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aAbstra
t. We 
onsider a router on the Internet analyzing the statisti
alproperties of a TCP/IP pa
ket stream. A fundamental diÆ
ulty withmeasuring traÆ
 behavior on the Internet is that there is simply toomu
h data to be re
orded for later analysis, on the order of gigabytesa se
ond. As a result, network routers 
an 
olle
t only relatively fewstatisti
s about the data. The 
entral problem addressed here is to use thelimited memory of routers to determine essential features of the networktraÆ
 stream. A parti
ularly diÆ
ult and representative subproblem isto determine the top k 
ategories to whi
h the most pa
kets belong, fora desired value of k and for a given notion of 
ategorization su
h as thedestination IP address.We present an algorithm that deterministi
ally �nds (in parti
ular)all 
ategories having a frequen
y above 1=(m + 1) using m 
ounters,whi
h we prove is best possible in the worst 
ase. We also present asampling-based algorithm for the 
ase that pa
ket 
ategories follow anarbitrary distribution, but their order over time is permuted uniformlyat random. Under this model, our algorithm identi�es 
ows above afrequen
y threshold of roughly 1=pnm with high probability, where mis the number of 
ounters and n is the number of pa
kets observed. Thisguarantee is not far o� from the ideal of identifying all 
ows (probability1=n), and we prove that it is best possible up to a logarithmi
 fa
tor. Weshow that the algorithm ranks the identi�ed 
ows a

ording to frequen
ywithin any desired 
onstant fa
tor of a

ura
y.1 Introdu
tionProblem. The goal of this resear
h is to develop algorithms that extra
t essential
hara
teristi
s of network traÆ
 streams passing through routers, spe
i�
ally es-timates of the heaviest users and most popular sites, subje
t to a limited amountof memory about previously seen pa
kets. Su
h 
hara
teristi
s are essential fordesigning a

urate models and developing a general understanding of Internet? This resear
h is partially supported by the Natural S
ien
e and Engineering Resear
hCoun
il of Canada, by the Canada Resear
h Chairs Program, and by the NipponTelegraph and Telephone Corporation through the NTT-MIT resear
h 
ollaboration.



traÆ
 patterns, whi
h are important for su
h appli
ations as eÆ
ient networkrouting, 
a
hing, prefet
hing, information delivery, and network upgrades. Inaddition, information of the load distribution has dire
t appli
ations to billingusers.As the network stream passes by, we have only a few nanose
onds to rea
t toea
h pa
ket. This time permits, at best, indexing into one of a small number ofregisters and storing a new value or in
rementing or de
rementing a few 
ounters.Memory is limited primarily be
ause it must be on the 
hip that is handling ourpro
essing, in order to keep up.Ideally, we would like to determine the heaviest k users, for a desired value ofk, over some time period. However, be
ause some users may have nearly equalload, answering this question exa
tly is impossible using little spa
e. Rather,one problem we 
onsider is to determine all users above a given load thresholdduring some time period. A se
ond 
ase of interest is the weaker requirement ofidentifying a short list of elements guaranteed to in
lude all of these heavy users.Of 
ourse, we would like to be able to solve these problems in the worst 
ase forall possible input sequen
es, but failing that, we may settle for a probabilisti
method provided it is robust (a

