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Abstract

We consider the problem of a robot traversing an un-
known polygon with the aid of standard visibility. The
robot has to find a path from a starting point s to a tar-
get point g. We provide upper and lower bounds on the
ratio of the distance traveled by the robot in compari-
son to the length of a shortest path. Since this ratio is
unbounded for general polygons, we restrict ourselves
to the well investigated class of polygons called streets.
A street is a polygon where s and ¢ are located on the
polygon boundary and the part of the polygon bound-
ary from s to g is weakly visible to the part from ¢ to
s and vice versa.

We consider two problems in this context. First we
assume that the location of the target g is known to
the robot. We prove a lower bound of /2 on the com-
petitive ratio of any deterministic algorithm that solves
this problem. This bound matches the competitive ra-
tio for searches in a rectilinear polygon with an un-
known target which implies that, for rectilinear streets,
knowledge of the location of the destination provides no
advantage for the robot. In addition, we also obtain a
lower bound of 9 for the competitive ratio of searching
in generalized streets with known target which closely
matches the upper bound if the target is unknown.

Secondly, we consider a new strategy for searching
in an arbitrarily oriented street where the location of
g is unknown. We show that our strategy achieves a
competitive ratio of /1 + (1+ 7/4)? (~ 2.05) which

significantly improves the best previously known ratio

of 2¢/1 4 1/+/2 (~ 2.61).

*This research is partially supported by the DFG-Project
"Diskrete Probleme”, No. Ot 64/8-1.

TDepartment of Computer Science, University of Waterloo,
Waterloo, Ontario CANADA N2L 3G1,
e-mail: alopez-oQneumann.UWaterloo.ca

*Department of Computer Science, University of Western On-
tario, London, Ont., Canada N6A 5B7, and Institut fir Infor-
matik, Universitat Freiburg, Am Flughafen 17, D-79110 Freiburg,
FRG, e-mail: schuiere@informatik.uni-freiburg.de

Sven Schuierer?

1 Introduction

One of the main problems in robotics is to find a path
from the current location of the robot to a given tar-
get. While most of the work in this area has focussed
on efficient algorithms for path planning if the robot
is given a map of its environment in advance, a more
natural and realistic setting is to assume that the robot
has only a partial knowledge of its surroundings.

In this paper we assume that the robot is equipped
with a vision system that provides a visibility map of its
local environment. Based on this information the robot
has to find a path to a given target that is located some-
where within the scene. The search of the robot can be
viewed as an on-line problem since it discovers its sur-
roundings as it travels. Hence, one way to analyze the
quality of a search strategy is to use the framework of
competitive analysis as introduced by Sleator and Tar-
jan [12]. A search strategy is called c-competitive if
the path traveled by the robot to find the target is a
most ¢ times longer than a shortest path. ¢ is called
the competitive ratio of the strategy.

Since there is no strategy with a competitive ra-
tio of o(n) for scenes with arbitrary obstacles having a
total of n vertices [2], the on-line search problem has
been studied previously in various contexts where the
geometry of the obstacles is restricted. Papadimitrou
and Yannakakis were the first to consider the case of
traversing an unknown scene with rectangular obstacles
in search of a target whose location is known [11]. They
show a lower bound of £2(1/n) for the competitive ratio
of any strategy. Later Blum, Raghavan, and Schieber
provided a strategy that achieves this bound [2]. If
the aspect ratio or the length of the longest side of the
rectangles are bounded, better strategies are possible
[3, 10].

Kleinberg studies the problem of a robot searching
inside a simple polygon for an unknown goal located
on the boundary of the polygon [8]. He introduces
the notion of essential cuts inside a polygon of which
there may be considerably fewer than polygon vertices
and gives an O(m)-competitive strategy for orthogonal
polygons with m essential cuts.

Klein introduced the notion of a street which al-
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Figure 1: A lower bound for searching in rectilinear
streets.

lowed for the first time a search strategy with a constant
competitive ratio even though the location of the tar-
get is unknown [7]. In a street the starting point s and
the target ¢ are located on the boundary of the polygon
and the two polygonal chains from s to ¢ are mutually
weakly visible. Klein presents a strategy for searching
in streets and gives an upper bound on its competitive
ratio of 1 + 3/2x (~ 5.71). The analysis was recently
improved to 7/2 + /1 + 7%/4 (~ 4.44) by Icking [6].
Though Klein’s strategy performs well in practice—he
reports that no example had been found for which his
strategy performs worse than 1.8—the strategy and its
analysis are both quite involved and no better competi-
tive ratio could be shown until recently,when Kleinberg
presented a new approach. His strategy for searching
in streets allows to prove a competitive ratio of 21/2
with a very simple analysis [8]. Moreover, for rectilin-
ear streets Kleinberg shows that his strategy achieves
a competitive ratio of /2 which is optimal due to the
trivial example shown in Figure 1. Here, if a strategy
moves to the left or right before seeing g, then g can
be placed on the opposite side, thus forcing the robot
to travel more than /2 times the diagonal. Curiously
enough, this is the only known lower bound even for
arbitrarily oriented streets.

