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Abstract

We consider the problem of a robot inside an unknown polygon that has to find
a path from a starting point s to a target point . We assume that it is equipped
with an on-board vision system through which it can get the visibility map of its
surroundings.

Furthermore, we assume that the robot is contained in a simple polygon that
belongs to the class of generalized streets. We consider three problems.

1. We present a strategy that allows the robot to search for ¢ in an arbitrarily
oriented generalized street where the distance travelled by the robot under our
strategy is at most 80 times the length of the shortest path from s to ¢.

2. We show that there are orthogonal generalized streets for which the distance
travelled by the robot under any searching strategy is at least 9.06 times the
length of the shortest path from s to t.

3. Finally, we show that even if the location of the target is known, there are
orthogonal generalized streets for which the distance travelled by the robot
under any searching strategy is at least 9 times the length of the shortest path
from s to t.

1 Introduction

The problem of a robot searching for a target in an unknown environment has recently
received a considerable amount of attention [2, 3, 4, 5, 8,9, 11, 12, 13]. In this setting it
is assumed that the robot is equipped with an on-board vision system that allows it to
see its local environment. However, the robot does not have access to a complete map of
its surroundings.

Since the robot has to make decisions about the search based only on the part of its
environment that it has seen before, the search of the robot can be viewed as an on-line
problem. One way to judge the performance of an on-line search strategy is to compare
the distance traveled by the robot to the length of the shortest path from s to t. In other
words, the robot’s path is compared with that of an adversary’s who knows the complete
environment; this approach to analysing on-line algorithms was introduced by Sleator and
Tarjan [14]. The ratio of the distance traveled by the robot to the optimal distance from
s to t 1s called the competitive ratio of the search strategy.
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Since, in general, the ratio between the distance a robot traverses and the length of
a shortest path can be forced to be ©(n) if the obstacles in the scene have a total of n
edges, efforts have focussed on restricted classes of environments that allow more efficient
search strategies. If, for instance, all the obstacles encountered by the robot are convex,
then a competitive ratio of Omega(+/n) is the best possible and can be achieved if the
aspect ratio of the obstacles is bounded [7].

A different approach is to consider only one polygon which is now allowed to be non-
convex. Klein was the first to consider a class of polygons called streets which allow
search strategies that have a competitive ratio bounded by a constant [8]. A polygon
i1s a street if the starting point s and the target are located on the polygon boundary
and the counterclockwise boundary chain L from s to ¢ is weakly visible to the clockwise
boundary chain R from s to ¢ and vice versa. Streets can be searched with a low constant
competitive ratio [8, 9, 11]. Unfortunately, streets are a often too restrictive a class of
polygons in order to model real environments.

In the search for larger classes of polygons that admit search strategies with a constant
competitive ratio Datta and Icking propose a class of polygons they call generalized streets
or G-streets [5]. Here every point on the boundary is visible from some horizontal chord
that connects L with R. The class of G-streets can be shown to properly contain the
class of streets. An even larger class is given by the class of HV-streets where every
point in P is visible from a horizontal or a vertical chord that connects L and R [4].
Though the definitions of G-streets and HV-streets include arbitrarily oriented polygons,
the strategies that are presented only apply to orthogonal polygons, i.e. polygons whose
edges are parallel to the coordinate axes. Datta and Icking present an algorithm that
achieves a competitive ratio of nine in the L;-metric and /82 (~ 9.06) in the Ly-metric.
While nine can be shown to be a lower bound for any strategy, it is an open problem
whether there is a better strategy in the Ls-metric. Similarly, Datta et al. present a
strategy with an optimal competitive ratio of 14.5 w.r.t. the L;-metric for searching in
orthogonal HV-streets [4].

In this paper we present the first strategy to search in arbitrarily oriented G-streets.
Searching in arbitrarily oriented G-streets turns out to be much more difficult than search-
ing in orthogonal G-streets which admit a very simple search strategy [5]. This situation
1s similar to exploring a simple polygon where a simple and optimal strategy is known
for orthogonal polygons but no strategy to explore arbitrarily oriented polygons has been
found yet [6]. We provide a strategy with a competitive ratio of 80 to search in G-streets.
Additionally we show that 4/82 is a lower bound for searching in orthogonal G-streets,
thus, proving that the strategy of Datta and Icking is optimal even in the Ls-metric.
Finally, we also consider the problem of searching in an orthogonal G-street where the lo-
cation of the target is known. We show that this knowledge does not provide a significant
advantage to the robot as there is also a lower bound of nine w.r.t. L;-metric as in the
case with unknown location of the target. This result was already mentioned in [11] but
remained unproven.

