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Several games involving �nding a hidden object using queries have also been studied inthe bioinformatics literature. Xu et al. [21] discuss the problem of locating hidden exonboundaries in cDNA. This leads to a game in which the hidden object is a subset A �f1; : : : ; ng and the queries are of the type \Given an interval I, does it contain an elementof A?". In a certain sense their problem is the dual of ours: they use intervals to locateand identify points; we use points to locate and identify intervals. Beigel et al. [2] discussthe problem of closing gaps in DNA sequencing data. This problem can be formulated as asearch for a hidden perfect matching in a complete graph using queries \Given an inducedsubgraph, does it contain at least one matching edge?" McConnell and Spinrad [16] considerthe tangentially related problem of reconstructing an interval graph given probes about theneighbors of only a partial set of vertices.1.1 TerminologyAn interval graph may have a number of di�erent representations by intervals. In whatfollows, when we say \interval graph," we presume that one representation has been �xed.Without loss of generality, we may assume that in this representation all intervals are closed,have length at least one, and their end points are integers between 1 and 2n, where n is thenumber of intervals.1 We denote the interval of the ith vertex by Ii = [si; fi], where si < fiare integers. An edge (i; j) thus exists if Ii \ Ij 6= ;.The complement G of an interval graph G has a special structure. Assume that (i; j)is not an edge in G, i.e., Ii \ Ij = ;. Then either fi < sj or fj < si, and thus we canorient the edge in G as i! j or j ! i. Thus, G has a natural orientation of the edges, andthis orientation is well-known to be acyclic and transitive. For this and other results aboutinterval graphs, see e.g. [11].We will deal with discovering an initially unknown independent set in G chosen by anadversary, and will refer to this set as the hidden independent set. If V 0 is an independentset in G, then it is a clique in the complement graph G. If G is an interval graph, thenany clique in G has a unique topological order consistent with orientation of its edges. Wecan thus consider V 0 as a (directed) path � in G, and will speak of a hidden (directed) pathinstead of a hidden independent set. We will generally omit the word \directed" as we willnot be talking about any other kind of path.We determine the hidden independent set through probes and queries. A probe is a unitopen interval (a; a + 1) where a is integer. A query is the use of a probe to determineinformation about the hidden independent set. Speci�cally, a query is a statement of theform: \Is there some vertex in the hidden independent set whose interval intersects theprobe?" A query can be answered either \yes" or \no."2Note that no such query can ever distinguish between two identical intervals. For thisreason, we will assume that the input graph has no two identical intervals. On the other1It is well-known that every interval graph can be represented in such a way. Moreover, one can easilyverify that such a modi�cation does not change the set of allowed queries in the graph (see de�nition ofquery below).2Note that since intervals begin and end at integers, probing with a unit interval is equivalent to probingat a non-integral point. Probing with intervals arises naturally in our applications.2
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I1 I2 InI3(b)Figure 1: Di�erent graphs may require di�erent number of queries.hand, intervals are allowed to have the same start point or the same end point.31.2 Our ResultsSuppose we are given an interval graph with a �xed interval representation and want todetermine a hidden independent set X in that graph. We study two versions of the problem:1. Given an independent set Y , use queries to verify whether X is Y . We call this theveri�cation problem and study it in Section 2.2. Use queries to discover X without any other information. We call this the discoveryproblem and study it in Section 3.Our results are summarized as follows. For the veri�cation problem, we give a protocolto determine whether X = Y using the exact optimal number of queries for that speci�cinstance.For the discovery problem, we give a linear-time algorithm for discovering X. Di�erentgraphs may require di�erent number of queries to discover the hidden independent set.For example, both instances in Figure 1 are of the same size, but we can �nd the hiddenindependent set in instance (a) in O(logn) queries, while instance (b) requires 
(n) queries.If at most a constant number of intervals start at a common point, then our protocol iswithin a constant factor of the optimal number of queries for that speci�c graph. That is,our algorithm is instance-optimal in the sense of Fagin et al. [10] and optimally adaptive inthe sense of [7]. If this assumption is not satis�ed, then the number of queries may be largerthan the information-theoretic lower bound; however, we also prove stronger lower boundsto show that the number of queries must be larger in some of these cases.1.3 Application to Gene FindingIn this section, we explain how our game of �nding hidden independent sets in interval graphsrelates to a problem in computational biology.Recent technologies in molecular biology have resulted in genomic sequences of severalorganisms. These sequences need to be annotated, i.e., biological meaning needs to beassigned to particular regions of the sequence. An important step in the annotation process3Every interval graph has a representation by intervals with distinct end points. However, modifying thegraph to such a representation changes the set of allowed queries and hence the problem.3



