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Abstract

We consider the problem of a robot traversing an un�
known polygon with the aid of standard visibility� The
robot has to �nd a path from a starting point s to a tar�
get point g� We provide upper and lower bounds on the
ratio of the distance traveled by the robot in compari�
son to the length of a shortest path� Since this ratio is
unbounded for general polygons� we restrict ourselves
to the well investigated class of polygons called streets�
A street is a polygon where s and t are located on the
polygon boundary and the part of the polygon bound�
ary from s to g is weakly visible to the part from g to
s and vice versa�
We consider two problems in this context� First we

assume that the location of the target g is known to
the robot� We prove a lower bound of

p
� on the com�

petitive ratio of any deterministic algorithm that solves
this problem� This bound matches the competitive ra�
tio for searches in a rectilinear polygon with an un�
known target which implies that� for rectilinear streets�
knowledge of the location of the destination provides no
advantage for the robot� In addition� we also obtain a
lower bound of � for the competitive ratio of searching
in generalized streets with known target which closely
matches the upper bound if the target is unknown�
Secondly� we consider a new strategy for searching

in an arbitrarily oriented street where the location of
g is unknown� We show that our strategy achieves a
competitive ratio of

p
� 	 
� 	 ����� 
� ��
�� which

signi�cantly improves the best previously known ratio

of �
q
� 	 ��

p
� 
� ������
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� Introduction

One of the main problems in robotics is to �nd a path
from the current location of the robot to a given tar�
get� While most of the work in this area has focussed
on e�cient algorithms for path planning if the robot
is given a map of its environment in advance� a more
natural and realistic setting is to assume that the robot
has only a partial knowledge of its surroundings�
In this paper we assume that the robot is equipped

with a vision system that provides a visibility map of its
local environment� Based on this information the robot
has to �nd a path to a given target that is located some�
where within the scene� The search of the robot can be
viewed as an on�line problem since it discovers its sur�
roundings as it travels� Hence� one way to analyze the
quality of a search strategy is to use the framework of
competitive analysis as introduced by Sleator and Tar�
jan ����� A search strategy is called c�competitive if
the path traveled by the robot to �nd the target is a
most c times longer than a shortest path� c is called
the competitive ratio of the strategy�
Since there is no strategy with a competitive ra�

tio of o
n� for scenes with arbitrary obstacles having a
total of n vertices ���� the on�line search problem has
been studied previously in various contexts where the
geometry of the obstacles is restricted� Papadimitrou
and Yannakakis were the �rst to consider the case of
traversing an unknown scene with rectangular obstacles
in search of a target whose location is known ����� They
show a lower bound of �


p
n� for the competitive ratio

of any strategy� Later Blum� Raghavan� and Schieber
provided a strategy that achieves this bound ���� If
the aspect ratio or the length of the longest side of the
rectangles are bounded� better strategies are possible
��� �
��
Kleinberg studies the problem of a robot searching

inside a simple polygon for an unknown goal located
on the boundary of the polygon ���� He introduces
the notion of essential cuts inside a polygon of which
there may be considerably fewer than polygon vertices
and gives an O
m��competitive strategy for orthogonal
polygons with m essential cuts�
Klein introduced the notion of a street which al�



optimal strategy

shortest path

s

possible locactions of g

Figure �� A lower bound for searching in rectilinear
streets�

lowed for the �rst time a search strategy with a constant
competitive ratio even though the location of the tar�
get is unknown ���� In a street the starting point s and
the target t are located on the boundary of the polygon
and the two polygonal chains from s to t are mutually
weakly visible� Klein presents a strategy for searching
in streets and gives an upper bound on its competitive
ratio of � 	 ���� 
� ������ The analysis was recently
improved to ��� 	

p
� 	 ���� 
� ����� by Icking ����

Though Klein�s strategy performs well in practice�he
reports that no example had been found for which his
strategy performs worse than ����the strategy and its
analysis are both quite involved and no better competi�
tive ratio could be shown until recently�when Kleinberg
presented a new approach� His strategy for searching
in streets allows to prove a competitive ratio of �

p
�

with a very simple analysis ���� Moreover� for rectilin�
ear streets Kleinberg shows that his strategy achieves
a competitive ratio of

p
� which is optimal due to the

trivial example shown in Figure �� Here� if a strategy
moves to the left or right before seeing g� then g can
be placed on the opposite side� thus forcing the robot
to travel more than

p
� times the diagonal� Curiously

enough� this is the only known lower bound even for
arbitrarily oriented streets�
Finally� a more general class of polygons� called

