
Generalized Streets Revisited�Alejandro L�opez-Ortiz Sven SchuiererAbstractWe consider the problem of a robot inside an unknown polygon that has to �nda path from a starting point s to a target point t. We assume that it is equippedwith an on-board vision system through which it can get the visibility map of itssurroundings.Furthermore, we assume that the robot is contained in a simple polygon thatbelongs to the class of generalized streets. We consider three problems.1. We present a strategy that allows the robot to search for t in an arbitrarilyoriented generalized street where the distance travelled by the robot under ourstrategy is at most 80 times the length of the shortest path from s to t.2. We show that there are orthogonal generalized streets for which the distancetravelled by the robot under any searching strategy is at least 9.06 times thelength of the shortest path from s to t.3. Finally, we show that even if the location of the target is known, there areorthogonal generalized streets for which the distance travelled by the robotunder any searching strategy is at least 9 times the length of the shortest pathfrom s to t.1 IntroductionThe problem of a robot searching for a target in an unknown environment has recentlyreceived a considerable amount of attention [2, 3, 4, 5, 8, 9, 11, 12, 13]. In this setting itis assumed that the robot is equipped with an on-board vision system that allows it tosee its local environment. However, the robot does not have access to a complete map ofits surroundings.Since the robot has to make decisions about the search based only on the part of itsenvironment that it has seen before, the search of the robot can be viewed as an on-lineproblem. One way to judge the performance of an on-line search strategy is to comparethe distance traveled by the robot to the length of the shortest path from s to t. In otherwords, the robot's path is compared with that of an adversary's who knows the completeenvironment; this approach to analysing on-line algorithms was introduced by Sleator andTarjan [14]. The ratio of the distance traveled by the robot to the optimal distance froms to t is called the competitive ratio of the search strategy.�This research is supported by the DFG-Project "Diskrete Probleme", No. Ot 64/8-1.1



Since, in general, the ratio between the distance a robot traverses and the length ofa shortest path can be forced to be 
(n) if the obstacles in the scene have a total of nedges, e�orts have focussed on restricted classes of environments that allow more e�cientsearch strategies. If, for instance, all the obstacles encountered by the robot are convex,then a competitive ratio of Omega(pn) is the best possible and can be achieved if theaspect ratio of the obstacles is bounded [7].A di�erent approach is to consider only one polygon which is now allowed to be non-convex. Klein was the �rst to consider a class of polygons called streets which allowsearch strategies that have a competitive ratio bounded by a constant [8]. A polygonis a street if the starting point s and the target are located on the polygon boundaryand the counterclockwise boundary chain L from s to t is weakly visible to the clockwiseboundary chain R from s to t and vice versa. Streets can be searched with a low constantcompetitive ratio [8, 9, 11]. Unfortunately, streets are a often too restrictive a class ofpolygons in order to model real environments.In the search for larger classes of polygons that admit search strategies with a constantcompetitive ratio Datta and Icking propose a class of polygons they call generalized streetsor G-streets [5]. Here every point on the boundary is visible from some horizontal chordthat connects L with R. The class of G-streets can be shown to properly contain theclass of streets. An even larger class is given by the class of HV-streets where everypoint in P is visible from a horizontal or a vertical chord that connects L and R [4].Though the de�nitions of G-streets and HV-streets include arbitrarily oriented polygons,the strategies that are presented only apply to orthogonal polygons, i.e. polygons whoseedges are parallel to the coordinate axes. Datta and Icking present an algorithm thatachieves a competitive ratio of nine in the L1-metric and p82 (� 9:06) in the L2-metric.While nine can be shown to be a lower bound for any strategy, it is an open problemwhether there is a better strategy in the L2-metric. Similarly, Datta et al. present astrategy with an optimal competitive ratio of 14.5 w.r.t. the L1-metric for searching inorthogonal HV-streets [4].In this paper we present the �rst strategy to search in arbitrarily