The paper is organized as follows. In the next section we give some definitions. In
Section 3 we present a strategy to search in arbitrarily oriented G-streets. The lower
bounds for orthogonal G-streets with known and unknown location of the target are
presented in Section 4. Finally, in Section 5 we summarize our result and conclude with
some open problems.
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Figure 1: (a) A G-street P with left chain L and right chain R. ¢ is an LR-chord. (b)
The visibility polygon vis(P) of P with left P-landmark m; and right P-landmark m,.
(c¢) The upper (5/4m,7/4n)-envelope of ¢ in P.

2 Definitions and Preliminary Results

We start out with some definitions concerning general geometric concepts. We view a
path or curve as a continuous mapping from a closed interval into the two dimensional
plane. In particular, we assume paths to be oriented from their start point to their end
point. Let C be a simple, closed curve consisting of n line segments such that no two
consecutive segments are collinear. We define a simple polygon P to be the union of C
and 1ts interior.

If p and g are two points, then we denote the line segment spanned by p and ¢ by pg.
The (oriented) straight path from p to g is denoted by pgq.

A line segment c¢ inside P is called a chord if the end points of ¢ are on the boundary
of P. A mazimal line segment or a mazimal chord [ in P is a line segment inside P such
that there is no other line segment that properly contains [ and that is also contained in
P.

Now we turn to generalized streets and their properties. If P is a polygon and s and ¢
are two points on the boundary of P, then we call the counterclockwise polygonal chain
from s to t the left chain and denote it by L; the clockwise polygonal chain from s to ¢ is
called the right chain and denoted by R. A chord c inside P is an LR-chord if ¢ intersects
both L and R.

Definition 2.1 ([5]) Let P be a polygon and s and t two points on the boundary of P
with left chain L and right chain R. P is called a generalized street or G-street if every
point in P is visible from a horizontal LR-chord (see Figure 1a).

L R-chord are used to guide the search for ¢.

Lemma 2.1 ([5]) ¢ is an LR-chord if and only if a shortest path from s to t intersects
c.

We also need some definitions that deal with visibility.

Definition 2.2 Let P be a polygon and P be a path in P. The set of points that are
visible to P is called the visibility polygon of P and denoted by vis(P) (see Figure 1b).



A maximal line segment of the boundary of vis(P) that does not belong to the bound-
ary of P is called a window of vis(P). A window w splits P into two parts one of which
contains vis(P). The part that does not contain vis(P) is called the pocket of w. The end
point of a window that is closer to P is called a P-landmark. If m is a P-landmark and
w 1s the window it belongs to, then w is called the window induced by m; furthermore,
if @ 1s the pocket of w, the () is called the pocket induced by w or by m. We assume
that a window is oriented such that the landmark that induces it is its start point. A left
window is a window whose induced pocket is to the left w.r.t. its orientation. A landmark
is called a left landmark if it induces a left window. A right window and a right landmark
are defined analogously (see also Figure 1b).

3 Searching in a Generalized Street

In this section we describe how to search for a target in an arbitrarily oriented generalized
street. The general i1dea is to advance from one horizontal L R-chord to the next until the
target ¢ is seen. This is the same general strategy as used by Datta and Icking to search
orthogonal G-streets [5]. The crucial step of the strategy is, of course, to identify a new
LR-chord ¢ if we are given an L R-chord c. This is done by exploring the neighbourhood
of the chord ¢. If we call the first point the robot reaches on ¢ the arrival point of ¢, then
we have to ensure that the amount traveled by the robot in the exploration is proportional
to the distance from the arrival point of ¢ to the arrival point of ¢'.

3.1 Searching the Neighbourhood of a Chord

In the following we assume that the robot is located at the arrival point o on a horizontal
L R-chord ¢. The robot uses four paths to explore the neighbourhood of ¢, one for each
quadrant of the coordinate system with the origin in the arrival point at ¢ and the z-axis
collinear with c.

