh that all values in interval [a; b℄are removed. To maintain the invariant given by Equation 1 for values greaterthan or equal to i, we update our vetor t by removing 1 from omponentt[max(a; i)℄ and adding one to omponent t[max(b + 1; i)℄. We then run Algo-rithm 2 to inrease index i. If i > max(D) then the ub is universal sine novalue is ontained in more domains than its maximal apaity.Initializing vetor t and inreasing iterator i until i > max(D) requiresO(jX j + jDj) steps. Therefore, heking universality eah time an interval ofvalues is removed from a variable domain is ahieved in amortized onstanttime.

7 NP-Completeness of Extended-GCCWe now onsider a generalized version of g that we all extended-g. For eahvalue v 2 D, we onsider a set of ardinalities K(v). We want to �nd a solutionwhere value v is assigned to k variables suh that k 2 K(v). We prove that it isNP-Complete to determine if there is an assignment that satis�es this onstraintand therefore that it is NP-Hard to enfore domain onsisteny on extended-g.Consider a CNF formula onsisting of n lauses ^ni=1_jCji , where eah literalCji is either a variable xk or its negation xk. We onstrut the orrespondingbipartite graph G as follows. On the left side, we put a set of verties namedxk for eah boolean variable ourring in the formula, and set of verties namedCji for eah literal. On the right side, we put a set of verties named xk and xk(for eah variable xk on the left side), and a set of verties named Ci for eahof n lauses in the formula. We onnet variables xk on the left side with bothliterals xk and xk on the right side, onnet Cji with the orresponding literalon the right side, and onnet Cji with the lause Ci where it ours. De�ne thesets K(l) as f0; degG(l)g for eah literal l and K(Ci) as [0; degG(Ci)�1℄ for eahlause Ci.For example, the CNF formula (x1 _ x2) ^ (x1 _ x2) is represented as thegraph in Figure 1
C1

1

C1
2

C2
1

C2
2

x1

x2

C1

C2

x1

x1

x2

x2

{0,2}

{0,3}

{0,1}

{0,1}

{0,1}

{0,2}

Fig. 1. Graph for (x1 _ x2) ^ (x1 _ x2)Let A be some assignment of boolean variables, the orresponding mathingM an be onstruted as follows. Math eah vertex xk on the left side withliteral xk if A[xk ℄ is true and with xk otherwise. The vertex Cji is mathedwith its literal if the logial value of this literal is true and with the lause Ciotherwise. In this mathing, all the true literals l are mathed with all possibledeg(l) verties on the left side and all the false ones are mathed to none. Thelause Ci is satis�ed by A i� at least one of its literals Cji is true and hene is notmathed with Ci. So the degM (Ci) 2 K(Ci) i� Ci is satis�ed by A. On the otherhand, the onstraints K(l) ensure that there are no other possible mathings inthis graph. Namely, exatly one of degM (xk) = 0 or degM (xk) = 0 an be true.

These onditions determine the mates of all variables xk as well as the mates ofall literals Cji . Thus, the mathings and satisfying assignments are in one to oneorrespondene and we proved the following.Lemma 11. SAT is satis�able if and only if there exists a generalized mathingM in graph G.This shows that determining the satis�ability of extended-GCC is NP-ompleteand enforing domain onsisteny on the extended-GCC is NP-hard.8 ConlusionsWe presented faster algorithms to maintain domain and range onsisteny forthe g. We showed how to eÆiently prune the ardinality variables and testg for universality. We �nally showed that extended-g is NP-Hard.Referenes1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin Network Flows: Theory, Algorithms,and Appliations. Prentie Hall, �rst edition, 1993.2. P. Hall. On representatives of subsets. J. of the London Mathematial Soiety,pages 26{30, 1935.3. J. Hoproft and R. Karp n 52 algorithm for maximummathings in bipartite graphsSIAM Journal of Computing 2:225-2314. ILOG S. A. ILOG Solver 4.2 user's manual, 1998.5. C.-G. Quimper, P. van Beek, A. L�opez-Ortiz, A. Golynski, and S. B. Sadjad. AneÆient bounds onsisteny algorithm for the global ardinality onstraint. CP-2003 and Extended Report CS-2003-10, 2003.6. I. Katriel, and S. Thiel. Fast Bound Consisteny for the Global Cardinality Con-straint CP-2003, 2003.7. M. Leonte. A bounds-based redution sheme for onstraints of di�erene. In theConstraint-96 Int'l Workshop on Constraint-Based Reasoning. 19{28, 1996.8. J.-C. R�egin. A �ltering algorithm for onstraints of di�erene in CSPs. In AAAI-1994, pages 362{367.9. J.-C. R�egin. Generalized ar onsisteny for global ardinality onstraint. InAAAI-1996, pages 209{215.10. J.-C. R�egin and J.-F. Puget. A �ltering algorithm for global sequening onstraints.In CP-1997, pages 32{46.11. K. Stergiou and T. Walsh. The di�erene all-di�erene makes. In IJCAI-1999,pages 414{419.12. R. Tarjan Depth-�rst searh and linear graph algorithms. SIAM Journal of Com-puting 1:146-160.13. P. Van Hentenryk, L. Mihel, L. Perron, and J.-C. R�egin. Constraint programmingin OPL. In PPDP-1999, pages 98{116.14. P. Van Hentenryk, H. Simonis, and M. Dinbas. Constraint satisfation usingonstraint logi programming. Arti�ial Intelligene, 58:113{159, 1992.15. J.-C. R�egin and J.-F. Puget. A �ltering algorithm for global sequening onstraints.In CP-1997, pages 32{46.

