
Faster Adaptive Set Intersetionsfor Text SearhingJ�er�emy Barbay, Alejandro L�opez-Ortiz, and Tyler LuDavid R. Cheriton Shool of Computer SieneUniversity of Waterloo, Waterloo, ON N2L 3G1, Canadafjbarbay,alopez-o,ttlug�uwaterloo.aAbstrat. The intersetion of large ordered sets is a ommon problemin the ontext of the evaluation of boolean queries to a searh engine.In this paper we engineer a better algorithm for this task, whih im-proves over those proposed by Demaine, Munro and L�opez-Ortiz [SODA2000/ALENEX 2001℄, by using a variant of interpolation searh. Morespei�ally, our ontributions are threefold. First, we orroborate andomplete the pratial study fromDemaine et al. on omparison based in-tersetion algorithms. Seond, we show that in pratie replaing binarysearh and galloping (one-sided binary) searh by interpolation searhimproves the performane of eah main intersetion algorithms. Third,we introdue and test variants of interpolation searh: this results in aneven better intersetion algorithm.Topis. Evaluation of Algorithms for Realisti Environments, Implemen-tation, Testing, Evaluation and Fine-tuning of Algorithms, InformationRetrieval.1 IntrodutionThe intersetion of large ordered sets is a ommon problem in the ontext of theevaluation of relational queries to databases as well as boolean queries to a searhengine. The worst ase omplexity of this problem has long been well understood,dating bak to the algorithm by Hwang and Lin from over three deades ago[12℄. In 2000, Demaine et al. improved over this by proposing a faster methodfor omputing the intersetion of k sorted sets [6℄ using an adaptive algorithm.Their algorithm has optimal worst-ase behaviour on a muh �ner analysis thansimply worst-ase input size. We refer the reader to [6℄ for the preise details onthe adaptive measure used.In a followup study they showed that the adaptive theoretial optimal al-gorithm is not always best in pratie in the ontext of searh engines [7℄. Inthat study, they ompared a straightforward implementation of an intersetionalgorithm, termed SvS, with their adaptive algorithm, termed Adaptive, andshowed that on the given data Adaptive is superior only for queries involvingtwo or three terms, while thereafter SvS outperforms it by a onstant fator.Their study uses what at the time was a sizable olletion of plain text from



2web pages. Using this data set, Demaine et al. engineered an algorithm, termedSmall Adaptive, that ombines the best aspets of both Adaptive and SvS.They showed experimentally that on the given data set this algorithm outper-forms both the Adaptive and SvS algorithm.In this paper we revisit that study. Our ontributions are threefold. First, weorroborate the pratial study from [7℄ by onsidering a muh larger web rawland extend their study to inlude two more reent algorithms, introdued in [3℄.The results are similar to those of the original study: the algorithm termed SmallAdaptive is the one whih performs the best. Seond, we study the impat ofreplaing binary searhes and galloping (one-sided binary) searhes by interpo-lation searhes, for eah of the main intersetion algorithms. Our results showthat this improves the performane of eah intersetion algorithm. The optimalalgorithm, Interpolation Small Adaptive, is based on Small Adaptive, andour results show that the relative performane of the intersetion algorithmsare the same when using interpolation searh than when using binary searhand galloping. Third, we introdue several parameterized variants of extrapola-tion searh, whih ombine the onepts of interpolation searh and galloping,taking advantage of both. We evaluate the performane of eah of those vari-ants using Small Adaptive as a base, and we identify the best variant, termedExtrapolate Ahead Small Adaptive, whih at eah step omputes the posi-tion of the next omparison using the values of elements at distane l of eahother, and whih performs the best when l is logarithmi on the size of the set.This results in an intersetion algorithm whih performs even better in pratiethan simply introduing interpolation.The paper is strutured as follows: in the next setion we desribe the data seton whih we evaluated the various algorithms disussed. In Setion 3 we desribein detail the intersetion algorithms studied, and the basis of the interpolationalgorithms. In Setion 4 we present our experimental results. We onlude inSetion 5 with a summary of the results.2 DatasetThe intersetion of sets in the ontext of searh engines is a driving appliationfor this work. Thus we test our algorithms using a web rawl together with arepresentative query log from a searh engine. Eah set orresponds to a keywordourring in a query, and the elements of eah set refer to integer doumentidenti�ers of those web pages ontaining the keyword. We use a sample weborpus from Google of 6.85 gigabytes of text as well as a 5000 entry query log,also from Google. The query log is the same as in [7℄, while the web rawl is asubstantially larger and more reent data set. In the past we empirially veri�edthat the relative performane of the algorithms did not hange when run onorpora varying in size by orders of magnitude. Our results using this new largerset are onsistent with this observation.The web orpus was indexed into an inverted word index, whih lists a set ofdoument identi�ers in inreasing order for eah word appearing in the orpus.The total number of web pages indexed is approximately 600,000. The size of the