oriented G-streets.Searching in arbitrarily oriented G-streets turns out to be much more di�cult than search-ing in orthogonal G-streets which admit a very simple search strategy [5]. This situationis similar to exploring a simple polygon where a simple and optimal strategy is knownfor orthogonal polygons but no strategy to explore arbitrarily oriented polygons has beenfound yet [6]. We provide a strategy with a competitive ratio of 80 to search in G-streets.Additionally we show that p82 is a lower bound for searching in orthogonal G-streets,thus, proving that the strategy of Datta and Icking is optimal even in the L2-metric.Finally, we also consider the problem of searching in an orthogonal G-street where the lo-cation of the target is known. We show that this knowledge does not provide a signi�cantadvantage to the robot as there is also a lower bound of nine w.r.t. L1-metric as in thecase with unknown location of the target. This result was already mentioned in [11] butremained unproven.The paper is organized as follows. In the next section we give some de�nitions. InSection 3 we present a strategy to search in arbitrarily oriented G-streets. The lowerbounds for orthogonal G-streets with known and unknown location of the target arepresented in Section 4. Finally, in Section 5 we summarize our result and conclude withsome open problems. 2



mr mlvis(P)P (c)c(b) otL R(a)s c V(5=4�;7=4�)cPPFigure 1: (a) A G-street P with left chain L and right chain R. c is an LR-chord. (b)The visibility polygon vis(P) of P with left P-landmark ml and right P-landmark mr.(c) The upper (5=4�; 7=4�)-envelope of c in P .2 De�nitions and Preliminary ResultsWe start out with some de�nitions concerning general geometric concepts. We view apath or curve as a continuous mapping from a closed interval into the two dimensionalplane. In particular, we assume paths to be oriented from their start point to their endpoint. Let C be a simple, closed curve consisting of n line segments such that no twoconsecutive segments are collinear. We de�ne a simple polygon P to be the union of Cand its interior.If p and q are two points, then we denote the line segment spanned by p and q by pq.The (oriented) straight path from p to q is denoted by �!pq .A line segment c inside P is called a chord if the end points of c are on the boundaryof P . A maximal line segment or a maximal chord l in P is a line segment inside P suchthat there is no other line segment that properly contains l and that is also contained inP . Now we turn to generalized streets and their properties. If P is a polygon and s and tare two points on the boundary of P , then we call the counterclockwise polygonal chainfrom s to t the left chain and denote it by L; the clockwise polygonal chain from s to t iscalled the right chain and denoted by R. A chord c inside P is an LR-chord if c intersectsboth L and R.De�nition 2.1 ([5]) Let P be a polygon and s and t two points on the boundary of Pwith left chain L and right chain R. P is called a generalized street or G-street if everypoint in P is visible from a horizontal LR-chord (see Figure 1a).LR-chord are used to guide the search for t.Lemma 2.1 ([5]) c is an LR-chord if and only if a shortest path from s to t intersectsc. We also need some de�nitions that deal with visibility.De�nition 2.2 Let P be a polygon and P be a path in P . The set of points that arevisible to P is called the visibility polygon of P and denoted by vis(P) (see Figure 1b).3



A maximal line segment of the boundary of vis(P) that does not belong to the bound-ary of P is called a window of vis(P). A window w splits P into two parts one of whichcontains vis(P). The part that does not contain vis(P ) is called the pocket of w. The endpoint of a window that is closer to P is called a P-landmark. If m is a P-landmark andw is the window it belongs to, then w is called the window induced by m; furthermore,if Q is the pocket of w, the Q is called the pocket induced by w or by m. We assumethat a window is oriented such that the landmark that induces it is its start point. A leftwindow is a window whose induced pocket is to the left w.r.t. its orientation. A landmarkis called a left landmark if it induces a left window. A right window and a right landmarkare de�ned analogously (see also Figure 1b).3 Searching in a Generalized StreetIn this section we describe how to search for a target in an arbitrarily oriented generalizedstreet. The general idea is to advance from one horizontal LR-chord to the next until thetarget t is seen. This is the same general strategy as used by Datta and Icking to searchorthogonal G-streets [5]. The crucial