urate with high probability).Appli
ation. In pra
ti
e, this frequen
y estimation information is used both forbilling purposes and for traÆ
 engineering de
isions. In our parti
ular 
ase, thisresear
h is motivated by the need to determine the largest pa
ket 
ows whi
hmost heavily in
uen
e the 
hara
teristi
s of a router. The routers in questionserve large 
apa
ity 
onne
tions on ba
kbones a
ross the 
ontinental UnitedStates. In network-administration parlan
e, we need to determine the 
ows that\shape" the pipe. The information 
olle
ted in this s
enario is important forshort- and long-term traÆ
 engineering and routing de
isions on the pipe.In this appli
ation, we augment the router by adding a monitoring systemto the router box that 
olle
ts aggregate statisti
s on the traÆ
. This systemmonitors the pa
ket stream as it passes by, and must 
olle
t statisti
al data inreal time. Given the 
urrent bandwidth 
apa
ities at the network 
ore, the pro-
essing time must be on the order of nanose
onds for ea
h pa
ket. This imposesparti
ular restri
tions in the nature and amount of operations that 
an be per-formed per pa
ket, usually limited to manipulating a small number of registers.Often we 
an assume the existen
e of a hardware-based hash-table (asso
iativememory). This table implements a hardware lookup operation using only a few
lo
k 
y
les. It returns an index asso
iated with the entry if present or an error
ag otherwise.As an example, routers from one of the largest vendors (Cis
o) 
olle
t perfe
tstatisti
s on low-bandwidth 
onne
tions but rely on sampling for higher speeds.The following ex
erpt from the Cis
o NetFlow manual [5℄ illustrates this:Forwarding rates on a Gigabit Swit
h Router. . . an order of magnitudegreater than traditional platforms that support NetFlow. \Tou
hing" everyswit
hed pa
ket for NetFlow a

ounting be
omes a 
hallenge at these highswit
hing rates. However, 
olle
ting 
hara
teristi
 statisti
s on IP traÆ
 beingforwarded. . . is still a ne
essary tool for managing and planning a network.



In order to s
ale to higher forwarding rates, NetFlow will now allow theuser to sample one out of every \x" IP pa
kets being forwarded. . .This featurewill substantially de
rease the CPU utilization needed to a

ount for NetFlowpa
kets.However, this sampling method is often unsatisfa
tory given the nature ofInternet traÆ
 [9,23℄. Moreover, in many 
ases, a small per
entage of the pa
ket
ategories a

ount for a large per
entage of the traÆ
. In general, be
ause of thenature and 
hara
teristi
s of Internet traÆ
 and intended routing appli
ation,we require 
ounting me
hanisms that examine the vast majority of pa
kets using
ontiguous sampling of pa
ket bursts.Our results. We 
onsider a general model in whi
h pa
kets have been 
lassi�edinto 
ategories. Examples of interesting 
ategorizations in
lude the IP addressand/or port of the pa
ket's sour
e and/or destination. We illustrate under avariety of weak models of 
omputation, storage, and network distributions that
arefully arranged 
ounting of repetitions of pa
kets' 
ategories 
an lead to a

u-rate estimates of the most 
ommon pa
ket 
ategories above a 
ertain threshold.To give some intuition, a representative example of how 
ounters 
an be usedis the following: when a pa
ket streams by, the pro
ess 
an 
he
k whether its
ategory mat
hes any of the 
urrently monitored 
ategories, and if so, in
rementthat 
ounter. The idea is that the 
ategory with the highest 
ounter is likely tobe the most popular 
ategory.The primary diÆ
ulty in 
ounting with very few 
ounters is to know whi
h
ategories to monitor. If we never reset the 
ounters and start 
ounting newlydis
overed 
ategories, we may never noti
e the most popular 
ategory, thus never
ounting them and dis
overing their popularity. On the other hand, if we reset
ounters too frequently, we will not gain enough statisti
s to be sure whi
h
ounter is signi�
antly higher than the others.We resolve this trade-o� with the followingmat
hing upper and lower boundsfor monitoring a stream of unknown length using m 
ounters:1. In the worst-
ase omnis
ient-adversary model [Se
tion 3℄:(a) All 
ategories that o

ur more than 1=(m+1) of the time 
an (in parti
u-lar) be deterministi
ally reported after a single pass through the stream.However, it is unknown whi
h reported 
ategories have this frequen
y.(b) This result is best possible: if the most 
ommon 
ategory has frequen
yof less than 1=(m + 1), then the algorithm 
an be for
ed to report onlyuniquely o

urring elements.2. In the sto
hasti
 model [Se
tion 4℄:(a) All 
ategories that o

ur with relative frequen
y > (
 lnn)=pmn for a
onstant 
 > 0 
an be reported after a single pass through the stream.(b) The algorithm estimates the frequen
ies of the reported 
ategories towithin a desired error fa
tor " > 0 (in
uen
ing 
).(
) The results hold with (polynomially) high probability, meaning that theprobability of failure is at most 1=ni for a desired 
onstant i (also in
u-en
ing 
).