Finally, a more general class of polygons, called
G-streets, has been introduced by Datta and Icking
that allows search strategies with a competitive ratio
of 9.06 [4]. All the these strategies fall into the cate-
gory of Unknown Destination Searches (UDS) in which
the location of the goal is unknown.

One natural source of information for the robot are
the coordinates of the target. The first problem we
consider is a lower bound for strategies for Known Des-
tination Searches (KDS) in a street where the location
of the goal is given in advance to the robot. In this
case the example of Figure 1 obviously no longer pro-
vides a lower bound. We prove that even in orthogonal

streets a y/2-competitive ratio is optimal as well, thus
providing the first non-trivial lower bound for search-
ing in streets. This result is different from the gen-
eral search problem as considered by Papadimitrou and
Yannakakis in which knowledge of the destination im-
proves the competitive ratio.

Secondly we consider a new strategy for searching
in arbitrarily oriented streets We achieve a competi-
tive ratio of \/1+ (14 x/4)2 (~ 2.05), providing a sig-
nificant 1mprovement over prev1ous strategies and the
best performance guarantee for searching strategies in
streets known so far.

The paper is organized as follows. In Section 2 we
introduce the basic geometric concepts necessary for
the rest of the paper. In particular, we give a precise
definition of a street. In Section 3 we show that any de-
terministic search algorithm for orthogonal streets that
knows the location of the target can be forced to travel
V2 — O(1/4/n) times the distance of a shortest path
to the target where n is the number of vertices of the
polygon. Finally, Section 4 deals with a new strategy
to search in streets and its analysis.

2 Definitions and Assumptions

We consider a simple polygon P in the plane with n ver-
tices and a robot inside P which is located at a start
point s on the boundary of P. The robot has to find
a path from s to the target point g. The search of the
robot is aided by simple vision (i.e. we assume that
the robot knows the visibility polygon of its current
location). Furthermore, the robot retains all the infor-
mation seen so far (in memory) and knows its starting
and current position. We are, in particular, concerned
with a special class of polygons called streets first in-

troduced by Klein [7].

Definition 2.1 [7] Let P be a simple polygon with two
distinguished vertices, s and g, and let L and R de-
note the clockwise and counterclockwise, resp., oriented
boundary chains leading from s to g. If L and R are
mutually weakly vistble, i.e. if each point of L sees at
least one point of R and vice versa, then (P,s,g) is
called a street.

Definition 2.2 In the class of Known Destination
Search (KDS) problems, a robot searches a simple rec-
tilinear polygon, starting from s on the boundary of the
polygon, for a target point g on the boundary of P with
known location.

We denote the L,-distance between two points p;
and ps by d(p1,p2) and the Ly-norm of a point p by



Figure 2: The the visibility polygon V(p) of p with
windows wy, ..., ws.
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Definition 2.3 Let P be a street with start point s and
target g. If p is a point of P, then the visibility polygon
of p is the set of all points in P that are seen by p. It
is denoted by V(p). A window of V(p) is an edge of
V(p) that does not belong to the boundary of P (see
Figure 2).

A window w splits P into a number of subpolygons
P, ..., P, one of which contains V(p). We denote the
union of the subpolygons that do not contain V(p) by
Py.

3 A v2-competitive lower bound

We construct a family of polygons which are (v/2 — €)-
competitive for KDS, for any ¢ > 0. First, we define
some widgets which will be used in the general con-
struction.

Definition 3.1 An eared rectangle is a rectangle two
units wide and one unit tall. The center of the base
is the entry point and on the top left and right corners
there are two small alleys (ears) attached to it (see Fig-
ure 3). One of the alleys is connecting, the other is a
dead alley.

Definition 3.2 The aspect ratio A of a general poly-
gon is defined as the ratio between the smallest and the
longest edge of the polygon. Thus A < 1.

Lemma 3.1 An eared rectangle may be traversed from
the entry point to the connecting alley at a (v/2 — €)-
competitive ratio, with e = O(A), which is optimal.

Figure 3: Eared Rectangle, with walk inside.
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Figure 4: Interconnecting Eared Rectangles.