Before describing our strategy in detail, we briefly discuss a method due to Baeza-
Yates et al. [1] for searching a point in m concurrent rays. We assume that the robot is
placed at the origin of m concurrent rays and it has to find a point ¢ which is situated in
one of the rays. The distance of the point ¢ is unknown to the robot though it knows a
lower bound ¢; the robot can only detect the point ¢ when it reaches ¢. In the strategy
of Baeza-Yates et al. the robot visits the rays one by one in a round robin fashion until
the point t i1s reached. In every ray, the robot goes a certain distance and if ¢ is not
reached, returns and explores the next ray. The distance from the origin the robot travels
before the i-th turn is given by (m/(m — 1))i~!e. The competitive ratio of this strategy
is 1+ 2m™/(m — 1)™~! which can be shown to be optimal [1].

For two concurrent rays (i.e., m = 2), the robot executes cycles of steps in increasing
powers of 2 and the competitive ratio 1s 9. Similarly, for four concurrent rays, the robot
executes cycles of steps in increasing powers of % and the competitive ratio is 19.98.

We now turn to describing the shape of the paths that the robot explores in detail.
We say the robot #-sees the line segment c if the ray originating from the robot at an
angle of 6 intersects ¢ before it intersects any points of the exterior of P.



Definition 3.1 Let ¢ be a chord in P and # < 0 < 7 < 2rx. The upper (o, 7)-envelope
of ¢ is the set of the highest points above ¢ which o- and T-see ¢. We denote the upper
(o, 7)-envelope of ¢ by N9, If 0 < ¢ < 7 < =, then the lower (o, 7)-envelope of ¢ is
defined analogously and denoted by \/g‘”) (see Figure Ic).

With this definition we now can give a precise description of how the robot searches
the neighbourhood of c.

Algorithm Landmark Detection
Input: a G-street P, a horizontal LR-chord ¢ in P, and the arrival point o of
the robot on c;
Output: a c-landmark m;
let ¢; be the part of ¢ to the left of o and ¢, be the part of ¢ to the right of o;
let d be the radius of largest ball around p that is contained in P;
dir :=l; (* The algorithm explores the neighbourhoods of ¢; and ¢, alternatingly
*
)
while no c-landmark has been detected do
trace the upper (5/4n,7/4r)-envelope of ¢y, for a distance of at most d;
return to o; d :=4/3 x d;
trace the lower (w/4,3/4w)-envelope of cgi, for a distance of at most d;
return to o; d :=4/3 x d;
change the direction dir;

We still have to specify how the robot identifies a c-landmark. Note that a reflex vertex
v that induces a window from the current robot position is not necessarily a c-landmark
as v may see points of ¢ that the robot has not reached yet.

3.2 Direct Detection of a Landmark

In the following we only consider the detection of c-landmarks above ¢ by traveling on
/\g”) and /\g‘:’T). The detection of ¢-landmarks below ¢ is, of course, analogous. There are
several ways for the robot to detect a c-landmark. The first way is to look for c-landmarks
which induce bottom windows.

Definition 3.2 If P is a curve in P, then the horizontally visible polygon induced by P
s the set of points in P that can be reached by a horizontal ray from a point on P.

If @) is the horizontally visible polygon induced by P, then the line segments of the
boundary of () that are not part of the boundary of P are again called the windows of
(). Clearly, all the windows of ) are horizontal. A window w is a top window if there are
points of P\ @ above w and a bottom window, otherwise.

Lemma 3.1 Let Q be the horizontally visible polygon induced by a path P that starts on
c. If w is a bottom window of @), then the mazimal horizontal line segment containing w

1s an LR-chord.



Lemma 3.1 implies that as soon as the robot detects a bottom window it has found
a new LR-chord and it stops the search for a new LR-chord. Hence, we assume in the
following that there are only top windows in the horizontally visible polygon induced by
the path of the robot.

A second possibility to identify a c-landmark m is to cross the maximal line segment
l containing the window induced by m. Note that if w i1s a window, then [ intersects a
reflex vertex v such that v is between ¢ and m and both edges incident to v are on the
opposite side of [ as the edges incident to m.