(d) This result is best possible up to 
onstant fa
tors: if the maximum fre-quen
y is below f=pnm, then the algorithm 
an be for
ed to report onlyuniquely o

urring elements with probability at least (e�1+1=e)f .3. Both of these one-pass algorithms 
an be implemented in a small 
onstantamount of worst-
ase time per pa
ket.Related work. Some variants of this problem have been previously 
onsidered inthe 
ontext of one pass analysis of database streams [1,10, 20℄, query streamsto a sear
h engine [3℄, and pa
ket data streams [7, 9, 19, 21℄. Morris [24℄ showedthat it is possible to approximately 
ount up to n using lg lgn bits, and Flajolet[15℄ gave a detailed analysis of this algorithm. Vitter [26℄ shows how to samplein a small amount of spa
e and linear time in a single pass. A related problemis 
omputing the spe
tra (approximate number of distin
t values) of a streamwhi
h 
an be a
hieved in lgn spa
e [16, 27℄. Alon et al. show that the �rst �vemoments 
an be approximated in lgn spa
e while surprisingly all other (higher)moments require linear spa
e [1℄.On the parti
ular issue of estimating frequen
ies, Fang et al. [10℄ proposeheuristi
s to 
ompute all values above a threshold. Charikar et al. [3℄ proposealgorithms to 
ompute the top k 
andidates in a list of length l under a Zip-�an distribution. Estan and Varghese [9℄ identify supersets likely to 
ontain thedominant 
ows and give a probabilisti
 estimate of the expe
t 
ount value interms of a user sele
ted threshold.2 ModelThis se
tion formalizes the problems and models addressed in this paper, someaspe
ts of whi
h were mentioned in Se
tion 1 in the 
ontext of our appli
ation.There are three key aspe
ts to the problem and model: what 
omputationalpower and storage we have to gather statisti
s about streams, what distributionsthe streams follow, and what guarantees we make about quality of results. We
over ea
h aspe
t in the next three subse
tions.2.1 Computation and StorageWe use a more restri
tive model for the algorithms we develop, and a morepowerful model for proving lower bounds, strengthening our results.2.1.1 Model for Algorithms. Our basi
 model of 
omputation is that astatisti
s-gathering pro
ess wat
hes a stream of n pa
kets passing through anInternet router or similar devi
e. The stream is rapid, so the pro
ess 
an makeonly one pass through the data, and furthermore 
an perform little 
omputationper pa
ket. Spe
i�
ally, we limit the amount of 
omputation to O(1) operationsper pa
ket. The storage spa
e available to the pro
ess is limited, but a moreimportant limiting fa
tor is that the working store of the pro
ess is very small:all a
tively used variables (e.g., 
ounters) must �t in a small 
a
he in order to