Proof: First we show that a ﬁ—competitive ratio
is attainable. The robot walks up the middle of the
rectangle, until it sees the top boundaries of both alleys.
At this time the robot can see into either alley and
determine which one is open, and proceed to walk in
this direction (see bold dashed lines in Figure 3). The
length of the trajectory is 1 —tan8+ 1/ cos 8, where 6 is
the angle of the line between the extreme upper and the
closer lower end point of the alleys. Notice that 8 can be
made arbitrarily small by means of reducing the height
of the alley. Thus, this strategy gives a walk of length
arbitrarily close to supy_,o{1+1/ cos6—tan 6} = 2. The
optimal walk is of length 4/2 for a competitive ratio of
V2 — € where € = (1/4/2)(1 + tand — 1/ cos 8) = O(A).

This strategy is optimal as well. We use an ad-
versary argument to show this. The adversary simply
opens the first alley to be looked into by the robot, and
closes the other alley. Clearly the alley opened is al-
ways in the opposite half of the rectangle in which the
robot is currently located. (see curvy path plus dashed
line in Figure 3). A simple application of the triangle
inequality shows that the path in bold is shorter, and
thus has a better competitive ratio.

O
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Figure 5: Walk the Middle Policy

Eared rectangles can be interconnected to create
paths. Figure 4 shows the details of such rectangles.

Theorem 1 There exists a street with n vertices which
can be searched with an optimal competitive ratio of

V2 - 0(1/+/m).

Proof: As proved by Kleinberg [8], there exists a v/2-
competitive strategy for UDS which can be applied in
a straightforward way to the KDS problem and gives a
strategy of the same competitive ratio for all polygons
in the KDS problem.

What remains to be shown is that this competitive
ratio is optimal. We assume that the target is a some
distance directly above the start point as shown in Fig-
ure 5. To prove a lower bound of v/2 we first consider
two extreme cases of interconnecting eared rectangles,
namely the Walk the Middle Policy and the Always to
the Right Policy.

If the algorithm uses a strategy such as the one pro-
posed in Lemma 3.1, the construction of Figure b shows
an example of a polygon with a competitive ratio of
(2n + 1)/(v/2n + 1), where n is the number of rectan-
gles between the start point and the target.

Thus, an algorithm needs to deviate from the Walk
the Middle Policy. In this case, the adversary presents
the algorithm with an eared rectangle and it opens and
closes the alleys according to the strategy proposed in
Lemma 3.1. If we assume that the algorithm always

Figure 6: Always to the Right Policy

meets the line of sight in the left half, then the adver-
sary consistently opens the right alley (see Figure 6).
This creates a staircase moving to the right. Notice
that the L; distance from the current robot position to
the target is always within one unit of the L; distance
from the start point to the target. That is, the adver-
sary has forced the algorithm to move at a worse than
V2 competitive ratio, but the target is no closer than
before.

When the current connecting alley is now horizon-
tally aligned with the target, the adversary moves one
unit closer to the target (we assume that the algorithm
also moves optimally in this part, since it knows the
position of the target) and proceeds to construct a new
staircase. This results in a spiraling set of staircases
converging to the start point. The spiral is of length
quadratic in n (see [1]) and, thus, the competitive ratio
is O((2n% +n)/(v/2n2 4 n)) which goes to /2 as n goes
to infinity.

Having analyzed these extreme cases, we now con-
sider a Wavering Policy in which the algorithm neither
walks up the middle, nor consistently slants either way
(see Figure 7). The Walk the Middle Policy and Always
to the Right Policy can be viewed as extreme instances
of the Wavering Policy.

In the case of a wavering algorithm, the adversary
maintains the strategy described above. Every time the



Figure 7: Wavering Policy

algorithm deviates from the Always to the Right Policy,
the adversary moves to the left. As a consequence, the
L, distance to the target is reduced by two units, while
the competitive ratio remains above /2.

From the point of view of the algorithm a left turn,
is equivalent to a “jump” from one level of the spiral to
alevel on the spiral associated to a start point two units
closer to the target (see Figure 7, with the polygon in
solid lines, and the older staircase in dashed lines).

Assume n = 2m is even. Let k be the number of
turns to the left deviating from the Always to the Right
Policy. Without loss of generality let & < m, since the
the case k > m can be seen as a deviation from the sym-
metric Always to the Left Policy. Furthermore, assume
that the algorithm jumps at staircases aq,as,...,ag,
where the staircases are numbered, starting from 1, in
the order they are traversed. Then, the total length of
the path traversed by the algorithm is

2 ) (n—2j)+2+

0<j<as

2 > (n—2a1-2j)+2+
a1<j<az

2 > (n—2a1—2a3—2j)+ 2+
az<j<as

where each sum represents the length of a segment of
a spiral staircase in between jumps.