step of the strategy is, of course, to identify a newLR-chord c0 if we are given an LR-chord c. This is done by exploring the neighbourhoodof the chord c. If we call the �rst point the robot reaches on c the arrival point of c, thenwe have to ensure that the amount traveled by the robot in the exploration is proportionalto the distance from the arrival point of c to the arrival point of c0.3.1 Searching the Neighbourhood of a ChordIn the following we assume that the robot is located at the arrival point o on a horizontalLR-chord c. The robot uses four paths to explore the neighbourhood of c, one for eachquadrant of the coordinate system with the origin in the arrival point at c and the x-axiscollinear with c.Before describing our strategy in detail, we brie
y discuss a method due to Baeza-Yates et al. [1] for searching a point in m concurrent rays. We assume that the robot isplaced at the origin of m concurrent rays and it has to �nd a point t which is situated inone of the rays. The distance of the point t is unknown to the robot though it knows alower bound "; the robot can only detect the point t when it reaches t. In the strategyof Baeza-Yates et al. the robot visits the rays one by one in a round robin fashion untilthe point t is reached. In every ray, the robot goes a certain distance and if t is notreached, returns and explores the next ray. The distance from the origin the robot travelsbefore the i-th turn is given by (m=(m� 1))i�1". The competitive ratio of this strategyis 1 + 2mm=(m� 1)m�1 which can be shown to be optimal [1].For two concurrent rays (i.e., m = 2), the robot executes cycles of steps in increasingpowers of 2 and the competitive ratio is 9. Similarly, for four concurrent rays, the robotexecutes cycles of steps in increasing powers of 43 and the competitive ratio is 19:98.We now turn to describing the shape of the paths that the robot explores in detail.We say the robot �-sees the line segment c if the ray originating from the robot at anangle of � intersects c before it intersects any points of the exterior of P .4



De�nition 3.1 Let c be a chord in P and � < � < � < 2�. The upper (�; � )-envelopeof c is the set of the highest points above c which �- and � -see c. We denote the upper(�; � )-envelope of c by V(�;�)c . If 0 < � < � < �, then the lower (�; � )-envelope of c isde�ned analogously and denoted by W(�;�)c (see Figure 1c).With this de�nition we now can give a precise description of how the robot searchesthe neighbourhood of c.Algorithm Landmark DetectionInput: a G-street P , a horizontal LR-chord c in P , and the arrival point o ofthe robot on c;Output: a c-landmark m;let cl be the part of c to the left of o and cr be the part of c to the right of o;let d be the radius of largest ball around p that is contained in P ;dir := l; (� The algorithm explores the neighbourhoods of cl and cr alternatingly�)while no c-landmark has been detected dotrace the upper (5=4�; 7=4�)-envelope of cdir for a distance of at most d;return to o; d := 4=3 � d;trace the lower (�=4; 3=4�)-envelope of cdir for a distance of at most d;return to o; d := 4=3 � d;change the direction dir;We still have to specify how the robot identi�es a c-landmark. Note that a re
ex vertexv that induces a window from the current robot position is not necessarily a c-landmarkas v may see points of c that the robot has not reached yet.3.2 Direct Detection of a LandmarkIn the following we only consider the detection of c-landmarks above c by traveling onV(�;�)cl and V(�;�)cr . The detection of c-landmarks below c is, of course, analogous. There areseveral ways for the robot to detect a c-landmark. The �rst way is to look for c-landmarkswhich induce bottom windows.De�nition 3.2 If P is a curve in P , then the horizontally visible polygon induced by Pis the set of points in P that can be reached by a horizontal ray from a point on P.If Q is the horizontally visible polygon induced by P, then the line segments of theboundary of Q that are not part of the boundary of P are again called the windows ofQ. Clearly, all the windows of Q are horizontal. A window w is a top window if there arepoints of P nQ above w and a bottom window, otherwise.Lemma 3.1 Let Q be the horizontally visible polygon induced by a path P that starts onc. If w is a bottom window of Q, then the maximal horizontal line segment containing wis an LR-chord. 5



Lemma 3.1 implies that as soon as the robot detects a bottom window it has founda new LR-chord and it stops the search for a new LR-chord. Hence, we assume in thefollowing that there are only top windows in the horizontally visible polygon induced bythe path of the robot.A second possibility to identify a c-landmark m is to cross the maximal line segmentl containing the window induced by m. Note that if w is a window, then l intersects are