G�streets� has been introduced by Datta and Icking
that allows search strategies with a competitive ratio
of ��
� ���� All the these strategies fall into the cate�
gory of Unknown Destination Searches 
UDS� in which
the location of the goal is unknown�
One natural source of information for the robot are

the coordinates of the target� The �rst problem we
consider is a lower bound for strategies for Known Des�
tination Searches 
KDS� in a street where the location
of the goal is given in advance to the robot� In this
case the example of Figure � obviously no longer pro�
vides a lower bound� We prove that even in orthogonal

streets a
p
��competitive ratio is optimal as well� thus

providing the �rst non�trivial lower bound for search�
ing in streets� This result is di�erent from the gen�
eral search problem as considered by Papadimitrou and
Yannakakis in which knowledge of the destination im�
proves the competitive ratio�
Secondly we consider a new strategy for searching

in arbitrarily oriented streets� We achieve a competi�
tive ratio of

p
� 	 
� 	 ����� 
� ��
��� providing a sig�

ni�cant improvement over previous strategies and the
best performance guarantee for searching strategies in
streets known so far�
The paper is organized as follows� In Section � we

introduce the basic geometric concepts necessary for
the rest of the paper� In particular� we give a precise
de�nition of a street� In Section � we show that any de�
terministic search algorithm for orthogonal streets that
knows the location of the target can be forced to travelp
� � O
��

p
n� times the distance of a shortest path

to the target where n is the number of vertices of the
polygon� Finally� Section � deals with a new strategy
to search in streets and its analysis�

� De�nitions and Assumptions

We consider a simple polygon P in the plane with n ver�
tices and a robot inside P which is located at a start
point s on the boundary of P � The robot has to �nd
a path from s to the target point g� The search of the
robot is aided by simple vision 
i�e� we assume that
the robot knows the visibility polygon of its current
location�� Furthermore� the robot retains all the infor�
mation seen so far 
in memory� and knows its starting
and current position� We are� in particular� concerned
with a special class of polygons called streets �rst in�
troduced by Klein ����

De�nition ��� ��� Let P be a simple polygon with two
distinguished vertices� s and g� and let L and R de�
note the clockwise and counterclockwise� resp�� oriented
boundary chains leading from s to g� If L and R are
mutually weakly visible� i�e� if each point of L sees at
least one point of R and vice versa� then 
P� s� g� is
called a street�

De�nition ��� In the class of Known Destination
Search �KDS� problems� a robot searches a simple rec�
tilinear polygon� starting from s on the boundary of the
polygon� for a target point g on the boundary of P with
known location�

We denote the L��distance between two points p�
and p� by d
p�� p�� and the L��norm of a point p by
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Figure �� The the visibility polygon V 
p� of p with
windows w�� � � � � w��

kpk�
De�nition ��	 Let P be a street with start point s and
target g� If p is a point of P � then the visibility polygon
of p is the set of all points in P that are seen by p� It
is denoted by V 
p�� A window of V 
p� is an edge of
V 
p� that does not belong to the boundary of P �see
Figure ���

A window w splits P into a number of subpolygons
P�� � � � � Pk one of which contains V 
p�� We denote the
union of the subpolygons that do not contain V 
p� by
Pw�

� A
p
��competitive lower bound

We construct a family of polygons which are 

p
�� ���

competitive for KDS� for any � � 
� First� we de�ne
some widgets which will be used in the general con�
struction�

De�nition 	�� An eared rectangle is a rectangle two
units wide and one unit tall� The center of the base
is the entry point and on the top left and right corners
there are two small alleys �ears� attached to it �see Fig�
ure ��� One of the alleys is connecting� the other is a
dead alley�

De�nition 	�� The aspect ratio A of a general poly�
gon is de	ned as the ratio between the smallest and the
longest edge of the polygon� Thus A � ��

Lemma 	�� An eared rectangle may be traversed from
the entry point to the connecting alley at a 


p
� � ���

competitive ratio� with � � O
A�� which is optimal�

Figure �� Eared Rectangle� with walk inside�

Entry point 

Connecting alley

Dead alley

Figure �� Interconnecting Eared Rectangles�

Proof
 First we show that a
p
��competitive ratio

is attainable� The robot walks up the middle of the
rectangle� until it sees the top boundaries of both alleys�
At this time the robot can see into either alley and
determine which one is open� and proceed to walk in
this direction 
see bold dashed lines in Figure ��� The
length of the trajectory is ��tan �	�� cos �� where � is
the angle of the line between the extreme upper and the
closer lower end point of the alleys� Notice that � can be
made arbitrarily small by means of reducing the height
of the alley� Thus� this strategy gives a walk of length
arbitrarily close to sup���f�	�� cos ��tan �g � �� The
optimal walk is of length

p
� for a competitive ratio ofp

�� � where � � 
��
p
��
� 	 tan � � �� cos �� � O
A��

This strategy is optimal as well� We use an ad�
versary argument to show this� The adversary simply
opens the �rst alley to be looked into by the robot� and
closes the other alley� Clearly the alley opened is al�
ways in the opposite half of the rectangle in which the
robot is currently located� 
see curvy path plus dashed
line in Figure ��� A simple application of the triangle
inequality shows that the path in bold is shorter� and
thus has a better competitive ratio�

�
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Figure �� Walk the Middle Policy

Eared rectangles can be interconnected to create
paths� Figure � shows the details of such rectangles�

Theorem � There exists a street with n vertices which
can be searched with an optimal competitive ratio ofp
�� O
��

p
n��

Proof
 As proved by Kleinberg ���� there exists a
p
��

competitive strategy for UDS which can be applied in
a straightforward way to the KDS problem and gives a
strategy of the same competitive ratio for all polygons
in the KDS problem�
What remains to be shown is that this competitive

ratio is optimal� We assume that the target is a some
distance directly above the start point as shown in Fig�
ure �� To prove a lower bound of

p
� we �rst consider

two extreme cases of interconnecting eared rectangles�
namely the Walk the Middle Policy and the Always to
the Right Policy�
If the algorithm uses a strategy such as the one pro�

posed in Lemma ���� the construction of Figure � shows
an example of a polygon with a competitive ratio of

�n	 ���


p
�n 	 ��� where n is the number of rectan�

gles between the start point and the target�
Thus� an algorithm needs to deviate from the Walk

the Middle Policy� In this case� the adversary presents
the algorithm with an eared rectangle and it opens and
closes the alleys according to the strategy proposed in
Lemma ���� If we assume that the algorithm always

start

target

Figure �� Always to the Right Policy

meets the line of sight in the left half� then the adver�
sary consistently opens the right alley 
see Figure ���
This creates a staircase moving to the right� Notice
that the L� distance from the current robot position to
the target is always within one unit of the L� distance
from the start point to the target� That is� the adver�
sary has forced the algorithm to move at a worse thanp
� competitive ratio� but the target is no closer than
before�
When the current connecting alley is now horizon�

tally aligned with the target� the adversary moves one
unit closer to the target 
we assume that the algorithm
also moves optimally in this part� since it knows the
position of the target� and proceeds to construct a new
staircase� This results in a spiraling set of staircases
converging to the start point� The spiral is of length
quadratic in n 
see ���� and� thus� the competitive ratio
is O

�n�	n��


p
�n�	n�� which goes to

p
� as n goes

to in�nity�
Having analyzed these extreme cases� we now con�

sider aWavering Policy in which the algorithm neither
walks up the middle� nor consistently slants either way

see Figure ��� TheWalk the Middle Policy and Always
to the Right Policy can be viewed as extreme instances
of the Wavering Policy�
In the case of a wavering algorithm� the adversary

maintains the strategy described above� Every time the
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Figure �� Wavering Policy

algorithm deviates from the Always to the Right Policy�
the adversary moves to the left� As a consequence� the
L� distance to the target is reduced by two units� while
the competitive ratio remains above

p
��

From the point of view of the algorithm a left turn�
is equivalent to a �jump� from one level of the spiral to
a level on the spiral associated to a start point two units
closer to the target 
see Figure �� with the polygon in
solid lines� and the older staircase in dashed lines��
Assume n � �m is even� Let k be the number of

turns to the left deviating from the Always to the Right
Policy� Without loss of generality let k � m� since the
the case k � m can be seen as a deviation from the sym�
metric Always to the Left Policy� Furthermore� assume
that the algorithm jumps at staircases a�� a�� � � � � ak�
where the staircases are numbered� starting from �� in
the order they are traversed� Then� the total length of
the path traversed by the algorithm is

�
X

��j�a�


n� �j� 	 � 	

�
X

a��j�a�


n� �a� � �j� 	 � 	

�
X

a��j�a�


n� �a� � �a� � �j� 	 � 	 � � �

where each sum represents the length of a segment of
a spiral staircase in between jumps�

Lemma 	�� Consider two strategies for walking up the
staircase� Strategy A turns left in staircases faig��i�k�

and Strategy B turns left in the staircases fbig��i�k�
such that bi � ai � �� for all i with ai � �� and bi � �
otherwise� Then strategy B has a better competitive
ratio than strategy A�

Proof
 Since ai � bi it follows that the summation
above is� term by term� larger for strategy A than for
strategy B� from which the claim follows� �

Thus� setting ai � �� for all i� is optimal� Let n �
�m� If the algorithm jumps or turns left k times� then
we have