Lemma 3.2 Consider two strategies for walking up the
staircase. Strategy A turns left in staircases {a; }1<i<r,

and Strategy B turns left in the staircases {b;}1<i<k,
such that b; = a; — 1, for all i witha; > 1, and b; = 1
otherwise. Then strategy B has a better competitive
ratio than strategy A.

Proof: Since a; > b; it follows that the summation
above is, term by term, larger for strategy A than for
strategy B, from which the claim follows. a

Thus, setting a; = 1, for all 7, is optimal. Let n =
2m. If the algorithm jumps or turns left k times, then
we have

m—k

Length of shortened spiral = =n + (n — 2k — 29)
0

©.

=n+(m—-k)(m-k+1)

Length of optimal walk =
V2(n+(m—k)(m—k+1))+n—2k

Distance traversed by the algorithm =
2(n+(m—k)m—k+1))+n—2k

V2 — & where

2(m—k)(v2-1)
V2(n+(m—k)(m—k+1)+n—2k

To improve its competitive ratio, the algorithm can
select the optimal value of k for all given m that max-
imizes €. As proven in Appendix A, k = m — 2m
maximizes £ to O(1/4/m). Since each eared rectangle
is traversed at a v/2 — O(4) competitive ratio, we have
that the adversary strategy described above forces any
algorithm into a v/2 — O(4) — O(1//n) competitive
ratio, which in the limit is /2.

As it can be seen, regardless of the policy, a v/2
inefficiency factor is necessarily introduced, even in the
case where the robot knows where it is going, but is
ignorant of the terrain in which is moving. ad

Datta and Icking [4] introduced the notion of G-
streets and showed for the UDS problem a competitive
ratio of 9.06.

Competitive ratio =

¢ =

Definition 3.3 ([4]) A simple polygon in the plane is
called a generalized street if for every boundary point
p € LUR, there exists a horizontal chord with end
points in L and R and from which p is weakly visible.

Datta and Icking proved a lower bound by building a
“rake” polygon which is traversed at a 9-competitive
ratio on the limit (see Figure 8).



Figure 9: A lower bound example for Kleinberg’s strat-
egy.

For the KDS problem, as in the case of eared rect-
angles, a single rake polygon does not suffice to obtain
a lower bound on the competitive ratio of 9.

A similar strategy to the one presented results in a
9-competitive ratio for this problem.

Corollary 1 There exists a family of orthogonal G-
streets with 9-competitive ratio, which is close to op-
timal.

Proof: Consider a target at a distance n of the start
point, and placed directly above it on the vertical direc-
tion. Then a set of n? rakes placed one above the other,
each of height 1/n, gives the desired lower bound. O

4 Traversing a Street

In this section we present a new strategy to traverse a
street from the starting point s to the target point g.
Our strategy closely follows the approach of Kleinberg
[8] in order to deal with the simple cases which his
strategy handles optimally but deviates in the more
complicated cases.

The competitive ratio of Kleinberg’s strategy is
shown to be 21/2 (~ 2.83) in his paper but a tighter
analysis—also mentioned in his paper—yields an upper

bound of 24/1 4 1/4/2 (~ 2.61). Before we describe our

approach we show that this bound is tight for his strat-
egy. Figure 9 shows an example of a polygon where his
bound is achieved asymptotically.

Here Kleinberg’s strategy follows the diagonal D to
point u where the chain to the left of point p is visible
to the robot and then moves to the right to point ¢. In

\/1+1/\/§is

order to see that a competitive ratio of 2

achieved let d = v/2 + 1 and ¢ be chosen to have the
coordinates (g1,92) = (1/vd?+ 1,d/+v/d? + 1) where
we assume s to be the origin. If p has distance r
to s and we observe that sina = ¢1/(r + ¢2), then
u = (u1,u2) = (rsina/(sina — 1), rsina/(sina — 1)).
Hence, the total distance traveled by a robot following
Kleinberg’s strategy is > v/2us +u1 +¢y. If we take into
account that u; = us = g2 — O(1/7r), then the distance
traveled by the robot is g1 + (v2 + 1)g2 — O(1/7) =
1/vVd2+1+d?/y/d>+1-0(1/r) =v/d>+1-0(1/r)

which tends to 24/14 1/4/2 as r approaches +oc0. By

keeping edge e collinear with ¢ and moving g closer and
closer to ¢ it can be seen that the claimed ratio can be

achieved arbitrarily closely.

Our strategy can be shown to have a competitive ra-
tio of at most /1 + (1 4 w/4)? (~ 2.05) but in contrast
to Kleinberg’s analysis, the analysis of our strategy is
not tight. Before we describe the strategy we need a
few definitions and observations.