is the identi�cation of genes, which are the portions of the genome producing the organism'sproteins. A gene is a sequence of disjoint regions|called exons|of the genomic sequence.Exons are cut out and spliced together in the process of protein production.There are a number of automatic tools for gene prediction; however, experimental studies(e.g., [17, 6]) show that the best of them predicts, on average, only about 50% of the entiregenes correctly. It is therefore important to have alternative methods that can produce orverify such predictions by using experimental data. Our approach is based on polymerasechain reaction (PCR) technology and was inspired by open problem 12.94 in [18]. Withoutgoing into further details, we note that PCR technology can be used to perform the followingquery: given two short sequences called primers, does each of them occur in some exon ofthe same gene?Assume we are given a set which contains all the real exons of one gene as well as somefalse exons. Each exon is an interval of the DNA sequence; therefore, the set of candidateexons is a set of intervals in a corresponding interval graph. The gene is a collection ofdisjoint intervals; therefore, it corresponds to the hidden independent set in the intervalgraph of all exon candidates. We can try either to discover this hidden independent set or tocheck whether the prediction of a gene �nding program (another independent set) is correct.Our setup assumes that the candidate exons have been determined using computer toolsfor gene prediction (e.g., [4]). These algorithms have to balance sensitivity (i.e., how manyreal exons they discover) with speci�city (i.e., how many false exons they predict), andusually it is possible to increase sensitivity at the expense of a decrease in speci�city. Inour model, we assume the use of a highly sensitive method that may generate many falseexons but has only a small probability of excluding a real exon. The queries in our gamecorrespond to PCR experiments. However, many aspects of the real experimental domainare abstracted away and would need to be addressed to apply this technique in practice (seee.g., [6]).1.4 Application to 1-dimensional BattleshipThe game of Battleship (also known as Convoy and Sinking-Ships or in a solitaire variant,FathomIt) is a well-known two-person game. Both players have an n�n grid and a �xed setof ships, where each ship is a 1� k rectangle for some k � n. Each player arranges the shipson his/her grid in such a way that no two ships intersect. Then players take turns shootingat each other's ships by calling the coordinates of a grid position. The player that �rst sinksall ships (by hitting all grid positions that contain a ship) wins.There are many variants of Battleship (see e.g., [1]) involving other ship shapes or higherdimensions. In a o�ine variation of the problem, the collection of shots must cover thed-dimensional lattice in order to hit all rectangles with at least a given volume [5, 15].We can rephrase Battleship as a graph problem as follows. De�ne a graph G with onevertex for every possible ship position. Two vertices in the graph are adjacent if and onlyif the corresponding ship positions intersect or touch. The positions that the adversarychooses for his/her ships then correspond to a hidden independent set in graph G. The onlyoperation allowed for discovering a ship is choosing a point of the grid and asking whetherit is covered by a ship, which corresponds to querying a set of vertices in the graph.4



For the standard Battleship game, the graph G is what is known as a boxicity-2 graph,i.e., it is the intersection graph of two-dimensional axis-aligned rectangles (see e.g., [19]). Infact, it is an even more specialized graph since all rectangles are forced to have one unitdimension. We are not aware of any results concerning �nding hidden independent sets evenin this more specialized graph class.Graph G becomes an interval graph if we study a simpli�ed version of Battleship thatoperates in 1-dimensional space. Here the ships are intervals with integral end points, and,as before, no two intersecting ship positions may be taken. The allowed operations are nowexactly our queries: given an open unit interval (a; a+1), does one ship overlap this interval?2 Independent Set Veri�cationIn this section, we will give a polynomial-time algorithm for the veri�cation problem: givenan interval graph G and an independent set Y in G, �nd the minimum number of probesthat can determine whether X = Y , where X is the hidden independent set chosen by theadversary.There are two types of queries: the ones for which the probe intersects some interval inY (we call this a positive probe) and the ones for which it does not (we call this a negativeprobe). For a probe the expected answer is the answer that is consistent with X = Y . Thus,a positive probe has expected answer \yes," while a negative probe has expected answer\no."Consider an algorithm to solve the veri�cation problem. If for some query it does not getthe expected answer, then X 6= Y and the algorithm can terminate. Otherwise the algorithmmust continue until enough queries are asked to determine that X = Y . Thus the worst casefor any optimal veri�cation algorithm is when X = Y (i.e., all answers are as expected).This observation implies that we can rephrase the veri�cation problem as follows: fora given graph G and an independent set Y , produce a set of queries U such that Y is theonly independent set in G consistent with the expected answers to all queries in U . Anyalgorithm that creates queries interactively based on answers to the previous questions canbe transformed to an algorithm solving the rephrased problem without changing the worst-case number of queries (we simply simulate the algorithm by providing the expected answerfor each query and gather all queries produced in this way). We say that a set of queriesU veri�es that X = Y if every independent set Z 6= Y is inconsistent with the expectedanswer of at least one query in U ; we say that this query eliminates Z.In this section we give a polynomial-time algorithm that discovers the minimum set ofqueries needed to verify that Y = X. First we will study a special case in which only querieswith positive probes are allowed. This case is then used as a subroutine for the general case.2.1 Finding a Minimum Set of Positive ProbesWe �rst study the special case where only positive probes are allowed. Note that for someinputs it is impossible to verify Y = X using only positive queries.Sometimes we will consider only intervals inside some region [a; b]. Let G[a; b] denote thesubgraph of G induced by intervals completely contained in the region [a; b]. Similarly, for5