ex vertex v such that v is between c and m and both edges incident to v are on theopposite side of l as the edges incident to m.Lemma 3.2 Let c be a horizontal LR-chord, m a c-landmark that induces window w,and l the maximal line segment that contains w. If v is a re
ex vertex intersected by lbetween c and m such that the edges incident to v are on the opposite side of l as the edgesincident to m, then the maximal horizontal line segment that contains v is an LR-chord.Note that if v is between the intersection point p of the path of the robot with l and thec-landmark m, then v is above p. In this case the robot moves to the maximal horizontalline segment through v and stops the search for a new LR-chord.Finally, there is third case in which the robot can immediately detect a c-landmark.Recall that a left c-landmark is a c-landmark which induces a window w whose pocket islocally to the left of w.Lemma 3.3 If pl is on V(�;�)cl and the left c-landmark m �rst becomes visible to the robotat pl, then there is a new LR-chord whose distance to the origin o of V(�;�)c is at least aslarge as the distance from o to pl.Note that in all three of the above case we have identi�ed a new LR-chord whoseL1-distance is at least as large as the vertical distance between the current robot positionand c.3.3 Indirect Detection of a LandmarkUnfortunately, the above possibilities to discover c-landmarks are not exhaustive. In thefollowing we show that there are certain regions associated with the robot position whichare completely visible to the robot if they do not contain a c-landmark. We denote theray starting in point p with orientation � by r�(p).De�nition 3.3 Let c be a chord in P and � < � < � < 2�. If p is a point in V(�;�)c andq is a point on r�(p) (r� (p)), then q is a critical point if q is an end point of c or q isbetween p and c and a point of the boundary of P .De�nition 3.4 Let c be a horizontal line segment in P , � < � < � < 2�, and p a pointin V(�;�)c .(i) If r�(p) intersects a critical point, then p is called a left extreme point of V(�;�)c .(ii) If r� (p) intersects critical point, then p is called a right extreme point of V(�;�)c .(iii) If p is left and right extreme point of V(�;�)c , then p is called a peak of V(�;�)c .6



= partially ver�ed region of p= partially ver�ed region of v= partially ver�ed region of p0 and p00+ ++ov c p00p0 pFigure 2: The upper (5=4�; 7=4�)-envelope of c contains the right extreme point p, thepeak p0, the left extreme point p00, and the valley v.(iv) If p is neither a left nor a right extreme point of V(�;�)c , then p is called a valley ofV(�;�)c .The de�nition is illustrated in Figure 2. Note that if the point p of V(�;�)c is not part ofthe boundary of P , then either r�(p) or r� (p) intersects the boundary of P . The peaks ofV(�;�)c are the local maxima of V(�;�)c and a point p is a valley of V(�;�)c if all neighbourhoodsof p intersect the exterior of P above c.If p is a point in P and � 2 [0; 2�), then we denote the maximal line segment that ispart of the beginning of r�(p) and that is contained in P by �!p�.De�nition 3.5 Let pl be a point of V(�;�)cl and P the path consisting of the concatenationof cr with the part of V(�;�)cl from o to p. The partially veri�ed region of p is de�ned asfollows (see Figure 2).1. If p is a right extreme point of V(�;�)c , then the partially veri�ed region of pl is thesimple polygon to the right of the path consisting of �!pl0 concatenated with P.2. If pl is a peak of V(�;�)c , then the partially veri�ed region of pl is the simple polygonto the right of the path consisting of ������!pl(� � �) concatenated with P.3. If pl is a left extreme point of V(�;�)c and q is the last peak before pl, then the partiallyveri�ed region of pl is the partially veri�ed region of q.4. If pl is a valley of V(�;�)c , then the partially veri�ed region of pl is the simple polygonto the right of P.If pr is a point on V(�;�)cr , then the partially veri�ed region is de�ned by consideringthe mirror image of P along the vertical line through o. The partially veri�ed region ofa point pl on V(�;�)cl is important since all the points in this region that can be seen by clcan also be seen by the robot.Lemma 3.4 If pl is a point in V(�;�)cl , then all the points in the partially veri�ed regionRl of pl that are visible to cl are also visible to the part of V(�;�)cl from o to pl. A similarstatement holds for the points pr in V(�;�)cr .If we intersect the partially veri�ed region of the robot position pl with the partiallyregion of the last robot position pr on V(�;�)cr , then we obtain a new region which iscompletely visible to the robot. 7