As observed by Kleinberg the shortest path P,; from
s to g consists of a number of line segments that touch
reflex vertices of P. The general strategy we follow is
to start at a reflex vertex v of P that belongs to P,
and to identify another reflex vertex v’ of P,; that is
closer to g by traveling further on. If the robot has
identified v, then it moves to it and starts the search
anew. A move from one reflex vertex of P on P,; to
another closer to g is called a siep.

Recall that a window is an edge of the boundary of
the visibility polygon V(p) of p that does not belong to
the boundary of P.

All windows are collinear with p. The end point of a
window w that is closer to pis called the entrance point
of w. We assume that a window w has the orientation
of the ray from p to entrance point of w. We say a
window w is a left window if Py, is locally to the left of
w w.r.t. the given orientation of w. A right window is
defined similarly.

If the robot has traveled along the path P, then we
assume that the robot knows the part of P that can
be seen from P, i.e. the robot has seen maintains the
polygon V(P) = U,cp V(p). We say a window w of
V(p) is a true window w.r.t. P if it is also a window of
V(P).

We have the following lemma about true windows.

Lemma 4.1 If w is a right (left) window of V(p) and
the boundary of P, belongs to L (R), then w is not a
true window.

We say two windows w; and w» are clockwise con-
secutive if the clockwise oriented polygonal chain of



V(p) between w; and ws does not contain a window
different from w; and wy. Counterclockwise consecu-
tive is defined analogously.

Lemma 4.2 All windows that belong to L (R) are
clockwise (counterclockwise) consecutive in V(p).

True windows are called consecutive if there is no
true window that is between them. An immediate
corollary of Lemmas 4.1 and 4.2 is that true left and
true right windows are consecutive.

Corollary 4.3 If wo is the window that is intersected
by P the first time, then all true left (right) windows
are clockwise (counterclockwise) consecutive from wg in

V(p)-

Because of Corollary 4.3 there is a clockwise-most
true left entrance point from wo which we denote by pt
and a counterclockwise-most true right entrance point
of V(p) which we denote by p~ if V(p) contains both
true left and right windows. The point pT is called the
left exireme entrance point and p~ the right extreme
entrance point of V(p).

Now assume the robot starts at s and travels to-
wards its target. We consider five cases:

Case 1 g is visible to the robot.
The robot moves to g on a straight line.

Case 2 There is no true left window (right window).
The robot moves to p~ (p*).

Case 3 The angle at the location of the robot between
pt and p~ is greater than or equal to w/2.

We apply Algorithm Move-in-Quadrant as described
below until we are able to decide which of p* and p~
is part of a shortest path from s to g.

If none of the above cases apply, then pt and p~ are
defined and the angle at p between pt and p~ is less
than 7/2. The 1obot chooses a direction such that pT
is to the left of the direction and p~ to the right. It
travels following the direction until one of the above or
one of the following two cases occurs.

Case 4 A new point pT or p~ appears and p, pT and
p~ are collinear.

The robot moves along the line through p, p*, and p~
to the closer point of p* and p~ (see Figure 10).

Case 5 The angle at the location of the robot between
pt and p~ equals w/2.

We apply Algorithm Move-in-Quadrant as described
below until we are able to decide which of p* and p~
is part of a shortest path from s to g.

Y41

Figure 10: As the robot moves to py the left extreme
entrance point “jumps” from pi" to p;' and the robot
moves directly to p] .

The orthogonal projection p’ of a point p onto a line
segment ! is defined as the point of [ that is closest to
p. If the line segment joining p with p' is orthogonal to
l, then p’ is a non-degenerate orthogonal projection.

Algorithm Move-in-Quadrant

Input: A point po in P such that the angle at po

of p¢ and p; of V(po) is > 7/2;
1:=0;
while p} and p] of V(p;) are defined do
(1) Move to the orthogonal projection p;11 of pg
onto the line segment I; from p;" to p; ;

Compute the points p;"_l_l and p;; of V(pit1);

t:=14+1;
end while;

The correctness of the algorithm follows from the
following lemma.

Lemma 4.4 If the robot has reached the line segment
l;, then one of p;»l' or p; 1is not an extreme entrance
point of V(p;11) anymore.

For the analysis consider the Cases 1, 2, and 4 first.
In the Cases 1 and 2 the robot moves directly to the
next point on a shortest path from s to g, hence, the
competitive ratio is 1. If Case 4 occurs before Algo-
rithm Move-in-Quadrant is invoked, then the angle be-
tween the line segment from the robot to p;»l' or p; and
the traveling direction is less or equal 7/2 which implies
that if the robot moves directly to p;»l' or p; , then the
competitive ratio is bounded by /2.