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Figure 2: An interval graph and its corresponding graph H for Y = f[2; 6]; [8; 10]g.any independent set Z, let Z[a; b] denote the subset of Z of intervals completely containedin the region [a; b].The minimum set of positive probes for a graph G will be computed using a directedacyclic graph H de�ned as follows. Graph H contains one vertex for every positive probe.Let amin be the smallest start point and amax be the largest end point of an interval in G.Two additional vertices s and t are added, where s corresponds to probe (amin�1; amin) andt corresponds to probe (amax; amax + 1). Note that these probes are negative for G.Intuitively, H contains a directed edge from one probe to another if no positive probebetween them can distinguish Y from some other independent set. More precisely, for anya < b, graph H contains an edge ea;b from (a; a + 1) to (b; b + 1) if and only if there is anindependent set Za;b in G[a+1; b] that intersects all positive probes (c; c+1) with a < c < band that is di�erent from Y . See Figure 2 for an example of graph H.Graph H has O(n) vertices and O(n2) edges, where n is the number of intervals. Usingdynamic programming, it can be constructed in O(n2) time. We will give an algorithm toconstruct H in Section 2.3. The following two lemmas show the connection between graphH and the optimal set of positive queries.Lemma 1. It is possible to verify that X = Y by a set of positive probes if and only ifvertices s and t are not connected by an edge in H.Proof. Edge es;t exists if and only if there is an independent set Zs;t in graph G that intersectsall positive probes and that is di�erent from Y . But this means that Zs;t and Y cannot bedistinguished by positive probes.Lemma 2. A set of positive probes U veri�es that X = Y if and only if vertices s and tbecome disconnected in graph H after removal of all vertices in U .Proof. On the one hand, suppose that U is a set of positive probes verifying that X = Y .Let � be a path in H from s to t. We will prove that � must contain a vertex from U .De�ne the set of intervals Z� corresponding to path � as the union of the independentsets Za;b over all edges ea;b 2 �. Note that Z� is an independent set because for any edge ea;bin �, the independent set Za;b has intervals with points between a+ 1 and b. Graph H doesnot contain edge es;t; otherwise X = Y could not be veri�ed by Lemma 1. So � containsat least one vertex (u; u+ 1) 6= s; t. Let ea;u and eu;b be the incoming and outgoing edge of(u; u+ 1) in p. Then Za;u is in G[a+ 1; u] and Zu;b is in G[u+ 1; b]. So neither independentset intersects the positive probe (u; u+1). Therefore Z� cannot intersect the positive probe(u; u+ 1), and thus Z� 6= Y .Because Z� 6= Y , there must be a probe (v; v + 1) 2 U inconsistent with Z�. Supposefor contradiction that (v; v+1) =2 �. Thus � \jumps" over this vertex using edge ea;b, where6



a < v < b. However, set Za;b � Z� must then contain an interval intersecting probe (v; v+1),contradicting that Z� is inconsistent with (v; v + 1). Therefore, (v; v + 1) 2 �, which meansthat removing U interrupts all paths from x to t as desired, and � contains a vertex in U .On the other hand, suppose that set U disconnects vertices s and t in H. Let Z 6= Y bean independent set in H. We will prove that Z is inconsistent with at least one probe fromU . Let S = f(s1; s1 + 1); (s2; s2 + 1); : : : ; (sk; sk + 1)g be the set of all positive probes incon-sistent with Z. Without loss of generality let s1 < s2 < � � � < sk; let s0 = s and sk+1 = t.Note that for 0 � i � k, the independent set Z[si+1; si+1] de�nes edge esi;si+1. Thus we canform a path � in graph H from the edges esi;si+1 over all 0 � i � k.Path � connects vertices s and t in H, so in particular � contains at least one vertex(u; u+1) 2 U . By the de�nition of �, we must have (u; u+1) 2 S and thus Z is inconsistentwith probe (u; u+ 1).This vertex-connectivity problem can be solved in O(n8=3) time using network 
ows.Since we want to use this as a subroutine in the general case, we expand the result to anysubgraph G[a; b] of G. On such a subgraph we need to verify that X[a; b] = Y [a; b]. Thefollowing lemma shows the details of the algorithm.De�nition 1. Let A+[a; b] be the smallest number of positive probes needed to verify thatX[a; b] = Y [a; b] in G[a; b], or A+[a; b] =1 if this is not possible.Lemma 3. Value of A+[a; b] can be computed in O(n8=3) time.Proof. Consider a directed acyclic graph H for graph G[a; b] de�ned as in Lemma 2. We willshow how to compute such a graph eÆciently in Section 2.3. First transform the graph Hinto a graph H 0 by replacing each vertex i 2 H n fs; tg by a directed edge (i0; i00). All edgesentering i in H will go to i0 in H 0 and all edges leaving i in H leave from i00. Instead of�nding the smallest set of vertices disconnecting s from t in H (vertex cut), we will searchfor the smallest set of edges disconnecting s from t in H 0 (edge cut). Obviously, any vertexcut in H is an edge cut in H 0. On the other hand, if an edge cut in H 0 contains some edge(i00; j 0), we can instead cut either (i0; i00) or (j 0; j 00) (at least one of i; j is neither s nor t).Therefore we can obtain a minimum edge cut with only edges of the type (i0; i00), and theseclearly correspond to a vertex cut in H. The minimum edge cut separating s from t can befound using a unit-capacity maximum-