Lemma 3.2 Let ¢ be a horizontal LR-chord, m a c-landmark that induces window w,
and | the mazimal line segment that contains w. If v is a reflex vertex intersected by 1
between ¢ and m such that the edges incident to v are on the opposite side of | as the edges
incident to m, then the mazimal horizontal line segment that contains v is an LR-chord.

Note that if v is between the intersection point p of the path of the robot with / and the
c-landmark m, then v is above p. In this case the robot moves to the maximal horizontal
line segment through v and stops the search for a new LR-chord.

Finally, there is third case in which the robot can immediately detect a c-landmark.

Recall that a left c-landmark is a c-landmark which induces a window w whose pocket is
locally to the left of w.

Lemma 3.3 If p; is on /\g”) and the left c-landmark m first becomes visible to the robot

at py, then there is a new LR-chord whose distance to the origin o of /\g‘”) s at least as
large as the distance from o to py.

Note that in all three of the above case we have identified a new LR-chord whose
L-distance is at least as large as the vertical distance between the current robot position
and c.

3.3 Indirect Detection of a Landmark

Unfortunately, the above possibilities to discover c-landmarks are not exhaustive. In the
following we show that there are certain regions associated with the robot position which
are completely visible to the robot if they do not contain a c-landmark. We denote the
ray starting in point p with orientation 6 by r¢(p).

Definition 3.3 Let ¢ be a chord in P and n < 0 <7 < 2m. If p is a point in A7) and
q is a point on r,(p) (r-(p)), then q is a critical point if ¢ is an end point of ¢ or q is
between p and ¢ and a point of the boundary of P.

Definition 3.4 Let ¢ be a horizontal line segment in P, 1 < 0 < 7 < 2m, and p a point
in AT,

(1) If ro(p) intersects a critical point, then p is called a left extreme point of A7,
(i) If r(p) intersects critical point, then p is called a right extreme point of AL,

(111) If p is left and right extreme point of /\ﬁ‘”), then p s called a peak of /\ﬁ‘”).
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Figure 2: The upper (5/4n,7/4n)-envelope of ¢ contains the right extreme point p, the
peak p’, the left extreme point p”, and the valley v.

(i) If p is neither a left nor a right extreme point of /\ﬁ‘”), then p is called a valley of
/\go,r).

The definition is illustrated in Figure 2. Note that if the point p of /\g‘”) is not part of
the boundary of P, then either r,(p) or r,(p) intersects the boundary of P. The peaks of
/\g‘”) are the local maxima of /\g‘”) and a point p is a valley of /\g‘”) if all neighbourhoods
of p intersect the exterior of P above c.

If p is a point in P and o € [0,27), then we denote the maximal line segment that is

%
part of the beginning of r,(p) and that is contained in P by po.

Definition 3.5 Let p; be a point of /\g”) and P the path consisting of the concatenation

of ¢, with the part of /\g”) from o to p. The partially verified region of p s defined as
follows (see Figure 2).

1. If p is a right extreme point of /\g‘”), then the partially verified region of p; is the
simple polygon to the right of the path consisting ofm concatenated with P.

2. If py is a peak of /\g‘”), then the partially verified region of p; is the simple polygon
to the right of the path consisting of pi(o — ) concatenated with P.

3. If py is a left extreme point of/\g‘”) and q 1s the last peak before p;, then the partially
verified region of p; is the partially verified region of q.

4. If py is a valley of /\g‘”), then the partially verified region of p; is the simple polygon
to the right of P.

If p, is a point on /\g‘:’T), then the partially verified region is defined by considering
the mirror image of P along the vertical line through o. The partially verified region of
a point p; on /\g”) 1s important since all the points in this region that can be seen by ¢
can also be seen by the robot.

Lemma 3.4 If p; is a point in /\g”), then all the points in the partially verified region
R; of p; that are visible to ¢; are also visible to the part of /\g”) from o to p;. A similar
statement holds for the points p, in /\g(:’T).

If we intersect the partially verified region of the robot position p; with the partially
region of the last robot position p, on /\ﬁ‘:’T), then we obtain a new region which is
completely visible to the robot.



Definition 3.6 If p; is a point of /\g”) and p, s point of /\ﬁ‘:’T), then the verified region
of p; and p,. is the intersection of the partially verified region of p; and the partially verified
region of p,.