4.1 Analysis of the Algorithm
Move-in-Quadrant

If during the movement in Step (1) one of the Cases 1
or 4 occurs, then the robot moves immediately to g or



the closer of the points p™ or p~. Nevertheless, for the
analysis we assume that the robot first moves to the
line segment determined by the old points p™ and p~
and then to the closer one of the two.

In the following we assume that the Algorithm
Move-in-Quadrant has stopped after k iterations.

Lemma 4.5 During the Algorithm Move-in- Quadrant
the shortest path from s to g goes through either p;»l' or
p; , forall0 <i<k.

Because of Lemma 4.5 it suffices to bound the ra-
tio of the length of the path traveled by the robot to
the distance between py and p,'c" or p, —whichever is
detected as a part of the shortest path from s to g.

The situation we analyze is displayed in Figure 11.
We introduce a coordinate system where pg is the origin
and the z-axis passes through py. Note that since the
angle at po between between pl and p; is greater than
or equal to w/2, there is no reflex vertex of P in the
first quadrant of the introduced coordinate system that
is visible to pg. Assume that we have arrived at point
p; and move to point p;;1 in the next iteration. We
make a few simple observations about the locations of
p;»i', p; , and the line segment I; from p;»l' to p; .

Lemma 4.6 The point p;»l' belongs to the second quad-
rant and the point p; belongs to the fourth quadrant,
for all 0 < i < k.

Lemma 4.7 The line segments l; and ;11 do not in-
tersect in the first quadrant.

Since the line segment /; intersects the first, second,
and fourth quadrant, the orthogonal projection of po
onto I; is non-degenerate.

In order to simplify the analysis we consider the line
segment I} from the intersection point of I; with the y-
axis to the intersection point of [;;; with the z-axis as
shown Figure 11.

The line segment I} is located between I; and I;;4.
If we consider the path P! from po to p; that visits
the orthogonal projections of pg onto the line segments
l; and l;» in order, for 0 < j < ¢, then the length of
P} is obviously greater than or equal to the length of
P;. Furthermore, P; and P; share the same start and
end point. Hence, for the simplicity of exposition we
assume in the following that p;»l' is located on the y-axis,
p; on the z-axis, and either p;»l' = p;»"_l_l Or p; = Piyq-

Let L; be the length of the path P; traveled by
the robot to reach p;; let a; be the angle between the
line segment pop; from po to p; and the z-axis and d;
the distance between po and p; . Similarly, let a;" be

pi®

0
X
Po py Ny _ 0

)

Figure 11: Introducing a new segment between I, and
Lita.

the angle between pop; and the y-axis and d;" the dis-
tance between po and p;»i'. We define the angle a; as
min{a;", a; } and the distance d; as min{d}, d; }.

Our approach to analyze our strategy is based on
the idea of a potential function. Each point p; is as-
signed a potential ¢); which is defined as @; = a;d;. It
is our aim to show that L, + Q; < (1 + x/4)d;, for all
0<e<k.

So suppose the robot has reached the point p; and
d; is equal to the distance between po and p; and L; <
(14+m/4—a;)d;. Note that since d; = d(po, p; ), the line
segment [; has a slope greater than or equal to /4 and
p; 1s below the diagonal of the first quadrant. Hence,
a; 1s the angle between the line segment pop; and the
z-axis. For simplicity of description we assume that the
distance from pg to p;»l' is 1 and, therefore, d; = tan oy
as can be seen in Figure 12.

The robot moves now from p; to p;y1. We distin-
guish three cases.

Case 1 The line segment I;;; is steeper than the line
segment [;.

Hence, d;11 = d;. Note that p;;1 is on the circle C;
with center at ¢; = (d;/2,0) and radius d;/2 (see Fig-
ure 13a). The arc a; of C; from p; to p;11 has length
2(a; — a;41)di/2 = (i — ayy1)d; since the angle be-
tween p; and p;11 at ¢; is 2(e; — a;41). Clearly, the
line segment p;p; 11 is shorter than the arc a;. Hence,

Livi = Li+d(ps,pis1)
™
< 1+ 1 —a;)d; + (0 — @it1)d;

™
(1+ 7 —aip1)din



Po d; = tan o

Figure 12: If d(po, p}) = 1, then d(po, p; ) = tana; and
the length of the thick circular arc is tana; - ;.