ow algorithm for directed graphs, in O(n8=3) time[12, 9].2.2 Finding a Minimum Set of Probes in General CaseThe general case, in which both positive and negative probes are allowed, is solved by adynamic programming algorithm that has the result of Lemma 3 as a base case.De�nition 2. Let A[a] be the smallest number of queries needed to verify that X[1; a] =Y [1; a] in the interval graph G[1; a]. 7



Lemma 4.A[a] = min8>><>>: A+[1; a];minbA[b]+A+[b + 1; a]+1; where (b; b+1) is a neg-ative probe intersecting[1; a]Proof. If the optimal solution of subproblem A[a] contains only positive queries, then A[a] =A+[1; a]. Otherwise let (b; b + 1) be the rightmost negative probe in it. All probes to theright of b are positive and they comprise a solution of A+[b + 1; a]. Probes to the left of bcomprise a solution of A[b]. Therefore in this case we have A[a] = A[b]+A+[b+1; a]+1.2.3 Algorithm DetailsLemma 4 gives a recursive formula for computing A[1; a] using the values A+[a; b]. Thesevalues can be computed using the result of Lemma 3, but a method is still needed for �ndingthe edges of H. First we de�ne an auxiliary table Ea;b and show how to compute its values.Then we show how to use this table to obtain the edges of H[a; b] corresponding to G[a; b].De�nition 3. Let Ea;b be the number of independent sets in graph G[a+ 1; b] that intersectevery positive probe (c; c+ 1) inside [a+ 1; b] (i.e. a < c < b).Lemma 5. The values of Ea;b can be computed in O(n2) time for all a � b.Proof. Let Sa;b be the set of all intervals [c; b] in graph G[a + 1; b] such that (c � 1; c) is anegative probe or it is equal to (a; a + 1). The values Ea;b can then be computed using thefollowing recursive formula.Ea;b = 8>>>><>>>>: 1 if a = b or a + 1 = bX[c;b]2Sa;bEa;c�1 if a+ 1 < b, (b� 1; b) positiveEa;b�1 + X[c;b]2Sa;bEa;c�1 if a+ 1 < b, (b� 1; b) negativeThe base case happens if a = b or a + 1 = b. Then the only independent set satisfyingthe criteria is the empty one. Let us assume now that a+1 < b. There are two cases. If theprobe (b � 1; b) is positive, then it must intersect an interval in the independent set. Thisinterval must end in b. Thus we go through all such intervals and sum up the possibilities.However, if the interval [c; b] is in an independent set, then this set does not intersect (c�1; c).Therefore [c; b] can be used only if (c� 1; c) is a negative probe or it is equal to (a; a+1). Ifthe probe (b�1; b) is negative, all the possibilities from the case with positive probe (b�1; b)are valid, but we also need to add independent sets that do not intersect (b � 1; b). Theseare stored in Ea;b�1.Let Sb be the set of intervals ending in b. The time needed to compute Ea;b is O(1) +O(jSbj) (because Sa;b � Sb). Therefore total time to compute all Ea;b is O(n2) + nPb jSbj.However, every interval can be only in one set Sb, therefore Pb jSbj = n, and total time isO(n2). 8



Lemma 6. Let H[a; b] be the directed acyclic graph from Lemma 2 corresponding to thegraph G[a; b] and a given path Y [a; b]. Then the edges of H[a; b] can be computed in O(n2)time.Proof. For any two positive probes (u; u + 1) and (v; v + 1) inside [a + 1; b], we know byde�nition that eu;v 2 H[a; b] if and only if Eu;v > 0. The only issue is that the existenceof edge ea;b requires that the independent set Za;b is di�erent from Y [a; b], but that is truebecause it does not intersect positive probes (u; u+ 1) and (v; v + 1).We also need to consider edges incident to s and t. Vertex s corresponds to probe(a�1; a). Notice that the value Ea�1;b is in
uenced only by the intervals of G that are insideG[a; b]. Therefore, there is an edge from s to a positive probe (u; u + 1) inside [a + 1; b] ifand only if Ea�1;u > 0. Similarly, vertex t corresponds to probe (b; b + 1) and there is anedge from (u; u+ 1) to t if and only if Eu;b > 0.Edge es;t is di�erent, because s and t are both negative probes in G[a; b] and thus Y [a; b]is included in the count Ea�1;b. Therefore es;t 2 H[a; b] if and only if Ea�1;b > 1.Because graph H has O(n) vertices and for each two vertices their adjacency can beobtained by a simple lookup in O(1) time, we have the required bound.The overall computation can be organized as follows. First, table Ea;b is computed inO(n2) time (Lemma 5). Then we run the dynamic program according to Lemma 4. Each timea value A+[a; b] is required, we construct graph H[a; b] in O(n2) time according to Lemma6. If edge es;t does not exist, we compute the smallest number of vertices separating s andt according to Lemma 3. This number is equal to A+[a; b]. If edge es;t exists, A+[a; b] =1.Notice that each A+[a; b] is used at most once, so it is unnecessary to store them. The overalltime is dominated by the computation of A+[a; b] for all a < b. Thus the overall time isO(n4 + n2T ) where T is the time to �nd the smallest (s; t)-cut in a network (T 2 O(n8=3),see Lemma 3). This yields the following result:Theorem 1. Given an n-vertex interval graph G and an independent set Y in G, we can �ndin O(n14=3) time the minimum set of queries that veri�es whether Y is the hidden independentset chosen by an adversary.3 Independent Set DiscoveryIn this section, we study the discovery problem. In it, we are given an interval graph G, andwe want to �nd some hidden independent set X with queries of the form (a; a+ 1). We willgive an interactive protocol to �nd X, i.e., the next query depends on the outcome of theprevious query. The protocol uses an asymptotially optimal number of queries if at mostconstant number of intervals start at a common point.A simple information-theoretic argument yields the following lower bound, which holdsfor any graph and any type of query.Theorem 2. Assume that G is a graph that contains p independent sets. Regardless of thetypes of yes/no queries allowed, we need at least dlog2 pe queries to �nd a hidden independentset X in the worst case. 9