3resulting inverted word index is 1.06 gigabytes with HTML markup removed,and the number of words in the index is 2,604,335. Note that words onsists ofonly alphanumerial haraters.In the sample query log from Google, we do not onsider queries that ontainwords not found in our index nor queries that onsists of a single keyword sineno set intersetion need be performed in this ase. We refer the reader to [7℄ fora more thorough disussion on the query log.3 Algorithms3.1 Intersetion AlgorithmsVarious algorithms for the intersetion of k sets have been introdued in the lit-erature [3, 6, 7℄. In this study we fous on four partiular ones, desribed below.We do not onsider, however, the most na��ve sequential (linear merging) algo-rithm as both theoretial and experimental analysis show that its performaneis signi�antly worse than the ones studied here.Algorithm 1 Pseudo-ode for Adaptive1: Choose eliminator e = set[0℄[0℄, in the set elimset 0.2: Consider the �rst set, i 13: while the eliminator e 6=1 do4: perform one step of the galloping searh in set[i℄.5: if the gallop overshot then6: binary searh in set[i℄ for e.7: if e was found then8: inrease the ourrene ounter, and let i i+ 1 mod k; i 6= elimset.9: if the value of ourrene ounter is k then10: output e and let e set[i℄[su(e)℄; elimset ii i+ 1 mod k; i 6= elimset.11: else12: set e to the �rst element in set[i℄ whih is larger than e.13: update the set elimset i and onsider the next set i i+1 mod k; i 6=elimset.14: end if15: end if16: end if17: end whileThe theoretial study in [6℄ introdued an information theoretial optimumalgorithm, whih was implemented in [7℄ under the name Adaptive. This algo-rithm performs a searh in all other sets for an element from one set, using aone-sided binary searh or \galloping" searh. The element being searhed for isupdated using a greedy tehnique. For the details we refer the reader to [6℄.The experimental study in [7℄ introdued more algorithms, simulating four-teen di�erent algorithms to study their pratial performane on a query set pro-vided by Google and a data set obtained through their own web rawl. Of those,



4we fous on two partiular ones: SvS and Small Adaptive. SvS is a straightfor-Algorithm 2 Pseudo-ode for SvS1: Sort the sets by size (jset[0℄j � jset[1℄j � : : : � jset[k℄j).2: Let the smallest set s[0℄ be the andidate answer set.3: for eah set s[i℄, i = 1 : : : k do initialize `[k℄ = 0.4: for eah set s[i℄, i = 1 : : : k do5: for eah element e in the andidate answer set do6: binary searh for e in s[i℄ in the range `[i℄ to js[i℄j,7: and update `[i℄ to the last position probed in the previous step.8: if e was not found then9: remove e from andidate answer set, and advane e to the next element inthe answer set.10: end if11: end for12: end forward algorithm widely used in pratie, whih intersets the sets two at a timein inreasing order by size, starting with the two smallest. It uses a binary searhproedure to determine if an element in the �rst set appears in the seond set.Algorithm 3 Pseudo-ode for Small Adaptive1: Sort the sets by size (jset[0℄j � jset[1℄j � : : : � jset[k℄j).2: Choose an eliminator e = set[0℄[0℄ in the set elimset 0.3: Consider the �rst set, i 1.4: while the eliminator e 6=1 do5: gallop one in set[i℄.6: if the gallop overshot then7: binary searh in set[i℄ for e.8: if e was found then9: inrease the ourrene ounter and let i i+ 1 mod k; i 6= elimset.10: if the value of ourrene ounter is k then11: add e to answer.12: resort the sets, and let e set[0℄[su(e)℄; elimset 0; i 113: end if14: else15: resort the sets.16: if i = 0 or i = 1 then onsider the set i 1� i,17: else onsider the �rst set: elimset 0; i 1. end if18: end if19: end if20: end whileSmall Adaptive is a hybrid algorithm,whih ombines the best properties ofSvS and Adaptive. For eah element in the smallest set, it performs a galloping