keep up with the data stream. Thus, in some settings, we may be willing to re
orda signi�
ant amount of data (but still mu
h less than one item per pa
ket) toexternal storage, and make a �nal pass through these re
ords at the end of the
omputation.A key operation that the statisti
s gathering pro
ess 
an perform is 
ount-ing. The pro
ess is limited to having at most m a
tive 
ounters at any time.Ea
h 
ounter has an asso
iated 
ategory that it monitors. A 
ounter 
an bein
remented, de
remented, or reset to monitor a di�erent 
ategory.Counters 
an be asso
iatively indexed based on the monitored 
ategory. Thisindexing stru
ture 
an be implemented in hardware by asso
iative memory, orin software using dynami
 perfe
t hashing [25℄. In the latter 
ase, our worst-
aserunning times turn into with-high-probability running times.We believe that this model of 
omputation 
aptures essentially the entirespe
trum of possible algorithms, while 
apturing all of the important limitingfa
tors in the appli
ation. For lower bounds, however, we will 
onsider an evenmore powerful model, des
ribed next.2.1.2 Model for Lower Bounds. For the purpose of lower bounds, we 
on-sider a broad model of 
omputation in whi
h the pro
ess 
an maintain at mostm
ategories in working store at any time, in addition to examining the 
ategoryof the 
urrent pa
ket under 
onsideration. Arbitrary amounts of memory and
omputation 
an be used for 
ounters or other stru
tures, but 
ategories mustbe treated as opaque obje
ts from an arbitrary spa
e with unknown stru
ture,and at most m 
ategories 
an be stored. The only operation allowed on 
ate-gories is testing two for equality; in the lower-bound 
ontext where we ignore
omputation time, this operation permits hashing based on 
ategories 
urrentlyin working store. The pro
ess 
an return 
andidate most-popular 
ategories onlyfrom the m 
ategories that it has in working store.2.2 Network TraÆ
 DistributionsWe propose three broad models of the network traÆ
 distributions that enable usto prove guarantees on quality. All of these models lead to interesting theoreti
alresults whi
h are 
losely related to the pra
ti
al problem.The two most general models are worst-
ase distributions. In this 
ontext,the network traÆ
 is essentially arbitrary, and at any moment, an adversary
an 
hoose the next pa
ket's 
ategory. Algorithms in this model are diÆ
ult butsurprisingly turn out to be possible. There are two subtly di�erent versions ofthe model. In the omnis
ient adversary model, the adversary knows everythingabout the algorithm's exe
ution, and 
an 
hoose the pa
ket sequen
e to be theabsolute most diÆ
ult. In the slightly less powerful but highly natural obliviousadversary model, the adversary knows the entire algorithm, but does not knowthe results of any random 
oin tosses made by the algorithm.Thus the algorithm
an hope to win over the adversary with high probability by using random bits.Of 
ourse, these worst-
ase models are overly pessimisti
, and limit theprovable strength of any algorithm. Fortunately, real traÆ
 is not worst-
ase,



but rather follows some sort of distribution. A natural su
h distribution is thesto
hasti
 model: an arbitrary probability distribution spe
i�es the relative fre-quen
ies of the 
ategory, but in what order these 
ategories o

ur in the pa
ketstream is uniformly random. While this model may not pre
isely mat
h reality,we feel that it is suÆ
iently representative to lead to highly pra
ti
al algorithms.(We plan to evaluate this statement experimentally.)2.3 GuaranteesIt is impossible in general to report the most 
ommon 
ategory in one pass usingless than �(n) storage. For example, su
h storage is 
learly ne
essary when all
ategories o

ur uniquely ex
ept for one 
ategory that o

urs twi
e. Fortunately,a user of this system is only interested in 
ategories that o

ur parti
ularly often,i.e., above some frequen
y threshold.It turns out that, for ea
h model of network traÆ
, there is a parti
ularthreshold below whi
h it is impossible to a

urately dete
t, but above whi
hit is possible to a

urately dete
t. When we have no extra storage beyond theworking store, we 
an only report m su
h 
ategories with any 
on�den
e. Whenwe have extra storage beyond the working store, we 
an re
ord more values andmake a �nal pass to 
hoose the largest k frequen
ies for a desired value of k. Ineither 
ase we guarantee that, out of the 
ategories whose frequen
ies are abovethreshold, the approximately top k are reported. \Approximately" means thatthe frequen
y (as opposed to rank) is within a desired 
onstant-fa
tor error.3 Worst-Case Bounds without RandomizationThis se
tion develops an algorithm for the most diÆ
ult model, the worst-
aseomnis
ient adversary.3.1 Classi
 Majority AlgorithmOur starting point is the elegant algorithm [13℄ for determining whether a valueo

urs a majority of the time in a stream, i.e., o

urs more than n=2 times in astream of length n. The basi
 model under whi
h this algorithm was developedis that we should make as few passes as possible through the data and as few
omparisons as possible, while using the smallest possible amount of spa
e|asingle 
ounter.AlgorithmMajority1. Initialize the 
ounter to zero.2. For ea
h element in the stream:(a) If the 
ounter is zero, de�ne the 
urrent element to be the monitoredelement of the 
ounter.(b) If the 
urrent element is the monitored element, in
rement the 
ounter.Otherwise, de
rement the 
ounter.