I1 In+1I2 In+2In I2nFigure 3: The staircase needs n� 1 queries.Proof. We use a decision tree argument. Build a decision tree with the posed queries at eachinterior node, and the resulting independent set at the leaves. Each query yields a yes/noanswer, so each interior node has at most two children. Since the decision tree has at leastp leaves, it must have a leaf of depth at least dlog2 pe. Since X is hidden, the adversary canchoose exactly the independent set at this leaf for X, resulting in dlog2 pe queries to �ndX. We do not always get a tight bound, even for an interval graph. Consider the so-calledstaircase depicted on Figure 3. It consists of 2n intervals, with interval Ii = [0; 2i � 1]for i = 1; : : : ; n and Ii = [2(i � n); 2n + 1] for i = n + 1; : : : ; 2n. In this case we haven(n+ 1)=2 + 2n+ 1 independent sets, which gives a lower bound of 2 log2 n+O(1) queries.A stronger lower bound can be shown as follows.Theorem 3. The staircase with 2n intervals requires n� 1 queries in the worst case.Proof. The adversary decides that the hidden independent set X will be fIj; In+jg for somej, i.e., one of the n pairs of intervals with the same y-coordinate in Figure 3.Assume that the algorithm uses only k � n�2 queries and the adversary answers each ofthese queries \yes". So let (a; a+ 1) be an arbitrary probe for a query, where 0 � a � 2n isan integer. If a is even, probe (a; a+1) intersects all independent sets of the form fIj; In+jg.If a is odd, say a = 2i� 1, then it intersects all such independent sets except fIi; In+ig.Since the algorithm used k � n � 2 queries and with each query there was at most onepair fIj; In+jg not intersecting the query, there are at least two such pairs that intersect allqueries. Each of them can be a correct answer.The lower bound from Theorem 2 can be matched (asymptotically) under some assump-tions. To show this, we will give a protocol that discovers a hidden independent set inO(log p) queries, where p is the number of independent sets, under the assumption that atmost a constant number of intervals start at the same point. This is not a contradiction toTheorem 3, because in the staircase example, many intervals start at the same point. Forthis protocol, we will adopt the point of view of the complement graph, and search for ahidden path.3.1 Overview of the AlgorithmThe algorithm to detect the hidden path is recursive. The crucial idea is that with a constantnumber of queries we eliminate at least a constant fraction of the remaining paths. Therefore,after O(log p) queries, we know the correct path.10



For ease of notation, assume that the intervals I1; : : : ; In are sorted by increasing startpoint, breaking ties arbitrarily. Let Ii be the interval that ends �rst, i.e., fi � fj for allj = 1; : : : ; n, breaking ties arbitrarily. Our �rst query will happen at or near interval Ii, andthus a�ect all those intervals that intersect Ii. We call these intervals the clique intervals;more precisely, the clique intervals are the intervals I1; : : : ; Ik with k such that sk � fi andsk+1 > fi. Note that all clique intervals intersect point fi; hence, as the name suggests, theyform a clique in G, and at most one of them is in any path.Our algorithm operates under two di�erent scenarios. Let a legal path be a path inthe graph that could be the solution even under the following added restrictions. In theunrestricted scenario, any path is a legal path; this is the scenario at the beginning of thealgorithm. In the restricted scenario, only a path that intersects (fi�1; fi) is legal (we willhave obtained this information through previous queries). Any legal path thus uses a cliqueinterval that starts strictly before fi, and we can eliminate all clique intervals that start atfi.3.2 E�ects of QueriesThe algorithm uses only one kind of query: we always query at (a; a + 1) for some a � fi.Only clique intervals can intersect the probe (though not all of them necessarily do).After each query we eliminate all legal paths that are not consistent with the answer tothe query. More precisely, if the answer to a query at (a; a + 1) is \no", then we eliminateall clique intervals that intersect (a; a+1). If the original scenario was unrestricted, then allremaining paths are consistent with this query and we can solve the problem recursively inthe unrestricted scenario.If the original scenario was restricted, we already know that one of the clique intervalsI1; : : : ; Ik is in the hidden path X. Eliminating some clique intervals may increase the valueof fi and therefore add some more intervals to the clique intervals. None of these new cliqueintervals can be in X, and thus they can also be eliminated. Then we solve the restrictedscenario on the new graph.Assume now that the answer to a query with some probe (a; a + 1) is \yes". Since Xcontains at most one clique interval, all clique intervals not intersecting (a; a + 1) can beeliminated. One of the remaining clique intervals will be part of the solution, so the nextscenario will be restricted. We also can eliminate all intervals that become clique intervalsdue to an increase in fi.If in the new situation we are now in the restricted scenario with only one clique intervalI1, then I1 belongs to X. Therefore, interval I1 can be eliminated from the graph and wesolve the unrestricted scenario on the resulting graph recursively. Afterwards we add I1 toget the hidden path X.3.3 Some De�nitions and ObservationsBefore specifying how we actually choose the queries, we need some de�nitions and usefulobservations. Fix one point of time when we want to �nd the next query.11