De�nition 3.6 If pl is a point of V(�;�)cl and pr is point of V(�;�)cr , then the veri�ed regionof pl and pr is the intersection of the partially veri�ed region of pl and the partially veri�edregion of pr.The veri�ed region now enables the robot to detect the remaining c-landmarks. Ifthere are no c-landmarks, then the whole veri�ed region is visible to the robot.Lemma 3.5 Let pl be a point on V(�;�)cl and pr a point on V(�;�)cr . If there is no c-landmarkin the veri�ed region R of pl and pr, then all the points in R are seen by union of the partof V(�;�)cl from pl to o and the part of V(�;�)cr from pr to o.Lemma 3.5 implies in particular that the veri�ed region of the end points cl and crcontains the upper visibility polygon of c since the end points of V(�;�)cl and V(�;�)cr are theend points of c which are both valleys.3.4 Eliminating LandmarksAfter having identi�ed a c-landmark we are able to decide whether t is above or below c.In the following we assume that we have discovered a c-landmark m above c. Hence, therobot can stop the search paths below c. If a c-landmark has been discovered by one ofthe cases described by the Lemmas 3.1, 3.2, or 3.3, then there is a new LR-chord c0 whoseL1-distance to o is at least as large as the vertical distance of the current robot position pto c. The robot computes the closest point o0 of c0 to o, moves to it, and starts exploringthe neighbourhood of c0 by Algorithm Landmark Detection again.If a c-landmark is detected by Lemma 3.5, then this also implies that there is anLR-chord c0 that is above c. However, the distance of c0 to c may be so small that theadvancement from c to c0 does not pay for the searching e�ort. Moreover, there maybe many c-landmarks and at this point the robot is not able to decide behind whichc-landmark the shortest path from s to t continues. Hence, we use a 2-way ray search toidentify a c-landmark which induces an LR-chord or to eliminate pockets of c-landmarksas possible locations of t. In order to do this we extend c to the left and the right bythe maximal y-monotone boundary chains of P that start at the left resp. the right endpoint of c. Hence, V(�;�)cl now denotes the local upper (�; � )-envelope of the concatenationof cl and the maximal upper y-monotone boundary chain Cl starting at the left end pointof cl. If the path of the robot ends at a point of Cl, then the robot continues upwardsfollowing Cl and traveling along a 3=4�-oriented ray where ever possible. V(�;�)cr is de�nedsimilarly. The concatenation of V(�;�)cl with V(�;�)cr is called the extended upper envelope ofc and denoted by P. V(�;�)cl is called the left arm of P and V(�;�)cr the right arm of P. If c0is an LR-chord above c, then we denote the extended upper envelope of c0 by P 0.Let Vpl be the intersection of the partially veri�ed region of pl with the visibilitypolygon of P. We distinguish �ve cases how a right c-landmark can be added to Vpldepending on the location of the robot. In all cases we maintain the following invariant.If pl is a left extreme point on the left arm of P, then there is no right c-landmark in Vpl.Note that the robot needs only be concerned with right c-landmarks by Lemma 3.3. Weassume that pl is the current robot position.8



plmv c0 oo0 c0 o0occ (a) (b)pl mFigure 3: (a) An illustration of Case 2. The robot moves from o to the peak pl whereit detects a c-landmark m. It then moves horizontally to the right until it intersects P 0.(b) An illustration of Case 4. The robot moves from o to the valley pl where it detectsa c-landmark m. c0 is the new search chord and o0 the new origin. However, the robotcontinues on the 3=4�-ray starting in pl.Case 1 The point pl is a right extreme point and right a c-landmark m is added to Vpl.Since m is added to Vpl and pl is a right extreme point, m has the same height as p.Furthermore, m induces a right window w. Since pl is collinear with w and w is a rightwindow, w is a bottom-window of the horizontally visible polygon of P. By Lemma 3.1it induces an LR-chord c0. The robot moves to c0 and stops the search.Case 2 The point pl is a peak and a right c-landmark m is added to Vpl .There is a re