Case 2 The line segment l; 1 is steeper than /4 but
less steep than the line segment Il; (see Figure 13b).
Hence, d;11 = tan ;1. Note that p; ;1 is on the circle
C! with center at ¢ = (0,1/2) and radius 1/2. The arc
a. of C} from p; to p;41 has length 2(a;11 — a;)1/2 =
a;y1 — o since the angle between p; and p; ;1 at ¢} is
2(a; —ait1). Clearly, the line segment p;p; 11 is shorter
than the arc a;. Hence,

Livi = Li+d(ps,pis1)
T
< (1+ 1 —a;)d; + (g1 — o)

We want to show that
T T
(1+ i o))d; + (o1 —oy) < (14 i oit1)dit1
(1)
or
op1dipr — aidy + a4 — o
diy1 —d;
a;r1(1 + tanayq) — o (1 + tan o)
tana; 41 — tan o

with 0 < a; < a;41 < w/4. If define 8; = a;yq1 —
a; and f(oy,B;) = (B + (a5 + Bi)tan(a; + B;) —
a;tanoy)/(tan(a; + B;) — tanay), then we want to
prove that f(a,8) < =/4, for all (o,8) € A =
{(z,y) | 2 >0,y > 0,2+ y < w/4}. As a first step we

show that

OF (a,8) = sin 8 + B(cos(2 —|— B) —sin(2a + B)) >0,
sin 3

for all («,3) € A. To see this consider

(9% <g—£ (e, B) sin,@') = —28(sin(2a+B) +cos(2a+3))

Figure 13: Cases 1, 2, and 3 if the robot moves from p;
to piy.



which is less or equal 0, for all (a, 8) € A, since sin(2a+
B) > 0 and sin(2a+3) > — cos(2a+0), for 0 < 2a+8 <
3x/4. Hence,

_of . afyn
L, G @) = min oo (3 0.)
sin 8 + B(sin B — cos 3)
= n
pefo,m/4] sin 3
> 0.
Therefore, f is monotone

in a and max( gyea f(a,8) = maxgeo,r/a) f(7/4 —
B,B). I g(B) = f(r/4 — B,B), then dg/dB = (28 —
sin 3)/(cos 23 — 1) < 0 and, therefore,

B0 = g o0
_ g P aten(y) — (5 - f)tan( — f)
B0 tan(§) — tan(§ — 3)
= Iim rngﬁ) (1+ cos(28)) + % =1+ %

Case 3 The line segment [,y is less steep than =/4
(see Figure 13c).

Hence, d;1 is now the distance from pg to p;»"_l_l = p;»l'
which is 1 by our assumption. Furthermore, o, is
the angle between pop;11 and the y-axis. If o is the
angle between pop; ;1 and the z-axis, then a; 1 +af , =
/2.

Note that p;11 is on the circle C] with center at ¢} =
(0,1/2) and radius 1/2. The arc a} of C; from p; to
piy1 has length 2(af,; — a;)1/2 = aj,; — ;. Again,
the line segment p;p; 11 is shorter than the arc a;. And
as above we obtain

Livi = Li+d(ps,pis1)
™
< (g —ai)di + (g — o)

We split @] into two arcs a} and a”

from p; to the diagonal of the first quadrant and a” is
the arc from the diagonal of the first quadrant to p; 1.
The arc af is paid for by the increase d; 1 — d; while

where a is the arc

the arc al’ just reduces the potential. More precisely,
we have
7
(1+ 7 — )di + (aiys — )
7 7 7
= I+ 7 —e)di+ (7 —ai) + (a1 — )
T o« r
< 1+ -y f i
< 0+ =Dt -am)

¥y
= (1+ i aitp1)dit1

Figure 14: Bounding the competitive ratio in Case 3.

where the last inequality follows from Inequality (1) if
we set a; 11 = w/4. This proves the claim.

In fact we have shown the following lemma.
Lemma 4.8 For all 0 < <k,

L +d(pi,p}) Li+d(pi,p;) }
d(po, pi) d(po, p; )

145>
4 2 max

4.2 Analysis of Cases 3 and 5

In order to obtain the final competitive ratio for one
step we have to take into account that the robot has to
move to either p,'cl'_1 or p,_,. First consider Case 3. If
p;, is undefined, then p,'cl'_1 belongs to the shortest path
from s to g. Lemma 4.8 gives a tight bound on the
maximum distance the robot travels in order to reach
P}, in Figure 14.

Let IZ!_, be the line segment between p; , and p},
and o the angle between I, | and I} ;. The length
of l_1 grows monotonously with « if the lengths of
l,_, of I/ | are fixed. Hence, the maximum ratio is
assumed for the minimum angle a which is o = w/2.
If we set Iy _1 to have length 1, then the length of I,
is cos@ and the length of I | is sin3. Hence, the
maximum distance traveled by the robot from pg to
p,‘:_l is bounded by

max sinf3 + ccos (3

0<p<n/2
or
max \/1— z? + cx.
0<z<1
where ¢ = 1 + n/4. This maximum is achieved for

z = c¢/v/c? + 1 and yields a value of v/¢ + 1. The same
analysis applies if p,‘: is undefined.