Length of shortened spiral � n 	
m�kX
i��


n� �k� �i�

� n 	 
m � k�
m � k 	 ��

Length of optimal walk �p
� 
n	 
m � k�
m � k 	 ��� 	 n � �k

Distance traversed by the algorithm �

� 
n	 
m � k�
m � k 	 ��� 	 n� �k

Competitive ratio �
p
�� 	 where

	 �
�
m� k�


p
�� ��p

� 
n	 
m� k�
m � k 	 ��� 	 n� �k �

To improve its competitive ratio� the algorithm can
select the optimal value of k for all given m that max�
imizes 	� As proven in Appendix A� k � m � p

�m
maximizes 	 to O
��

p
m�� Since each eared rectangle

is traversed at a
p
��O
A� competitive ratio� we have

that the adversary strategy described above forces any
algorithm into a

p
� � O
A� � O
��

p
n� competitive

ratio� which in the limit is
p
��

As it can be seen� regardless of the policy� a
p
�

ine�ciency factor is necessarily introduced� even in the
case where the robot knows where it is going� but is
ignorant of the terrain in which is moving� �

Datta and Icking ��� introduced the notion of G�
streets and showed for the UDS problem a competitive
ratio of ��
��

De�nition 	�	 ����
 A simple polygon in the plane is
called a generalized street if for every boundary point
p � L � R� there exists a horizontal chord with end
points in L and R and from which p is weakly visible�

Datta and Icking proved a lower bound by building a
�rake� polygon which is traversed at a ��competitive
ratio on the limit 
see Figure ���



Figure �� A �rake� polygon�
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Figure �� A lower bound example for Kleinberg�s strat�
egy�

For the KDS problem� as in the case of eared rect�
angles� a single rake polygon does not su�ce to obtain
a lower bound on the competitive ratio of ��
A similar strategy to the one presented results in a

��competitive ratio for this problem�

Corollary � There exists a family of orthogonal G�
streets with 
�competitive ratio� which is close to op�
timal�

Proof
 Consider a target at a distance n of the start
point� and placed directly above it on the vertical direc�
tion� Then a set of n� rakes placed one above the other�
each of height ��n� gives the desired lower bound� �

� Traversing a Street

In this section we present a new strategy to traverse a
street from the starting point s to the target point g�
Our strategy closely follows the approach of Kleinberg
��� in order to deal with the simple cases which his
strategy handles optimally but deviates in the more
complicated cases�
The competitive ratio of Kleinberg�s strategy is

shown to be �
p
� 
� ����� in his paper but a tighter

analysis�also mentioned in his paper�yields an upper

bound of �
q
� 	 ��

p
� 
� ������ Before we describe our

approach we show that this bound is tight for his strat�
egy� Figure � shows an example of a polygon where his
bound is achieved asymptotically�
Here Kleinberg�s strategy follows the diagonal D to

point u where the chain to the left of point p is visible
to the robot and then moves to the right to point q� In

order to see that a competitive ratio of �
q
� 	 ��

p
� is

achieved let d �
p
� 	 � and q be chosen to have the

coordinates 
q�� q�� � 
��
p
d� 	 �� d�

p
d� 	 �� where

we assume s to be the origin� If p has distance r
to s and we observe that sin
 � q��
r 	 q��� then
u � 
u�� u�� � 
r sin
�
sin
 � ��� r sin
�
sin
 � ����
Hence� the total distance traveled by a robot following
Kleinberg�s strategy is � p

�u�	u�	q�� If we take into
account that u� � u� � q� �O
��r�� then the distance
traveled by the robot is q� 	 


p
� 	 ��q� � O
��r� �

��
p
d� 	 �	 d��

p
d� 	 ��O
��r� �

p
d� 	 ��O
��r�

which tends to �
q
� 	 ��

p
� as r approaches 		� By

keeping edge e collinear with q and moving g closer and
closer to q it can be seen that the claimed ratio can be
achieved arbitrarily closely�
Our strategy can be shown to have a competitive ra�

tio of at most
p
� 	 
� 	 ����� 
� ��
�� but in contrast

to Kleinberg�s analysis� the analysis of our strategy is
not tight� Before we describe the strategy we need a
few de�nitions and observations�
As observed by Kleinberg the shortest path Pst from

s to g consists of a number of line segments that touch
re�ex vertices of P � The general strategy we follow is
to start at a re�ex vertex v of P that belongs to Pst
and to identify another re�ex vertex v� of Pst that is
closer to g by traveling further on� If the robot has
identi�ed v�� then it moves to it and starts the search
anew� A move from one re�ex vertex of P on Pst to
another closer to g is called a step�
Recall that a window is an edge of the boundary of

the visibility polygon V 
p� of p that does not belong to
the boundary of P �
All windows are collinear with p� The end point of a

window w that is closer to p is called the entrance point
of w� We assume that a window w has the orientation
of the ray from p to entrance point of w� We say a
window w is a left window if Pw is locally to the left of
w w�r�t� the given orientation of w� A right window is
de�ned similarly�
If the robot has traveled along the path P� then we

assume that the robot knows the part of P that can
be seen from P� i�e� the robot has seen maintains the
polygon V 
P� � Sp�P V 
p�� We say a window w of
V 
p� is a true window w�r�t� P if it is also a window of
V 
P��
We have the following lemma about true windows�

Lemma ��� If w is a right �left� window of V 
p� and
the boundary of Pw belongs to L �R�� then w is not a
true window�

We say two windows w� and w� are clockwise con�
secutive if the clockwise oriented polygonal chain of



V 
p� between w� and w� does not contain a window
di�erent from w� and w�� Counterclockwise consecu�
tive is de�ned analogously�

Lemma ��� All windows that belong to L �R� are
clockwise �counterclockwise� consecutive in V 
p��

True windows are called consecutive if there is no
true window that is between them� An immediate
corollary of Lemmas ��� and ��� is that true left and
true right windows are consecutive�

Corollary ��	 If w� is the window that is intersected
by P the 	rst time� then all true left �right� windows
are clockwise �counterclockwise� consecutive from w� in
V 
p��

Because of Corollary ��� there is a clockwise�most
true left entrance point from w� which we denote by p�

and a counterclockwise�most true right entrance point
of V 
p� which we denote by p� if V 
p� contains both
true left and right windows� The point p� is called the
left extreme entrance point and p� the right extreme
entrance point of V 
p��
Now assume the robot starts at s and travels to�

wards its target� We consider �ve cases�

Case � g is visible to the robot�
The robot moves to g on a straight line�

Case � There is no true left window 
right window��
The robot moves to p� 
p���

Case 	 The angle at the location of the robot between
p� and p� is greater than or equal to ����
We apply Algorithm Move�in�Quadrant as described
below until we are able to decide which of p� and p�

is part of a shortest path from s to g�

If none of the above cases apply� then p� and p� are
de�ned and the angle at p between p� and p� is less
than ���� The robot chooses a direction such that p�

is to the left of the direction and p� to the right� It
travels following the direction until one of the above or
one of the following two cases occurs�

Case � A new point p� or p� appears and p� p� and
p� are collinear�
The robot moves along the line through p� p�� and p�

to the closer point of p� and p� 
see Figure �
��

Case � The angle at the location of the robot between
p� and p� equals ����
We apply Algorithm Move�in�Quadrant as described
below until we are able to decide which of p� and p�

is part of a shortest path from s to g�

p�

p


p�

p��

p�
 � p��

Figure �
� As the robot moves to p� the left extreme
entrance point �jumps� from p�� to p�� and the robot
moves directly to p�� �

The orthogonal projection p� of a point p onto a line
segment l is de�ned as the point of l that is closest to
p� If the line segment joining p with p� is orthogonal to
l� then p� is a non�degenerate orthogonal projection�

Algorithm Move�in�Quadrant
Input� A point p� in P such that the angle at p�

of p�� and p
�
� of V 
p�� is � ����

i �� 
�
while p�i and p

�
i of V 
pi� are de�ned do


�� Move to the orthogonal projection pi�� of p�
onto the line segment li from p�i to p

�
i �

Compute the points p�i�� and p
�
i�� of V 
pi����

i �� i 	 ��
end while�

The correctness of the algorithm follows from the
following lemma�

Lemma ��� If the robot has reached the line segment
li� then one of p�i or p�i is not an extreme entrance
point of V 
pi��� anymore�

For the analysis consider the Cases �� �� and � �rst�
In the Cases � and � the robot moves directly to the
next point on a shortest path from s to g� hence� the
competitive ratio is �� If Case � occurs before Algo�
rithm Move�in�Quadrant is invoked� then the angle be�
tween the line segment from the robot to p�i or p

�
i and

the traveling direction is less or equal ��� which implies
that if the robot moves directly to p�i or p

�
i � then the

competitive ratio is bounded by
p
��

��� Analysis of the Algorithm
Move�in�Quadrant

If during the movement in Step 
�� one of the Cases �
or � occurs� then the robot moves immediately to g or



the closer of the points p� or p�� Nevertheless� for the
analysis we assume that the robot �rst moves to the
line segment determined by the old points p� and p�

and then to the closer one of the two�
In the following we assume that the Algorithm