ex vertex v that intersects the ray r with orientation 5=4� between pl andthe extension of c. It is easy to see that there is a point in pocket of the c-landmark mthat cannot see any point below the right chord through v. By Lemma 3.2 the maximalhorizontal line segment c0 through v is an LR-chord. Hence, c0 is now the new searchchord.The robot moves horizontally to the right until it intersects P 0. Note that the distancetraveled by the robot to intersect P 0 is at most the distance between c and c0. The newposition of the robot is not a peak anymore|even if the robot has not moved|since thevertex v is now part of the extension of c0 and the invariant still holds. Furthermore, thedistance that the robot follows the left and right arms of the extended upper envelope ofc0 is now reduced by the distance from o to c. For illustration refer to Figure 3a.Case 3 The point pl is a left extreme point and a right c-landmark m is added to Vpl.Since the veri�ed region of a left extreme point is the same as the veri�ed region of itspeak, this case does not occur.Case 4 The point pl is a valley and a right c-landmark m is added to Vpl.Note that in this case there are no right c-landmarks in the part of Vpl that is to the rightof the maximal 5=4�-oriented line segment through pl. If c0 is the maximal horizontal linesegment through pl, then c0 becomes the new search chord and the new origin o0 is theclosest point of c0 to o. However, the robot does not return to o0; instead, it continuesits search on the left arm of the extended upper (5=4�; 7=4�)-envelope of c0 where the9



origin is now considered to be pl until the robot has traversed the distance d of AlgorithmLandmark Detection. Note that the invariant still holds in this case; see Figure 3b.Only then does it return to o0 and continues the search where as in Case 2 the distancethat the robot follows the left and right arms of the extended upper envelope of c0 isreduced by the distance from o to o0.Case 5 The robot has reached the left boundary and a right c-landmark m is added toVpl .The partially veri�ed region of the robot position is de�ned as the partially veri�ed regionof a right extreme point. Therefore, the case can be handled analogous to Case 1.Apart from the above cases the robot, of course, also considers the cases according tothe Lemmas 3.1, 3.2, and 3.3.At the end of the search we have either discovered a new LR-chord above the currentrobot position or eliminated all but one c-landmark as the following lemma shows.Lemma 3.6 If the left arm stops, i.e. there robot has followed the whole length of the leftarm, then there are no right c-landmarks.3.5 Analysis of the Strategy Landmark-SearchingIf we use the optimal strategy to explore four concurrent rays, then the robot travelsat most 19:98 farther than the length of the last explored arm of one of the extendedenvelopes in order to identify the next LR-chord.It can be easily seen that the following invariant holds during the search: If pl is apoint on the left arm of P, then the L1-distance of all c-landmarks to the arrival point onc is at least � times the length of the current explored arm of P from o to pl where(i) � = 1=p2 if pl is a valley.(ii) � = 1=p2 if pl is a left extreme point or a peak and Case 3 has not occurred; (notethat we do not have to consider right extreme points as the veri�ed region of a rightextreme point is the same as the veri�ed region of the preceding peak;)(iii) � = p2=3 if pl is a left extreme point or a peak and Case 3 has occurred;(iv) � = 1=(p2 + 1) if the robot has reached the left boundary and Case 3 has notoccurred and(v) � = 1=(2p2) if the robot has reached the left boundary and Case 3 has occurred;Since the robot travels at most 20 times the distance of an explored arm and at theend the robot either travels to an LR-chord above the current robot position or to ac-landmark, the total distance traversed by the robot from one arrival point to next isat most 2p2 � 20 the L1-distance between them. Finally, we need to combine these localestimates to obtain a bound on the complete path traveled by the robot.Lemma 3.7 If o1; o2; : : : ; ok is the sequence of arrival points at the LR-chords visited bythe robot, then there is an L1-shortest path from s to t that contains all oi, 1 � i � k, inthis sequence. 10