The verified region now enables the robot to detect the remaining c-landmarks. If
there are no c-landmarks, then the whole verified region is visible to the robot.

Lemma 3.5 Let p; be a point on /\g”) and p, a point on /\ﬁ‘:’T). If there is no c-landmark
in the verified region R of p; and p,, then all the points in R are seen by union of the part
of /\g”) from p; to o and the part of /\g‘:’T) from p, to o.

Lemma 3.5 implies in particular that the verified region of the end points ¢; and ¢,
contains the upper visibility polygon of ¢ since the end points of /\g”) and /\g‘:’T) are the
end points of ¢ which are both valleys.

3.4 Eliminating Landmarks

After having identified a c-landmark we are able to decide whether ¢ is above or below c.
In the following we assume that we have discovered a c-landmark m above c¢. Hence, the
robot can stop the search paths below ¢. If a c-landmark has been discovered by one of
the cases described by the Lemmas 3.1, 3.2, or 3.3, then there is a new L R-chord ¢’ whose
L-distance to o 1s at least as large as the vertical distance of the current robot position p
to ¢. The robot computes the closest point o’ of ¢ to o, moves to it, and starts exploring
the neighbourhood of ¢’ by Algorithm Landmark Detection again.

If a c-landmark is detected by Lemma 3.5, then this also implies that there is an
LR-chord ¢ that is above ¢. However, the distance of ¢’ to ¢ may be so small that the
advancement from ¢ to ¢ does not pay for the searching effort. Moreover, there may
be many c-landmarks and at this point the robot is not able to decide behind which
c-landmark the shortest path from s to ¢ continues. Hence, we use a 2-way ray search to
identify a c-landmark which induces an L R-chord or to eliminate pockets of c-landmarks
as possible locations of ¢. In order to do this we extend c¢ to the left and the right by
the maximal y-monotone boundary chains of P that start at the left resp. the right end
point of ¢. Hence, /\g”) now denotes the local upper (o, 7)-envelope of the concatenation
of ¢; and the maximal upper y-monotone boundary chain C; starting at the left end point
of ¢;. If the path of the robot ends at a point of C;, then the robot continues upwards
following C; and traveling along a 3/4m-oriented ray where ever possible. /\g‘:’T) 1s defined
similarly. The concatenation of /\g”) with /\g‘:’T) is called the extended upper envelope of

¢ and denoted by P. /\g”) is called the left arm of P and /\g‘:’T) the right arm of P. If ¢
is an L R-chord above ¢, then we denote the extended upper envelope of ¢’ by P’.

Let V,, be the intersection of the partially verified region of p; with the visibility
polygon of P. We distinguish five cases how a right c-landmark can be added to V,
depending on the location of the robot. In all cases we maintain the following invariant.

If p; is a left extreme point on the left arm of P, then there is no right c-
landmark in V,,.

Note that the robot needs only be concerned with right c-landmarks by Lemma 3.3. We
assume that p; is the current robot position.



Figure 3: (a) An illustration of Case 2. The robot moves from o to the peak p; where
it detects a c-landmark m. It then moves horizontally to the right until it intersects P’.
(b) An illustration of Case 4. The robot moves from o to the valley p; where it detects
a c-landmark m. ¢ is the new search chord and o' the new origin. However, the robot
continues on the 3/4n-ray starting in p;.

Case 1 The point p; is a right extreme point and right a c-landmark m is added to V,,.
Since m is added to V,, and p; is a right extreme point, m has the same height as p.
Furthermore, m induces a right window w. Since p; 1s collinear with w and w is a right
window, w 1s a bottom-window of the horizontally visible polygon of P. By Lemma 3.1
it induces an L R-chord ¢. The robot moves to ¢’ and stops the search.

Case 2 The point p; is a peak and a right c-landmark m is added to V,,.

There is a reflex vertex v that intersects the ray r with orientation 5/4% between p; and
the extension of ¢. It is easy to see that there is a point in pocket of the c-landmark m
that cannot see any point below the right chord through v. By Lemma 3.2 the maximal
horizontal line segment ¢ through v is an LR-chord. Hence, ¢’ is now the new search

chord.