Move�in�Quadrant has stopped after k iterations�

Lemma ��� During the Algorithm Move�in�Quadrant
the shortest path from s to g goes through either p�i or
p�i � for all 
 � i � k�

Because of Lemma ��� it su�ces to bound the ra�
tio of the length of the path traveled by the robot to
the distance between p� and p�k or p

�
k�whichever is

detected as a part of the shortest path from s to g�
The situation we analyze is displayed in Figure ���

We introduce a coordinate system where p� is the origin
and the x�axis passes through p�� � Note that since the
angle at p� between between p

�
� and p

�
� is greater than

or equal to ���� there is no re�ex vertex of P in the
�rst quadrant of the introduced coordinate system that
is visible to p�� Assume that we have arrived at point
pi and move to point pi�� in the next iteration� We
make a few simple observations about the locations of
p�i � p

�
i � and the line segment li from p�i to p

�
i �

Lemma ��� The point p�i belongs to the second quad�
rant and the point p�i belongs to the fourth quadrant�
for all 
 � i � k�

Lemma ��� The line segments li and li�� do not in�
tersect in the 	rst quadrant�

Since the line segment li intersects the �rst� second�
and fourth quadrant� the orthogonal projection of p�
onto li is non�degenerate�
In order to simplify the analysis we consider the line

segment l�i from the intersection point of li with the y�
axis to the intersection point of li�� with the x�axis as
shown Figure ���
The line segment l�i is located between li and li���

If we consider the path P�i from p� to pi that visits
the orthogonal projections of p� onto the line segments
lj and l�j in order� for 
 � j � i� then the length of
P�i is obviously greater than or equal to the length of
Pi� Furthermore� Pi and P�i share the same start and
end point� Hence� for the simplicity of exposition we
assume in the following that p�i is located on the y�axis�
p�i on the x�axis� and either p

�
i � p�i�� or p

�
i � p�i���

Let Li be the length of the path Pi traveled by
the robot to reach pi� let 


�
i be the angle between the

line segment p�pi from p� to pi and the x�axis and d
�
i

the distance between p� and p�i � Similarly� let 

�
i be

p��

p��

y

x
p�

pi�


p�
i�


p�
i

p�i

pi

li�
Pi�


P �
i�


li

p�i�


l�
i

Figure ��� Introducing a new segment between li and
li���

the angle between p�pi and the y�axis and d
�
i the dis�

tance between p� and p�i � We de�ne the angle 
i as
minf
�i � 
�i g and the distance di as minfd�i � d�i g�
Our approach to analyze our strategy is based on

the idea of a potential function� Each point pi is as�
signed a potential Qi which is de�ned as Qi � 
idi� It
is our aim to show that Li 	 Qi � 
� 	 ����di� for all

 � i � k�
So suppose the robot has reached the point pi and

di is equal to the distance between p� and p
�
i and Li �


�	����
i�di� Note that since di � d
p�� p
�
i �� the line

segment li has a slope greater than or equal to ��� and
pi is below the diagonal of the �rst quadrant� Hence�

i is the angle between the line segment p�pi and the
x�axis� For simplicity of description we assume that the
distance from p� to p

�
i is � and� therefore� di � tan
i

as can be seen in Figure ���
The robot moves now from pi to pi��� We distin�

guish three cases�

Case � The line segment li�� is steeper than the line
segment li�
Hence� di�� � di� Note that pi�� is on the circle Ci

with center at ci � 
di��� 
� and radius di�� 
see Fig�
ure ��a�� The arc ai of Ci from pi to pi�� has length
�

i � 
i���di�� � 

i � 
i���di since the angle be�
tween pi and pi�� at ci is �

i � 
i���� Clearly� the
line segment pipi�� is shorter than the arc ai� Hence�

Li�� � Li 	 d
pi� pi���

� 
� 	
�

�
� 
i�di 	 

i � 
i���di

� 
� 	
�

�
� 
i���di��



�

�

�i

p�

pi

�i ��i

di � tan�i

Figure ��� If d
p�� p
�
i � � �� then d
p�� p

�
i � � tan
i and

the length of the thick circular arc is tan
i � 
i�

Case � The line segment li�� is steeper than ��� but
less steep than the line segment li 
see Figure ��b��
Hence� di�� � tan
i��� Note that pi�� is on the circle
C�i with center at c