st PcFigure 4: A G-street which forces a competitive ratio of p82.With the help of Lemma 3.7 it is easy to prove the main result of this section.Theorem 1 The total distance traveled by a robot using the Algorithm Landmark Detec-tion is at most 40p2 times the L1-distance and at most 80 times the L2-distance betweens and t.4 Lower Bounds4.1 A Lower Bound for the L2-DistanceWe �rst present the lower bound for searching in orthogonal G-streets if the distance ismeasured in the L2-metric and the location of the target is unknown. Consider the G-street P in Figure 4. The target t can be hidden in any of the teeth of P and P still is aG-street. In order to decide whether the target t is contained in a tooth T , the robot mustintersect the vertical line through the rightmost point of T if T is to the left of s and thethe vertical line through the leftmost point of T if T is to the right of s. If P containsenough teeth, then the robot is forced to travel at least nine times the horizontal distanceof s to the tooth that contains t [1]. It does not pay for the robot to leave the chord csince if the path of the robot goes above c, then an adversary places t in a tooth below cand vice versa. If p is the point on c at which the robot sees t, then the robot travels adistance of 9d(s; p)+d(p; t) while the L2-shortest path has length qd(s; p)2 + d(p; t)2. Bychoosing d(p; t) = 1=9d(s; p), i.e., by putting the teeth of P along lines with slopes 1=9and �1=9, respectively, we obtain a competitive ratio of p82 as claimed.Now consider the situation in which the robot searches for a target of known locationon a G-street of unknown shape. In this case the polyon of Figure 4 no longer provides a9 lower bound. We show, however, that searches in this case are still 
(9) competitive.For this we use the following result shown in [10] which applies to the case of of a robotsearching for a target on the real line using an asymmetric strategy.Theorem 2 Let CLS (CRS ) be the competitive ratio for �nding a target point on a real lineon the left (right) under a given strategy S. Then (CLS + CRS )=2 � 9.With this theorem we can now prove the main result.Theorem 3 Searching for a target of known location on a rectilinear G-street is at least9-competitive. 11
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Figure 5: A Lego stack polygon.Proof: Let n be the distance between s and t. Without loss of generality let the originbe the initial position of the robot and (0; n) the position of the target. Figure 5 showsthe polygon (solid lines). The dashed polygons represent other alternative polygons whichcan also result in polygons within this class. Each polygon in the family is made of Mconnected rake polygons between s and t. A connection point joins a tooth from thebottom rake to the middle of the top rake.Rakes are numbered in the order of occurrence on the robot's path from s to t. Eachrake i has height n=M or 1=(nM); it is symmetrically centered above the entrance point,and has length 2n. Initially the robot sees only one rake, and searches each tooth for theopening to the next rake. (The robot knows that the target is not within a tooth, as thecoordinates of the target are known to the robot).As is usual with adversarial arguments, the adversary constructs the polygon on-linedepending on the robot's moves. Let ri be the x-coordinate of the entrance point to theith polygon (assume that ri > 0). Let Di be the distance from the entrance point to theexit (connecting) tooth. Let Ci be the ratio of the traversed by the robot in rake i dividedover Di. A sequence fwig is �-increasing if wi+1 � wi + �.Adversary's StrategyThe adversary selects a target number of rakes M that make the polygon.The height of each rake is thus, in principle, n=M . The adversary aims tocreate a polygon with a total optimal distance of at least nM=2. This givesan average of n=2 units per rake. To achieve this desired optimal path length,the adversary determines the height of each rake as follows:If on a given rake, the robot forces a shorter optimum path shorter than n=2,the adversary makes the n subsequent rakes of height 1=M each (see �gure6). Since on each rake the optimum path is at least a unit long, the optimumpath is at least n units longer when it reaches the next regular height rake,for an average gain of N=2 per each 1=M height gain.� Let i 1. Without loss of generality, the adversary opens a tooth on the right side,with competitive ratio C1 � 9 � �. Let b 1; R[b] (C1;D1).� For each i from 2 to M do 12



Figure 6: Variable height rakes.Case 1: If the robot reaches a tooth in [0; ri] with competitive ratio Ci such that12(Ci +R[b; 1]) � 9� �=2, then the adversary opens that tooth.{ If R[b; 2]�Di < n=2 thenLet R[b� 1; 2] R[b; 2]�Di +R[b� 1; 2].Let R[b� 1; 1] (R[b; 1](R[b; 2]�Di) +R[b� 1; 1]R[b� 1; 2])=R[b� 1; 2]:Let b b� 1:{ Else let R[b; 2] R[b; 2]�Di.Case 2: Else let b b+ 1; R[b] (Ci;Di).Invariant: the sequence of competitive ratios R[b; 1] is �-increasing and R[b; 2] �n=2.The adversary opens an alley to the right of the entrance point at a competitiveratio Ci = CRi such that 12(CLi + CRi ) � 9.