— = path of robot z
= shortest path

Figure 15: Computing the competitive ratio in Case 5.

Now we consider Case 5. This case turns out to be
somewhat more complicated than the previous one. Let
p be the point where the robot started its search. We
denote the position of the robot at time ¢ by p(t) with
left entrance point p* (¢) and right entrance point p~ ().
After traveling some distance d the robot encounters a
point po = p(to) where the angle between p*(Zo) and
P~ (f0) is exactly w/2. Note that the angle between
pT(t) and p~ () at the robot position is a continuous,
monotonously increasing function if the robot moves on
a ray. At po the robot invokes the Algorithm Move-in-
Quadrant. Let S be the coordinate system with origin
po and p(')l' on the y-axis and py on the z-axis both in the
first quadrant. Note that the z- and the y-coordinate
of pin S are non-positive.

Suppose that p; is undefined. Then, a shortest path
from s to g visits p (by the induction hypothesis), p{,
and p,‘c"_l. Hence, we have the situation displayed in
Figure 15.

The length of the shortest path from p to p,‘:_l is at
least the sum of the distance a from p to p(‘)l' and the
distance b from p(‘)l' to p,‘c"_l. We first consider for which
point p(‘)l' the sum a + b is minimized given p, po, and
p,‘c"_l. In order to compute this point p(‘)l' we reflect p
at the y-axis to a point p’ and note that the distance
between p' and pl equals a (see Figure 15). Hence,
a -+ b is minimized if p(‘)l' is located on the line from p,‘:_l
to p’. Furthermore, the distance d from p to py which
is traveled by the robot is maximized if p is located on
the z-axis given fixed po, pg', and a.

Now we consider the maximum of e + f given p,'cl'_1
where the line segment ! from ¢ to p,‘:_l must form an
angle of less or equal 37/2 with the y-axis. As can be
seen by applying the triangle inequality it is obtained
if I is orthogonal to the y-axis (see Figure 16).

Figure 16: A triangle with a right angle can be formed.

So assume ¢ has the same y-coordinate as p,'c"_l. If
we translate the line segment [ such that ¢ coincides
with po and also translate the line segment from pg to
g such that g coincides with p{_, (see Figure 16), then
we obtain a triangle whose sides have length e, d + f
and a + b with a right angle in its right hand corner.
The previous analysis applies and

/—1‘1‘022 d+ f+ce

atb

with ¢ = 1+ /4 as claimed. We have shown the fol-
lowing theorem.

Theorem 2 If P is a street with start point s and
target point g, then there is a strategy for a robot
with access to the local visibility map of its surround-
ings to travel from s to g on a path that is at most

V14 (14 7/4)? times longer than the shortest possi-

ble route.

5 Conclusions

We consider two problems in this paper. First we pro-
vide a lower bound of v/2—0(1/+/n) for the competitive
ratio of any deterministic strategy that a robot may use
to search in a rectilinear street if the coordinates of the
target are given in advance to the robot. This implies
that knowledge of the location of the target does not
provide any advantage even for searching in rectilinear
streets. We further show a similar result for G-streets.

Secondly, we present a new strategy to search in
arbitrarily oriented streets. We show a performance
guarantee of /1 + (1 + x/4)2 (~ 2.05) for our strategy.

Unfortunately, the gap between the upper and lower
bounds for searching in streets is still quite large and
it seems that new ideas are needed to narrow it down.



A Analysis of ¢

To maximize £ we can equivalently find the value of %k
that minimizes ¢/, for ¢ a constant.

2(v2 - 1)(m — k)

¢ = V2[2m 4+ (m—k)(m —k + 1)] 4 2m — 2k
_ V2(v2 - 1)
T o2m/(m—k)+m—k+14++2
g — %—I—m—k—l—l—l—ﬁ
Let
d(m, k) = %—I—m—k—l—l—l-\/i
0 m
FRdmE) = 22— -1
6? m
(ak)zd(m,k) = 47(171—’6)3

With the critical points of d(m, k) at k12 = m+ V2om.
Since k < m we need only to study k; = m — /2m.
Consider d(m,-) as a function of k. We see that the
second derivative is positive for all k¥ < m, and in par-
ticular at k + 1. This implies that d(m, -) is minimized
at kl.

Thus for a fixed m, the best competitive ratio is
attained at k; = m — /2m, namely /2 — ¢ with ¢ =
\/5(\/5 — 1)/(2\/%—1— 1+ \/5) Notice that £ goes to

zero as m goes to infinity.
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