The robot moves horizontally to the right until it intersects P’. Note that the distance
traveled by the robot to intersect P’ is at most the distance between ¢ and ¢’. The new
position of the robot is not a peak anymore—even if the robot has not moved—since the
vertex v is now part of the extension of ¢’ and the invariant still holds. Furthermore, the
distance that the robot follows the left and right arms of the extended upper envelope of
¢’ is now reduced by the distance from o to c. For illustration refer to Figure 3a.

Case 3 The point p; is a left extreme point and a right c-landmark m is added to V,,.
Since the verified region of a left extreme point is the same as the verified region of its
peak, this case does not occur.

Case 4 The point p; is a valley and a right c-landmark m is added to V,.

Note that in this case there are no right c-landmarks in the part of V,, that is to the right
of the maximal 5/4w-oriented line segment through p;. If ¢ is the maximal horizontal line
segment through p;, then ¢ becomes the new search chord and the new origin o' is the
closest point of ¢’ to 0. However, the robot does not return to ¢’; instead, it continues
its search on the left arm of the extended upper (5/4w,7/4w)-envelope of ¢’ where the



origin is now considered to be p; until the robot has traversed the distance d of Algorithm
Landmark Detection. Note that the invariant still holds in this case; see Figure 3b.

Only then does it return to o' and continues the search where as in Case 2 the distance
that the robot follows the left and right arms of the extended upper envelope of ¢ is
reduced by the distance from o to ¢o'.

Case 5 The robot has reached the left boundary and a right c-landmark m i1s added to
V.

The partially verified region of the robot position is defined as the partially verified region
of a right extreme point. Therefore, the case can be handled analogous to Case 1.

Apart from the above cases the robot, of course, also considers the cases according to
the Lemmas 3.1, 3.2, and 3.3.

At the end of the search we have either discovered a new L R-chord above the current
robot position or eliminated all but one c-landmark as the following lemma shows.

Lemma 3.6 If the left arm stops, i.e. there robot has followed the whole length of the left
arm, then there are no right c-landmarks.

3.5 Analysis of the Strategy Landmark-Searching

If we use the optimal strategy to explore four concurrent rays, then the robot travels
at most 19.98 farther than the length of the last explored arm of one of the extended
envelopes in order to identify the next LR-chord.

It can be easily seen that the following invariant holds during the search: If p; is a
point on the left arm of P, then the L;-distance of all ¢-landmarks to the arrival point on
c 1s at least « times the length of the current explored arm of P from o to p; where

(i) a=1/v/2if p; is a valley.

(ii) @ =1/4/2if p; is a left extreme point or a peak and Case 3 has not occurred; (note
that we do not have to consider right extreme points as the verified region of a right
extreme point is the same as the verified region of the preceding peak;)

(iii) a = v/2/3 if p; is a left extreme point or a peak and Case 3 has occurred,;
(iv) a = 1/(\/§ + 1) if the robot has reached the left boundary and Case 3 has not

occurred and

(v) a=1/(2y/2) if the robot has reached the left boundary and Case 3 has occurred;

Since the robot travels at most 20 times the distance of an explored arm and at the
end the robot either travels to an LR-chord above the current robot position or to a
c-landmark, the total distance traversed by the robot from one arrival point to next is
at most 24/2 - 20 the L;-distance between them. Finally, we need to combine these local
estimates to obtain a bound on the complete path traveled by the robot.

Lemma 3.7 If 01,09, ...,0 is the sequence of arrival points at the LR-chords visited by
the robot, then there is an Li-shortest path from s to t that contains all 0;, 1 <1 <k, in
this sequence.
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Figure 4: A G-street which forces a competitive ratio of 1/82.

With the help of Lemma 3.7 it is easy to prove the main result of this section.

Theorem 1 The total distance traveled by a robot using the Algorithm Landmark Detec-
tion is at most 40v/2 times the Li-distance and at most 80 times the Lo-distance between
s and t.