If the algorithm terminates with a 
ounter value of zero, then the last mon-itored element or the last value on the stream 
ould have o

urred up to n=2times, though not a majority. On the other hand, if the 
ounter value is positive,the last monitored element is the only value that 
ould have o

urred in a ma-jority of the positions. A simple res
an (not permitted in our model) 
on�rmsor denies the hypothesis, although Fis
her and Salzberg [13℄ present the methodsomewhat di�erently and reorder the elements in order to a
hieve the optimalworst 
ase bound of d3n=2e � 2.3.2 GeneralizationThis majority algorithm is a gem, often used in undergraduate le
tures andassignments. However, the following generalization does not seem to have ap-peared. Our initial des
ription ignores issues of data stru
tures required to ef-fe
tively de
rement m 
ounters at on
e or manage any other aspe
ts of thealgorithm; these issues will be addressed later.Theorem 1. There is a single-pass algorithm using m 
ounters that determinesa set of at most m values in
luding all that o

ur stri
tly more than n=(m + 1)times in an input stream of length n.Proof. The s
heme is indeed a generalization of Algorithm Majority:Algorithm Frequent1. Initialize the 
ounters to zero.2. For ea
h element in the stream:(a) If the 
urrent element is not monitored by any 
ounter and some 
ounteris zero, de�ne the 
urrent element to be the monitored element of that
ounter.(b) If the 
urrent element is the monitored element of a 
ounter, in
rementthe 
ounter. Otherwise, de
rement every 
ounter.The rea
tion to a value not in a full slate of 
andidates is admittedly Dra
o-nian, but it is e�e
tive. To demonstrate this e�e
tiveness, 
onsider any elementx that o

urs t > n=(m + 1) times. Suppose that x is read tf times when allother 
andidate lo
ations are full with other values, and ti times when either itis already present or there is spa
e to add it. Thus, x's 
ounter is in
rementedti times, and tf + ti = t > n=(m + 1). Furthermore, let td denote the numberof times that a 
ounter monitoring x is de
remented as another value is read.Be
ause a 
ounter never goes negative, ti � td. If this inequality is stri
t, thenx ends up with a positive 
ount at the end of the algorithm.With ea
h of the tf + td times de
rements o

ur, we 
an asso
iate m o

ur-ren
es of other values along with the o

urren
e of x, for a total of m+1 uniquelo
ations in the input steam. Thus, (m + 1)(tf + td) � n. If the �nal value ofx's 
ounter is zero, then td = ti, so t = tf + ti = tf + td > n=(m + 1), i.e.,(m + 1)(tf + td) > n, whi
h is a 
ontradi
tion. Hen
e ti > td, so x's 
ounterremains positive and x is one of at most m 
andidates remaining. 2



This method thus identi�es at most m 
andidates for having appeared morethan n=(m+1) times, and does so with no use of probabilisti
 methods. Clearlythere remains the issue of how to perform the appropriate updates qui
kly. Mostnotably, there is the issue of de
rementing and releasing several 
ounters simul-taneously.3.3 Data Stru
turesTo support de
rementing all 
ounters at on
e in 
onstant time, we store the 
oun-ters in sorted order using a di�erential en
oding. That is, ea
h 
ounter a
tuallyonly stores how mu
h larger it is 
ompared to the next smallest 
ounter. Now in-
rementing and de
rementing 
ounters requires them to move signi�
antly in thetotal order; to support these operations, we 
oales
e equal 
ounters (di�erentialsof zero) into 
ommon groups.The overall stru
ture is a doubly linked list of groups, ordered by 
ountervalue. Ea
h group represents a 
olle
tion of equal 
ounters, 
onsisting of twoparts: (1) a doubly linked list of 
ounters (in no parti
ular order, be
ause theyall have the same value), and (2) the di�eren
e in value between these 
ountersand the 
ounters in the previous group, or, for the �rst group, the value itself.Ea
h \
ounter" no longer needs to store a value, but rather stores its group andits monitored element.Be
ause of la
k of spa
e, we omit the details of Algorithm Frequent in
ombination with these data stru
tures.Theorem 2. Algorithm Frequent 
an be augmented to run in in O(1) timeper pa
ket.3.4 Lower BoundAlgorithm Frequent a
hieves the best possible frequen
y threshold a