Let Plegal be the set of all legal paths. Since every legal path contains at most one cliqueinterval, we can partition Plegal as Plegal = P1 [ � � � [ Pk [ Prest , where Pj is the set of legalpaths that use clique interval Ij, and Prest denotes the legal paths that do not use a cliqueinterval. (Prest is empty in the restricted scenario.) De�ne p� = jP�j for all subscripts �.Claim 1. In the unrestricted scenario, pi = prest .Proof. For every path � in Pi, we can obtain a path �0 by deleting the �rst interval (whichis Ii) in �. Note that any path contains at most one clique interval, and Prest includes theempty path, so �0 is a path in Prest and pi � prest .For the other direction, let � be a path in Prest . Since � does not contain a clique interval,none of its intervals intersects Ii (by de�nition of a clique interval). Hence we can obtain apath �0 in Pi by adding Ii to �, and prest � pi.Claim 2. prest � 12plegal .Proof. This holds trivially in the restricted scenario by prest = 0. In the unrestricted scenario,we have one path in Pi for every path in Prest by Claim 1, hence Prest contains at most halfof all paths.Claim 3. If Ij1 and Ij2 are clique intervals with fj1 � fj2 then pj1 � pj2 .Proof. For any path � 2 Pj2, we can obtain a path �0 2 Pj1 by removing the �rst element of� and inserting Ij1 instead. This is a legal path because the �rst element of � must be Ij2(since Ij2 is a clique interval), and Ij1 ends not after Ij2.Now we can also re�ne the analysis of the e�ects of some queries.Lemma 7. If we query at (sj; sj + 1) for some j with sj < fi, then we can eliminate eitherp1 + � � � + pj0 paths or pj0+1 + � � � + pk + prest paths, where j 0 � j is the largest index withsj0 = sj.Proof. If the answer to the query is \no", then we can eliminate all clique intervals thatintersect (sj; sj + 1); since sj < fi these are the intervals I1; : : : ; Ij0 and we eliminate p1 +� � �+ pj0 paths.If the answer to the query is \yes", then the solution contains an interval that intersects(sj; sj+1); since sj < fi this must be a clique interval and all paths in Prest can be eliminated.Furthermore, the clique intervals Ij0+1; : : : ; Ik do not intersect (sj; sj + 1) (by choice of j 0)and can be eliminated as well.3.4 Choosing QueriesIn light of Lemma 7 we will try to �nd a j such that both sets of possibly eliminated pathscontain a constant fraction of the paths. To �nd such a j, de�ne 1 � ` � k to be the indexsuch that p1 + � � �+ p`�1 < 12plegal and p1 + � � �+ p`�1 + p` � 12plegal ; (1)this is well-de�ned because p1 + � � � + pk � 12plegal by Claim 2. De�ne `� and `+ to be thesmallest/largest index such that s`� = s` = s`+, thus `� � ` � `+. We distinguish cases:12



I1I2I3 I4I5I6 I7I8 fiFigure 4: A query at (s5; s5 + 1) eliminates p1 + : : : + p6 paths (if the answer is \no") orp7 + p8 + prest paths (if the answer is \yes").C1: p1 + � � �+ p`��1 � 14plegal and p`� + � � �+ pk + prest � 14plegal :In this case, query at the beginning of I`��1, i.e., at (s`��1; s`��1+1). By de�nition of`�, intervals I`��1 and I`� have distinct starting points, so by Lemma 7 this eliminatesat least 14plegal paths.C2: p1 + � � �+ p`+ � 14plegal and p`++1 + � � �+ pk + prest � 14plegal :In this case, query at (s`+; s`+ + 1). By Lemma 7 this eliminates at least 14plegal paths.C3: All remaining cases.In this case, we query with probe (fi; fi + 1). Note that this query is not covered byLemma 7, and we will analyze its e�ects separately.In case (C1) and (C2) we eliminate at least a constant fraction of the legal paths, andhence the number of such queries is at most O(log p). The analysis is more intricate in case(C3). We need a few observations.Lemma 8. If cases (C1) and (C2) do not hold, then p`� + � � �+ p`+ > 12plegal .Proof. By de�nition of `, we have p` + : : :+ pk + prest = plegal � (p1 + : : : + p`�1) > 12plegal,and by `� � ` therefore p`� + : : :+ pk + prest > 12plegal. So if (C1) does not hold, thenp1 + : : :+ p`��1 < 14plegal:Also by de�nition of `, we have p1+ : : :+p` � 12plegal, and by ` � `+ therefore p1+ : : :+p`+ �12plegal. So if (C2) does not hold, thenp`++1 + : : :+ pk + prest < 14plegal:There are thus more than 12plegal paths left that are not covered in either equation, and thesemust belong to P`�; : : : ; P`+.Denote by � the maximum number of intervals that have a common start point (i.e.,l+ � l� + 1 � �). 13



Lemma 9. A positive answer to a query in case (C3) eliminates at least pi � 12�plegal paths.Proof. Since we obtain a positive answer at a query (fi; fi + 1), none of the clique intervalsthat end at fi can be in the hidden path. So we can eliminate these intervals, and inparticular eliminate interval Ii and pi paths.By Claim 3 we have pi � p`�; : : : ; p`+. By Lemma 8 furthermore p`� + � � �+ p`+ > 12plegal .The intervals I`�; : : : ; I`+ all start at s`, therefore there are at most � of them, andpi � maxfp`�; : : : ; p`+g � 1� (p`� + � � �+ p`+) � 1� 12plegal. Now we turn to the case when the query in (C3) yields a negative answer. This is theonly case where possibly less than a constant fraction of paths is eliminated, but we accountfor this query in a di�erent way. We need an observation:Lemma 10. In case (C3) at least one clique interval intersects (fi; fi + 1).Proof. Assume that no clique interval intersects (fi; fi + 1), thus all clique intervals end atfi by de�nition of i. Therefore all clique intervals have distinct starting points (recall thatall intervals are distinct), and `� = ` = `+. By Lemma 8 therefore p` > 12plegal.Note that ` = i, because otherwise by pi � p` (Claim 3) and p` > 12plegal we wouldhave pi + p` > plegal, which is impossible. Furthermore, no interval other than Ii ends at fi,because otherwise both would be contained in equally many paths (Claim 3), contradictingpi > 12plegal. So there is only one clique interval, Ii. Finally, note that pi > 12plegal impliesthat we are in the restricted scenario by Claim 1.So we have only one clique interval Ii and we are in the restricted scenario, which meansthat necessarily Ii belongs to X. Since we detect this beforehand (see Section 3.2), we wouldnot have tried to �nd a query in this case.Now we are ready to analyze the situation for a negative answer in case (C3).Lemma 11. During all recursive calls, we have at most log2 p times a negative answer incase (C3), where p is the number of paths in the original graph.Proof. Let s be the number of such queries. We will show that the original graph containsan independent set of size s. Since every subset of it is also an independent set, we havep � 2s, which yields the result.Note �rst that we never do the same query with a negative answer twice in case (C3),for once we have obtained a negative answer at (fi; fi + 1), we eliminate all intervals thatintersect the probe. Hence by Lemma 10, we will not return to case (C3) until the value offi has changed. Thus for each negative answer in case (C3), we have a di�erent value of fi.Let fi1 < � � � < fis be these values, and for 1 � j � s let Iij be a clique interval that ends atfij and was not eliminated when we queried at (fij ; fij + 1).We claim that Ii1 ; : : : ; Iis is an independent set. For if two of them intersected, then theywould have di�erent end points since the fij 's are distinct, and the query at the earlier-endinginterval would eliminate the later-ending interval. Thus, we indeed have an independent setof size s, as desired. 14