4 Lower Bounds

4.1 A Lower Bound for the L,-Distance

We first present the lower bound for searching in orthogonal G-streets if the distance is
measured in the Ls-metric and the location of the target is unknown. Consider the G-
street P in Figure 4. The target ¢ can be hidden in any of the teeth of P and P still is a
G-street. In order to decide whether the target ¢ is contained in a tooth 7', the robot must
intersect the vertical line through the rightmost point of T if T" is to the left of s and the
the vertical line through the leftmost point of 7" if T' is to the right of s. If P contains
enough teeth, then the robot is forced to travel at least nine times the horizontal distance
of s to the tooth that contains ¢ [1]. It does not pay for the robot to leave the chord ¢
since if the path of the robot goes above ¢, then an adversary places ¢t in a tooth below ¢
and vice versa. If p is the point on ¢ at which the robot sees £, then the robot travels a
distance of 9d(s, p) + d(p, t) while the Ly-shortest path has length \/d(s,p)2 +d(p,t)%. By
choosing d(p,t) = 1/9d(s,p), i.e., by putting the teeth of P along lines with slopes 1/9
and —1/9, respectively, we obtain a competitive ratio of /82 as claimed.

Now consider the situation in which the robot searches for a target of known location
on a G-street of unknown shape. In this case the polyon of Figure 4 no longer provides a
9 lower bound. We show, however, that searches in this case are still (9) competitive.
For this we use the following result shown in [10] which applies to the case of of a robot

searching for a target on the real line using an asymmetric strategy.

Theorem 2 Let CE (CE) be the competitive ratio for finding a target point on a real line
on the left (right) under a given strategy S. Then (CE + CE)/2 > 9.

With this theorem we can now prove the main result.

Theorem 3 Searching for a target of known location on a rectilinear G-street is at least
9-competitive.

11



wﬂgrmﬂ_fﬁ_r\ﬂ

Figure 5: A Lego stack polygon.

Proof: Let n be the distance between s and . Without loss of generality let the origin
be the initial position of the robot and (0,7n) the position of the target. Figure 5 shows
the polygon (solid lines). The dashed polygons represent other alternative polygons which
can also result in polygons within this class. Each polygon in the family is made of M
connected rake polygons between s and ¢. A connection point joins a tooth from the
bottom rake to the middle of the top rake.

Rakes are numbered in the order of occurrence on the robot’s path from s to t. Each
rake ¢ has height n/M or 1/(nM); it is symmetrically centered above the entrance point,
and has length 2n. Initially the robot sees only one rake, and searches each tooth for the
opening to the next rake. (The robot knows that the target is not within a tooth, as the
coordinates of the target are known to the robot).

As is usual with adversarial arguments, the adversary constructs the polygon on-line
depending on the robot’s moves. Let r; be the z-coordinate of the entrance point to the
ith polygon (assume that r; > 0). Let D; be the distance from the entrance point to the
exit (connecting) tooth. Let C; be the ratio of the traversed by the robot in rake ¢ divided
over D;. A sequence {w;} is e-increasing if w;1; > w; + €.

Adversary’s Strategy

The adversary selects a target number of rakes M that make the polygon.
The height of each rake is thus, in principle, n/M. The adversary aims to
create a polygon with a total optimal distance of at least nM /2. This gives
an average of n/2 units per rake. To achieve this desired optimal path length,
the adversary determines the height of each rake as follows:

If on a given rake, the robot forces a shorter optimum path shorter than n/2,
the adversary makes the n subsequent rakes of height 1/M each (see figure
6). Since on each rake the optimum path is at least a unit long, the optimum
path is at least n units longer when it reaches the next regular height rake,
for an average gain of N/2 per each 1/M height gain.

o Let i < 1. Without loss of generality, the adversary opens a tooth on the right side,
with competitive ratio C; > 9 —e. Let b« 1; RI[b] « (C1, D).

e For each ¢ from 2 to M do

12



Figure 6: Variable height rakes.

Case 1: If the robot reaches a tooth in [0,r;] with competitive ratio C; such that
2(Ci 4+ R[b,1]) > 9 — €/2, then the adversary opens that tooth.

— If R[b,2] — D; < n/2 then
Let R[b—1,2] «+ R[b,2] — D; + R[b—1,2].
Let R[b—1,1] < (R[b,1](R[b,2] — D;) + R[b—1,1]R[b —1,2])/R[b — 1,2].
Let b b—1.

— Else let R[b,2] < R[b,2] — D;.
Case 2: Elselet b« b+ 1; R[b] « (C;, D;).