�
i � 

� ���� and radius ���� The arc

a�i of C
�
i from pi to pi�� has length �

i�� � 
i���� �


i�� � 
i since the angle between pi and pi�� at c
�
i is

�

i�
i���� Clearly� the line segment pipi�� is shorter
than the arc ai� Hence�

Li�� � Li 	 d
pi� pi���

� 
� 	
�

�
� 
i�di 	 

i�� � 
i�

We want to show that


� 	
�

�
� 
i�di 	 

i�� � 
i� � 
� 	

�

�
� 
i���di��


��

or

� 	
�

�
� 
i��di�� � 
idi 	 
i�� � 
i

di�� � di

�

i��
� 	 tan
i���� 
i
� 	 tan
i�

tan
i�� � tan
i
with 
 � 
i � 
i�� � ���� If de�ne �i � 
i�� �

i and f

i� �i� � 
�i 	 

i 	 �i� tan

i 	 �i� �

i tan
i��
tan

i 	 �i� � tan
i�� then we want to
prove that f

� �� � ���� for all 

� �� �  �
f
x� y� j x � 
� y � 
� x	 y � ���g� As a �rst step we
show that

�f

�



� �� �

sin � 	 �
cos
�
	 �� � sin
�
	 ���

sin �
� 
�

for all 

� �� �  � To see this consider
�

�


�
�f

�



� �� sin �

�
� ���
sin
�
	��	cos
�
	���

p�
i
� p�
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Figure ��� Cases �� �� and � if the robot moves from pi
to pi��



which is less or equal 
� for all 

� �� �  � since sin
�
	
�� � 
 and sin
�
	�� � � cos
�
	��� for 
 � �
	� �
����� Hence�

min
������	

�f

�



� �� � min

��
������

�f

�


��
�
� �� �

�

� min
��
������

sin � 	 �
sin � � cos ��
sin �

� 
�

Therefore� f is monotone
in 
 and max������	 f

� �� � max��
������ f
��� �
�� ��� If g
�� � f
��� � �� ��� then dg�d� � 
�� �
sin ���
cos �� � �� � 
 and� therefore�

max
������	

f

� �� � max
��
������

g
��

� lim
���

� 	 �
� tan


�
� � � 
�� � �� tan
�� � ��

tan
�� � � tan
�� � ��

� lim
���

�

sin
���

� 	 cos
���� 	

�

�
� � 	

�

�

Case 	 The line segment li�� is less steep than ���

see Figure ��c��
Hence� di�� is now the distance from p� to p

�
i�� � p�i

which is � by our assumption� Furthermore� 
i�� is
the angle between p�pi�� and the y�axis� If 
�i�� is the
angle between p�pi�� and the x�axis� then 
i��	
�i�� �
����

Note that pi�� is on the circle C
�
i with center at c

�
i �



� ���� and radius ���� The arc a�i of Ci from pi to
pi�� has length �

�i�� � 
i���� � 
�i�� � 
i� Again�
the line segment pipi�� is shorter than the arc a�i� And
as above we obtain

Li�� � Li 	 d
pi� pi���

� 
� 	
�

�
� 
i�di 	 



�
i�� � 
i�

We split a�i into two arcs a
��
i and a

���
i where a

��
i is the arc

from pi to the diagonal of the �rst quadrant and a���i is
the arc from the diagonal of the �rst quadrant to pi���
The arc a��i is paid for by the increase di�� � di while
the arc a���i just reduces the potential� More precisely�
we have


� 	
�

�
� 
i�di 	 



�
i�� � 
i�

� 
� 	
�

�
� 
i�di 	 


�

�
� 
i� 	 



�
i�� �

�

�
�

� 
� 	
�

�
� �

�
� � � 	 
�

�
� 
i���

� 
� 	
�

�
� 
i���di��
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Figure ��� Bounding the competitive ratio in Case ��

where the last inequality follows from Inequality 
�� if
we set 
i�� � ���� This proves the claim�

In fact we have shown the following lemma�

Lemma ��� For all 
 � i � k�

� 	
�

�
� max

�
Li 	 d
pi� p

�
i �

d
p�� p
�
i �

�
Li 	 d
pi� p

�
i �

d
p�� p
�
i �

�

��� Analysis of Cases � and �

In order to obtain the �nal competitive ratio for one
step we have to take into account that the robot has to
move to either p�k�� or p

�
k��� First consider Case �� If

p�k is unde�ned� then p
�
k�� belongs to the shortest path

from s to g� Lemma ��� gives a tight bound on the
maximum distance the robot travels in order to reach
p�k in Figure ���
Let l��k�� be the line segment between p�k�� and p�k

and 
 the angle between l�k�� and l��k��� The length
of lk�� grows monotonously with 
 if the lengths of
l�k�� of l

��
k�� are �xed� Hence� the maximum ratio is

assumed for the minimum angle 
 which is 
 � ����
If we set lk�� to have length �� then the length of l