Now we are ready to state the main result.Lemma 12. Assume we are given a set of n intervals that de�ne p paths, and at most� intervals start at the same point. Then any hidden path X can be found with at mostlog2 p+maxflog�=(�� 12 ) p; log4=3 pg queries.Proof. Compute the queries as described above until we have found the hidden path, saywith m queries. Some number s of these queries give a negative answer in case (C3); weknow that s � log2 p. The remaining m� s queries each eliminate at least 14plegal or 12�plegalpaths at that time. Since we are done when only one path is left, we have m� s � log4=3 p(for � � 2) or m� s � log�=(�� 12 ) p (for � > 2).Note that for � � 2, the number of queries is at most log2 p + log4=3 p � 3:41 log2 p, thuswe are within a factor of 3.41 of the minimum number of queries. As long as � is a constant,we use O(log2 p) queries, which is asymptotically optimal. Assuming that � is constant isquite realistic for 1D-battleships where typically there is only a limited number of types ofships.3.5 Time ComplexityWe now show how to implement the above algorithm such that �nding all queries takesO(n+m) time, where m is the number of edges in the complement of the interval graph. 4For easier maintenance, we group the intervals into bundles. Here, a bundle is a maximalset of intervals that all have the same start point, or a maximal set of intervals that all havethe same end point. Each interval hence belongs to two bundles.We maintain the following data structures:� We store a list S of bundles of intervals with the same start point, and a list E ofbundles of intervals with the same end point. Recall that all start and end points ofintervals are integers between 1 and 2n; we can therefore initialize S and E with twobucket sorts in O(n) time.� Within each bundle, the intervals are sorted by increasing value of the end point that isnot equal. Each interval stores cross-references the bundles that contain it and whereit is stored in these bundles, so that it can be deleted from the structures in constanttime. Each interval Ij also stores p0j which is the number of paths that start at Ij. Notethat pj = p0j if Ij is a clique interval. This can be computed initially for all intervalswith a reverse topological order in O(m+ n) time, since p0j = 1 +PIj!Ik p0k.� We store the current scenario in a 
ag.� We store the current total number of paths p, and the current number p0rest of pathsthat do not use a clique interval. Then p is simply the sum of all p0j; p0rest is initializedto p and will be updated later. We can compute plebal and prest from p, p0rest and thescenario-
ag in constant time.4The time complexity is O(n+m) under the assumption that large numbers can be handled in O(1) time.If we take the time for adding such numbers into account, the time complexity increases to O((m+n) log p),where p is the number of paths in the complement graph. Note that p may be exponential in n.15



� Each bundle B stores a list of its intervals and also the number of paths p(B) thatstart at an interval in this bundle. This can be computed initially in O(n) total timeby summing the p0j over all intervals in the bundle.� We store the clique intervals implicitly, by maintaining a reference to the �rst bundleB� in S that does not contain clique intervals. We initialize B� to be the �rst bundlein S and will update it during the algorithm.All lists in our data structure are doubly-linked list for easier deletion. Now each roundof the algorithm proceeds as follows:� Find the �rst bundle in E . The �rst interval in this bundle is Ii, and its end point isfi.� For as long as the start point s of intervals in B� satis�ed s � fi, advance B� to bethe next bundle in S. With every advancement of B�, subtract p(B�) from prest , sincethese paths now start in clique intervals. If we are in the restricted scenario, all newlyadded clique intervals can be eliminated as discussed in Section 3.2.The time required to do this is propotional to the number of bundles that we haveadvanced. We will study below what needs to be done to eliminate an interval.� If there is only one clique interval Ii, and if we are in the restricted scenario, then addIi to X, eliminate Ii, and move to the unrestricted scenario. This ends the round.� Otherwise, �nd the second bundle in E . If the start point sj of the �rst interval in thisinterval satis�es sj > fi, then all clique intervals end at fi.� Check whether pi > 12�plegal . If this is true, and if not all clique intervals end at fi,then the next query is (fi; fi + 1). This is case (C3).5� If pi < 12�plegal or if all clique intervals end at fi, then we are in case (C1) or (C2) (byLemma 9 and Lemma 10). Thus, we now must search for `, and do this as follows:For � = 1; 2; 3; : : :{ Compute the number n1 of paths starting in an interval in the �rst � bundles ofS. (Thus, n1 = p1 + � � �+ pj1 for some j1.){ Compute the number n2 of paths starting in an interval in the � bundles beforeB� in S. (Thus, n2 = pj2 + � � �+ pk for some j2.){ Compute n3 = plegal � n2, thus n3 = p1 + � � �+ pj2�1 + prest .{ Stop as soon as n1 � 12plegal or n3 < 12plegal . The last bundle that has been addedis the bundle containing I`�; : : : ; I`+.5Note that occasionally we will apply case (C3) even if case (C1) or (C2) was possible; this is necessarybecause we cannot test whether (C1) or (C2) applies in constant time.