Invariant: the sequence of competitive ratios R[b,1] is e-increasing and RI[b,2] >
n/2.
The adversary opens an alley to the right of the entrance point at a competitive

ratio C; = C¥ such that %(Cf +CHy > 9.

o In the Mth polygon, the robot knows that its present position is horizontally aligned
with the target and moves directly towards it. In this case, the adversary does not
oppose the robot’s move, and e the robot reaches the target optimally within Rjy.

For case 2, first note that, if the invariant holds, then theorem 2 implies that it is always
possible to choose an entrance point as requested. To prove the invariant we note that if we
are in case 2, then the worst-case competitive ratio for all points on the left CF is such that
1(CF+ R[b,1]) < 9—€/2 which implies R[b,1] < 18 — C}¥ —e. But we know from theorem
2 that $(CF + Cf) > 9. Thus CF > 18 — C} which implies C* > 18 — C}F > R[b,1] + ¢.

Thus case 2 ensures that, if the exit alley is to the right, the competitive ratio increased
at least by e, while Case 1 ensures that if the alley is on the left, the robot traverses at
least n/2 units which together with a previous right move balance out to an over 9-
competitive ratio. In this case, the step is eliminated from the sequence of right moves as
it has been “cancelled out” by the left move. Let ¢ = 1/n? and M = n*.

It follows that if the the robot follows a strategy which has only case 2 adversarial
moves, the robot reaches the last polygon having traversed at least (9 + M/n?)/2 x n*,
and it is n* units away from the target, for a total competitive ratio of (9 4+ n?)/2 + 1
which is arbitrarily large. Therefore the robot must choose a number of case 1. If all
of moves are case 1, once again we obtain a trivial lower bound of 9 for the competitive
ratio. As we shall see, the total distance traversed by the robot is at least
(9 + be) n nb

5 -I-b§—|-9n(M—b)—|—5§§.
The first term denotes the fact that in each of the b case 2 configurations the robot
traversed at least n/2 units. The competitive ratio, for the first n/2 units is the average

p.
2
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of all competitive ratios in R which comes to (9 + be)/2. As the movement in the first
term was to the right, the second term denotes the optimal trajectory back to the target.
The third term expresses the fact that in the remaining other M — b cases, the competitive
ratio was at least 9, and the total distance traversed was at least n (n/2 units to the right
and n/2 units back to the left). The last term accounts for the fact that the robot may
traverse between n/2 and n units at any competitive ratio. Thus the robot may wish to
maximize the distance traversed at “low” competitive ratios which occur at the beginning.
The lowest competitive ratio to the right 1s 9, and each distance must be traversed to
and fro, for a total competitive ratio of (94 1)/2 = 5. Such low competitive ratio can be
attained in at most half of the case 2 situations.

The optimal distance is given then by bn—l—n(M—b)—l—ng. By differentiating we see that
the competitive ratio is maximized when either k = 0 or k = —2n* 4 2v/n8 4 19n°. In the
first case 1s easy to see that the competitive ratio is 9. For the second case, substituting
we obtain

n(v/n? + 19 — n)(v/n? + 19
/a7 F10 — 2m? — 10 = 222 H19 )Vt 19 4 )
Vn24+194+n

as required. a

—-10=9

5 Conclusions

We have presented a strategy to search in arbitrarily oriented generalized streets. It uses
a new approach to search the neighbourhood of a chord which efficiently identifies and
eliminates c-landmarks if the current search chord is ¢. The competitive ratio of our search
strategy is bounded by 80. Furthermore, we have presented two lower bounds. One, a
simple example, settles the competitive ratio of searching in orthogonal G-streets w.r.t.
the Ly-metric. We show that /82 is also a lower bound. Secondly, we investigate if it is
an advantage for the robot if it is given the location of the target in advance. We show
that there are polygons for every strategy that force the robot to walk at least nine times
the length of the shortest path from s to .

An important open problem is the competitive ratio of searching in G-streets. We
have provided an upper bound. The best lower bound known is v/82 which also applies
to orthogonal G-streets. Though our algorithm is most probably not optimal, we suspect
that a much higher lower bound than nine can be shown. The question also remains
if there are still larger classes of arbitrarily oriented polygons that can be searched at a
constant competitive ratio. HV-streets seem to be a natural candidate. However, it seems
that new and simpler ideas have to be developed in order to obtain a strategy to search
arbitrarily oriented HV-streets.
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