ordingto the model presented in Se
tion 2.1.2.Theorem 3. For any n and m, and any deterministi
 one-pass algorithm stor-ing at most m elements at on
e, there is a sequen
e of length n, in whi
h oneelement o

urs at least n=(m+1)�1 times and the other elements are all unique,and on whi
h the algorithm terminates with only uniquely o

urring elementsstored.Proof. We initially imagine there being n distin
t elements, divided by a yet-to-be-determined s
heme into m + 1 
lasses. We maintain that ea
h elementstored by the algorithm is from a di�erent 
lass. At ea
h step, the algorithmexamines its at most m + 1 elements, dis
ards one, and reads the next elementfrom the stream. The adversary 
hooses the next element from the same 
lassas the element that was dis
arded. (At the beginning, the adversary 
hoosesarbitrarily.)In this way, the algorithm learns only that elements from di�erent 
lasses aredi�erent, but does not learn about elements from a 
ommon 
lass. Thus, at the



end, the adversary is free to 
hoose whi
h elements in a 
lass are equal and whi
hare not. In parti
ular, the adversary 
an 
hoose the largest 
lass, whi
h musthave size at least n=(m+1), to have all its members equal ex
ept for possibly onemember of the m being returned by the algorithm; and 
hoose all other 
lassesto have all distin
t elements. 24 Probabilisti
 Frequen
y CountsThis se
tion develops algorithms for the sto
hasti
 model, in whi
h an arbitraryprobability distribution spe
i�es the relative frequen
ies of the 
ategories, but inwhat order these 
ategories o

ur in the pa
ket stream is uniformly random. Wedistinguish two 
ases a

ording to whether the pro
ess is allowed extra storageso long as the working store is small; see Se
tion 2.1.1.4.1 OverviewThe basi
 algorithm works as follows. We divide the stream into a 
olle
tionof rounds, 
arefully sized to balan
e the 
ounter-reset trade-o� des
ribed in the�rst se
tion. At the beginning of ea
h round, the algorithm samples the �rst mdistin
t pa
ket 
ategories, whi
h is equivalent to sampling m pa
kets uniformlyat random. The algorithm then 
ounts their o

urren
es for the duration of theround. Applying Cherno� bounds, we prove that the 
ounts obtained during around are 
lose to the a
tual frequen
ies of the 
ategories. The k 
ategories withthe maximum 
ounter values at the end of the round are the winners for thatround. If extra nonworking storage is available to the algorithm, we re
ord thesewinners and their 
ounts for a �nal tournament at the end of the algorithm.Otherwise, we reserve a 
onstant fra
tion of the working storage for the 
urrentbest winners, and only 
ompare against those. In either 
ase, we prove thatwith high probability the true frequen
ies of the �nal winners are 
lose to thefrequen
ies of the truly most popular 
ategories. The probabilities are slightlyhigher when extra nonworking spa
e is available.The ideal 
hoi
e for the size of a round in this algorithmdepends on the lengthn of the stream and on the probability distribution on 
ategories. Of 
ourse, thealgorithm does not generally know the probabilities, and may not even knowfor how long it will be monitoring the stream: imagine a s
enario in whi
h thestatisti
s gathering pro
ess is running 
onstantly, and at will a networks designer
an request the 
urrent guess and 
on�den
e of the most popular 
ategories; astime passes, the 
on�den
e in
reases. To solve these problems, we harness thealgorithm in an adaptive framework that gradually in
reases the round lengthuntil the 
on�den
e is determined to suÆ
e. This 
exible framework requiresmonitoring the stream for only slightly longer.