� In theMth polygon, the robot knows that its present position is horizontally alignedwith the target and moves directly towards it. In this case, the adversary does notoppose the robot's move, and e the robot reaches the target optimally within RM .For case 2, �rst note that, if the invariant holds, then theorem 2 implies that it is alwayspossible to choose an entrance point as requested. To prove the invariant we note that if weare in case 2, then the worst-case competitive ratio for all points on the left CLi is such that12(CLi +R[b; 1]) � 9� �=2 which implies R[b; 1] � 18�CLi � �. But we know from theorem2 that 12(CLi + CRi ) � 9. Thus CRi � 18� CLi which implies CRi � 18 � CLi � R[b; 1] + �.Thus case 2 ensures that, if the exit alley is to the right, the competitive ratio increasedat least by �, while Case 1 ensures that if the alley is on the left, the robot traverses atleast n=2 units which together with a previous right move balance out to an over 9-competitive ratio. In this case, the step is eliminated from the sequence of right moves asit has been \cancelled out" by the left move. Let � = 1=n2 and M = n4.It follows that if the the robot follows a strategy which has only case 2 adversarialmoves, the robot reaches the last polygon having traversed at least (9 +M=n2)=2 � n4,and it is n4 units away from the target, for a total competitive ratio of (9 + n2)=2 + 1which is arbitrarily large. Therefore the robot must choose a number of case 1. If allof moves are case 1, once again we obtain a trivial lower bound of 9 for the competitiveratio. As we shall see, the total distance traversed by the robot is at leastb � n2 (9 + b�)2 + bn2 + 9n(M � b) + 5n2 b2 :The �rst term denotes the fact that in each of the b case 2 con�gurations the robottraversed at least n=2 units. The competitive ratio, for the �rst n=2 units is the average13



of all competitive ratios in R which comes to (9 + b�)=2. As the movement in the �rstterm was to the right, the second term denotes the optimal trajectory back to the target.The third term expresses the fact that in the remaining otherM�b cases, the competitiveratio was at least 9, and the total distance traversed was at least n (n=2 units to the rightand n=2 units back to the left). The last term accounts for the fact that the robot maytraverse between n=2 and n units at any competitive ratio. Thus the robot may wish tomaximize the distance traversed at \low" competitive ratios which occur at the beginning.The lowest competitive ratio to the right is 9, and each distance must be traversed toand fro, for a total competitive ratio of (9 + 1)=2 = 5. Such low competitive ratio can beattained in at most half of the case 2 situations.The optimal distance is given then by bn+n(M�b)+n b2 . By di�erentiating we see thatthe competitive ratio is maximized when either k = 0 or k = �2n4+2pn8 + 19n6. In the�rst case is easy to see that the competitive ratio is 9. For the second case, substitutingwe obtain2npn2 + 19 � 2n2 � 10 = 2n(pn2 + 19 � n)(pn2 + 19 + n)pn2 + 19 + n � 10 = 9as required. 25 ConclusionsWe have presented a strategy to search in arbitrarily oriented generalized streets. It usesa new approach to search the neighbourhood of a chord which e�ciently identi�es andeliminates c-landmarks if the current search chord is c. The competitive ratio of our searchstrategy is bounded by 80. Furthermore, we have presented two lower bounds. One, asimple example, settles the competitive ratio of searching in orthogonal G-streets w.r.t.the L2-metric. We show that p82 is also a lower bound. Secondly, we investigate if it isan advantage for the robot if it is given the location of the target in advance. We showthat there are polygons for every strategy that force the robot to walk at least nine timesthe length of the shortest path from s to t.An important open problem is the competitive ratio of searching in G-streets. Wehave provided an upper bound. The best lower bound known is p82 which also appliesto orthogonal G-streets. Though our algorithm is most probably not optimal, we suspectthat a much higher lower bound than nine can be shown. The question also remainsif there are still larger classes of arbitrarily oriented polygons that can be searched at aconstant competitive ratio. HV-streets seem to be a natural candidate. However, it seemsthat new and simpler ideas have to be developed in order to obtain a strategy to searcharbitrarily oriented HV-streets.References[1] R. Baeza-Yates, J. Culberson and G. Rawlins. \Searching in the plane", Information andComputation, Vol. 106, (1993), pp. 234-252.[2] A. Blum, P. Raghavan and B. Schieber. \Navigating in unfamiliar geometric terrain\, Proc.of 23rd ACM Symp. on Theory of Computing, (1991), pp. 494-504.14
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