16



Note that we can compute the value of n1; n2; n3 by adding to the values of the pre-vious round. Since we search for ` in parallel from both ends, starting at the bundlescontaining I1 and Ik, this search takes at most O(1 + minf`�; k � `+g) time.� Compute p1 + � � � + p`� and p`++1 + � � � + pk, determine whether case (C1) or (C2)applies, and �nd the appropriate query. These values can be computed in O(1) fromn1 or n3 computed in the previous step, by adding/subtracting the number of paths inthe bundle containing I`�; : : : ; I`+.Once we have done the query, the data structures must be updated. The crucial obser-vation for doing so is that pj (the number of paths starting at interval Ij) does not change,since we always delete clique intervals. Also, fi and Ik are updated dynamically during thealgorithm. All that remains to do is to eliminate an interval Ij. To do so, we �rst decreasep by pj. Then we remove all references to Ij in the bundles that contain it. If the bundle isnow empty we delete it as well. This takes constant time per deleted interval.Finding the next query to perform thus takes constant time per query, with two excep-tions: advancing Ik takes time proportional to the number of steps that are advanced, and�nding the bundle containing I` takes time proportional to the number of bundles that hadto be searched. However, both these operations are constant amortized time. To see this,note that once an interval is a clique interval, it stays a clique interval until it is eliminated,because being a clique interval only depends on the location of the �rst end point fi, andfi increases throughout the algorithm. Hence, B� advanced only once per bundle, or O(n)time total.As for the time to �nd the bundle containing `, this is proportional to the minimum of` or k � `. However, if we do this search, then we end in case (C1) or (C2) and eliminateat least minf`; k � `g � 1 intervals. Thus, the time spent on �nding ` is proportional to thenumber of eliminated intervals, hence the overall time for this is also O(n).We conclude:Theorem 4. Given an n-vertex interval graph G with m edges in its complement, we can�nd the hidden independent set in G using q queries, where q is asymptotically optimal if atmost a constant number of intervals start in any one point. The overall computation timeand space is O(n+m).4 Conclusions and Future WorkIn this paper we studied a problem motivated by applications in bioinformatics and gameplaying: given an interval graph, how can we �nd an independent set chosen by an adversarywith as few queries as possible? We gave polynomial-time algorithms both for verifyingwhether some independent set is the one chosen by the adversary, and for discovering whatset the adversary has chosen. The algorithm for veri�cation gives the optimal number ofqueries for all instances. The algorithm for independent set discovery gives a number ofqueries that is optimal to within constant factor, provided that no more than a constantnumber of intervals start at the same point. This algorithm is optimal in the adaptive senseas well as in the worst case sense. We also proved a stronger lower bound than the one17



implied by a simple information theory argument. Several related questions deserve furtherstudy:� The main open problem is whether our adaptive algorithm can extend to instancesin which many intervals may start at a common point, and still achieve a number ofqueries that is within a constant factor of optimal. The staircase example (Figure3) requires 
(pp), showing that the information-theoretic lower bound of �(log p)becomes unachievable in this setting. Is this the worst example, i.e., can all instancesbe solved using O(pp) queries? A positive answer to this question would not completethe adaptive algorithm, which must be within a constant factor of optimal for everyinstance.� One of the problems that motivated this work is gene �nding using PCR techniques.Here we need to consider that obtaining probing material is often done via an externalprovider, and the turnaround time between each request might dominate the totaltime. We might thus consider performing several probes in parallel rounds. What isthe minimum number of queries required if the entire computation must be done in agiven number of rounds?6� In the application to gene �nding, we might also be able to eliminate certain edges of Gusing biological background information. Can we adapt our algorithm to take advan-tage of this, i.e., use an optimal number of queries subject to knowing this information?(Note that G is now no longer necessarily an interval graph.)� The conventional 2-dimensional Battleship game is a natural candidate for furtherstudy. Can the algorithms be extended to boxicity-2 graphs? What about intersectiongraphs of other shapes, such as ships on a diagonal or the tetromino shapes of Tetrisfame? Also, the number of ships and their shapes are known a priori in the board game,and not every independent set can be a placement of ships. Can this information beused to our advantage? Finally, in some variants, \yes" queries are rewarded by beingallowed to �re again. What are good strategies in this scenario?� From both applications, and out of general interest, the problem on arbitrary graphsalso deserves study. More precisely, assume that we are given a graph G = (V;E). Thequeries are of the form \Given a clique K in G, is X \K 6= ;?" Under what type ofconditions can we successfully identify an independent set using clique queries? Canwe generalized the queries to subsets of vertices other than cliques?Acknowledgements. We thank Dan Brown and the participants at the Bioinformaticsproblem sessions at the University of Waterloo for many useful comments on this problem.All authors were partially supported by NSERC.6This is similar to network sorting of a set of numbers. In this problem, given an integer n the goal is toproduce a predetermined sequence of comparison/exchanges, called a sorting network, such that the sequenceof comparison/exchanges sorts any given set of n numbers. The quality of the sorting network is measuredby both the number of comparators (probes) and the depth (rounds) of the network of comparators (see e.g.[14]). 18
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