4.2 Algorithm with Extra Nonworking StorageMore pre
isely, we divide the input stream into rounds of r pa
kets ea
h. Thealgorithm works as follows and the theorem follows from a 
areful examinationof Cherno� bounds.Algorithm Probabilisti
1. For ea
h round of r elements:(a) Assign the m 
ounters to monitor the �rst m distin
t elements thatappear in the round.(b) For ea
h element, if the element is being monitored, in
rement the ap-propriate 
ounter.(
) Store the elements and their 
ounts to the extra nonworking storage.2. Pass through the elements and 
ounts stored in extra nonworking storage.3. Return the k distin
t elements with the largest 
ounts, for the desired valueof k. (If an element appears multiple times in the list, we e�e
tively drop allbut its largest 
ount.)Theorem 4. Fix any 
onstants 
 > 0 and � > 1. Call an element above thresh-old if it has relative frequen
y at least � = (
 lnn)=pmn. Suppose that t elementsare above threshold. If 
 is suÆ
iently large with respe
t to �, then with high prob-ability, Algorithm Probabilisti
 with r = pmn returns a list of k elementswhose �rst minfk; tg elements are as if we perturbed ea
h element's relative fre-quen
y within a fa
tor of � and then took the top minfk; tg elements.4.3 Algorithm without Extra Nonworking StorageA simple modi�
ation to AlgorithmProbabilisti
 avoids the use of extra stor-age by 
omputing the maximum frequen
ies online at the 
ost of using some
ounter spa
e:Algorithm Probabilisti
-Inpla
e1. Reserve m=2 of the m 
ounters to store the 
urrent best 
andidates.2. For ea
h round of r elements:(a) Assign the m=2 unreserved 
ounters to monitor the �rst m=2 distin
telements that appear in the round, and zero these 
ounters.(b) For ea
h element, if the element is being monitored, in
rement the ap-propriate 
ounter.(
) Repla
e the m=2 reserved 
ounters with the top out of all m 
ounters.3. Return the m=2 reserved 
ounters.As stated, this algorithm does not run in 
onstant time per pa
ket, in
urringa �(m) 
ost at the end of every round. However, this large 
ost 
an be avoided,similar to Algorithm Frequent. Again we omit details be
ause of la
k of spa
e.We obtain the same results as in Theorem 4, only with m half as large andk 
onstrained to be at most m=2.



Theorem 5. Suppose that t elements are above threshold, i.e., have relativelyfrequen
y at least (
 lnn)=pmn=2. If 
 is suÆ
iently large with respe
t to �, thenwith high probability, Algorithm Probabilisti
-Inpla
e and its enhan
ementwith r =pmn=2 return a list of m=2 elements whose �rst minfm=2; tg elementsare as if we perturbed ea
h element's relative frequen
y within a fa
tor of � andthen took the top minfm=2; tg elements.4.4 Streams of Unknown LengthIf the value of n is unknown to the algorithm, we 
an guess the value of n to be1 and run the algorithm, then guess 
onse
utively n = 2; 4; : : :; 2j; : : : until thestream is exhausted. At round j, we 
an �nd the top elements so long as theirprobability satis�es p > j=p2jm. This bound is within a fa
tor of roughly p2
ompared to if we knew n a priori.4.5 Lower BoundWe 
an prove a mat
hing lower bound for the algorithms above, up to 
onstantfa
tors, in the model of 
omputation presented in Se
tion 2.1.2:Theorem 6. Consider the distribution in whi
h one element x has relative fre-quently (just) below f=pmn, and e.g. every other element o

urs just on
e. Forany probabilisti
 one-pass algorithm storing at most m elements at on
e, theprobability of failing to report element x is, asymptoti
ally, at least (e�1+1=e)f �0:5314636f. Consequently, if f = �(1), there is a 
onstant probability of failure,and f must be 
(lgn) to a
hieve a polynomially small probability of failure.5 Con
lusionThe main open problem that remains is to 
onsider the more relaxed but highlynatural oblivious-adversary worst-
ase model, whi
h allows randomization in-ternally to the algorithm but assumes nothing about the input stream. We arehopeful that it is possible to a
hieve results similar to the sto
hasti
 model byaugmenting our algorithm to randomly perturb the sizes of the rounds. The ideais that su
h perturbations prevent the adversary from knowing when the a
tualsamples o

ur.A
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