�
k��

is cos � and the length of l��k�� is sin �� Hence� the
maximum distance traveled by the robot from p� to
p�k�� is bounded by

max
�������

sin � 	 c cos �

or
max
��x��

p
�� x� 	 cx�

where c � � 	 ���� This maximum is achieved for
x � c�

p
c� 	 � and yields a value of

p
c� 	 �� The same

analysis applies if p�k is unde�ned�
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Figure ��� Computing the competitive ratio in Case ��

Now we consider Case �� This case turns out to be
somewhat more complicated than the previous one� Let
p be the point where the robot started its search� We
denote the position of the robot at time t by p
t� with
left entrance point p�
t� and right entrance point p�
t��
After traveling some distance d the robot encounters a
point p� � p
t�� where the angle between p�
t�� and
p�
t�� is exactly ���� Note that the angle between
p�
t� and p�
t� at the robot position is a continuous�
monotonously increasing function if the robot moves on
a ray� At p� the robot invokes the Algorithm Move�in�
Quadrant� Let S be the coordinate system with origin
p� and p

�
� on the y�axis and p

�
� on the x�axis both in the

�rst quadrant� Note that the x� and the y�coordinate
of p in S are non�positive�
Suppose that p�k is unde�ned� Then� a shortest path

from s to g visits p 
by the induction hypothesis�� p�� �
and p�k��� Hence� we have the situation displayed in
Figure ���
The length of the shortest path from p to p�k�� is at

least the sum of the distance a from p to p�� and the
distance b from p�� to p

�
k��� We �rst consider for which

point p�� the sum a 	 b is minimized given p� p�� and
p�k��� In order to compute this point p

�
� we re�ect p

at the y�axis to a point p� and note that the distance
between p� and p�� equals a 
see Figure ���� Hence�
a	b is minimized if p�� is located on the line from p�k��
to p�� Furthermore� the distance d from p to p� which
is traveled by the robot is maximized if p is located on
the x�axis given �xed p�� p

�
� � and a�

Now we consider the maximum of e	 f given p�k��
where the line segment l from q to p�k�� must form an
angle of less or equal ���� with the y�axis� As can be
seen by applying the triangle inequality it is obtained
if l is orthogonal to the y�axis 
see Figure ����

p�

p�

p�
k�


a d

fl

q p��

e

b

Figure ��� A triangle with a right angle can be formed�

So assume q has the same y�coordinate as p�k��� If
we translate the line segment l such that q coincides
with p� and also translate the line segment from p� to
q such that q coincides with p�k�� 
see Figure ���� then
we obtain a triangle whose sides have length e� d 	 f
and a 	 b with a right angle in its right hand corner�
The previous analysis applies and

p
� 	 c� � d	 f 	 ce

a	 b

with c � � 	 ��� as claimed� We have shown the fol�
lowing theorem�

Theorem � If P is a street with start point s and
target point g� then there is a strategy for a robot
with access to the local visibility map of its surround�
ings to travel from s to g on a path that is at mostp
� 	 
� 	 ����� times longer than the shortest possi�

ble route�

� Conclusions

We consider two problems in this paper� First we pro�
vide a lower bound of

p
��O
��pn� for the competitive

ratio of any deterministic strategy that a robot may use
to search in a rectilinear street if the coordinates of the
target are given in advance to the robot� This implies
that knowledge of the location of the target does not
provide any advantage even for searching in rectilinear
streets� We further show a similar result for G�streets�
Secondly� we present a new strategy to search in

arbitrarily oriented streets� We show a performance
guarantee of

p
� 	 
� 	 ����� 
� ��
�� for our strategy�

Unfortunately� the gap between the upper and lower
bounds for searching in streets is still quite large and
it seems that new ideas are needed to narrow it down�



A Analysis of �

To maximize 	 we can equivalently �nd the value of k
that minimizes c�	� for c a constant�

	 �
�

p
�� ��
m� k�p

� ��m	 
m� k�
m � k 	 ��� 	 �m � �k

�

p
�

p
�� ��

�m�
m � k� 	m � k 	 � 	
p
�



c

	
�

�m

m � k
	m� k 	 � 	

p
�

Let

d
m� k� �
�m

m � k
	m � k 	 � 	

p
�

�

�k
d
m� k� � �

m


m � k��
� �

��


�k��
d
m� k� � �

m


m � k�


With the critical points of d
m� k� at k��� � m�p�m�
Since k � m we need only to study k� � m � p

�m�
Consider d
m� �� as a function of k� We see that the
second derivative is positive for all k 
 m� and in par�
ticular at k	 �� This implies that d
m� �� is minimized
at k��
Thus for a �xed m� the best competitive ratio is

attained at k� � m � p
�m� namely

p
� � 	 with 	 �p

�

p
� � ���
�p�m 	 � 	 p��� Notice that 	 goes to

zero as m goes to in�nity�
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