5one-sided searh on the seond smallest set. If a ommon element is found, a newsearh is performed in the remaining k � 2 sets to determine if the element isindeed in the intersetion of all sets, otherwise a new searh is performed. Observethat the algorithm omputes the intersetion from left to right, produing theanswer in inreasing order. After eah step, eah set has an already examinedrange and an unexamined range. Small Adaptive selets the two sets with thesmallest unexamined range and repeats the proess desribed above until thereis a set that has been fully examined.Algorithm 4 Pseudo-ode for Sequential1: Choose an eliminator e = set[0℄[0℄, in the set elimset 0.2: Consider the �rst set, i 1.3: while the eliminator e 6=1 do4: Gallop for e in set[i℄ till overshot5: binary searh in set[i℄ for e6: if the binary searh found e then7: inrease the ourrene ounter.8: if the value of ourrene ounter is k then output e end if9: end if10: if the value of the ourrene ounter is k, or e was not found then11: update the eliminator to e set[i℄[su(e)℄:12: end if13: Consider the next set in yli order i i+ 1 mod k.14: end whileThe theoretial study in [3℄ introdues a fourth algorithm, alled Sequential,whih is optimal for a di�erent measure of diÆulty, based on the non-deterministi omplexity of the instane. It yles through the sets performingone entire gallop searh at a time in eah (as opposed to a single galloping step inAdaptive), so that it performs at most k searhes for eah omparison performedby an optimal non-deterministi algorithm.The pseudo-ode for the algorithms desribed above is given in Algorithms 1to 4. Eah of those algorithms has linear time worst ase behaviour, and eahperforms better than the others on at least one instane. Adaptive performswell on instanes with an intersetion erti�ate that an be enoded in a smallamount of spae, while Sequential performs well on instanes whose intersetionerti�ate ontains a small number of omparisons. SvS redues the numberof sets by interseting the two smallest sets, searhing for the elements of thesmallest set in the larger set; Small Adaptive performs similarly so long as noelement is found to be in the intersetion of the two sets, at whih point itheks for it in the other sets, and after whih it updates whih sets are thesmallest. Note that Small Adaptive and SvS are the only algorithms takingative advantage of the di�erene of sizes of the sets, and that Small Adaptiveis the only one whih takes advantage of how this size varies as the algorithmeliminates elements: Adaptive and Sequential ignore this information.



6 All of these algorithms are based on galloping and binary searh, and useonly omparisons between the elements: we study the impat on the performaneof replaing those searhes with interpolation searh, or a suitably engineeredvariant of interpolation searh, as desribed in the next setion.3.2 Searh AlgorithmsInterpolation searh has long been known to perform signi�antly better thanbinary searh on data randomly drawn from a uniform distribution, hene itis only natural to test if this holds using web rawled data. Moreover, reentdevelopments suggest that interpolation searh is also a reasonable tehnique fornon-uniform data [5℄. Our experiments, whih we desribe in the next Setion,on�rm this onjeture.Reall that interpolation searh for an element of value e in an array set[i℄on the range a to b probes a position as given by the formula:I(a; b) = � e � set[i℄[a℄set[i℄[b℄� set[i℄[a℄�+ aIn eah of Adaptive, Small Adaptive and Sequential we replae eah gal-loping step by an interpolation probe, and we replae binary searh with in-terpolation searh. In essene, the two hanges are equivalent to performing aninterpolation searh in set[i℄ for the eliminator. The index probed is I(`[i℄; ni),where `[i℄ is the urrent position in set[i℄ and ni is the size jset[i℄j of set[i℄.4 Experimental ResultsWe ompare the performane of eah of the four algorithms desribed in theprevious setion by fousing on the number of omparisons performed by thealgorithms. For large data sets suh as in searh engines, the run time is domi-nated by external memory aesses. It has long been known that the number ofomparisons by an algorithm generally shows high orrelation with the numberof I/O operations, so we follow this onvention. Our model has ertain othersimpli�ations; for example posting sets are likely to be stored in a ompressedform, albeit one suitable for random aess. We posit that most suh re�nementsand other system spei� improvements are likely orthogonal to the relative per-formane of the searh algorithms presented here.4.1 Comparing Intersetion AlgorithmsHere we present the part of our study whih orroborates the study of [7℄, as wemeasure the performane of the algorithms on a larger data set, and ompletesit as we ompare one more intersetion algorithm (Sequential).Figures 1 and 2 show that, when using binary searh, Small Adaptiveis muh better than Sequential. This is likely due to the fat that SmallAdaptive searhes for the eliminator in sets of inreasing order, and that itdoes not yle through the sets when hoosing an eliminator.
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Fig. 1. Performane of various Intersetion algorithms when using binary searh.
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10representative sample of the distribution between set[i℄[pi℄ and the eliminator: alarge value of l orresponds to an algorithm using more global information, whilea small value of l orrespond to an algorithm using only loal information. If theindex of the suessor su(e) of e in set[i℄ is not far from pi, then the distributionbetween set[i℄[pi℄ and set[i℄[pi + l℄ is expeted to be similar to the distributionbetween set[i℄[pi℄ and set[i℄[su(e)℄, and the estimate will be fairly aurate.Figure 8 shows that for l = 50, Extrapolate Ahead Small Adaptive performsas well as Interpolation Small Adaptive, and that their performane stayslose when it is worse. Figure 10 shows a similar result for l = pni.
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11
–5000

–4000

–3000

–2000

–1000

0

1000

di
ffe

re
nc

e 
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
# of setsFig. 11. Extrapolate Many (m=4,l=80) (low wins) vs InterpolationSmall Adaptive (high wins). –4000

–2000

0

2000

di
ffe

re
nc

e 
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
# of setsFig. 12. Extrapolate Many (m=8,l=80) (low wins) vs InterpolationSmall Adaptive (high wins).reent intersetion algorithm proposed in the theory ommunity, whih hereto-fore had not been ompared in pratie. Our results also on�rm the superiorityof Small Adaptive over all other algorithms as reported in [7℄, even on a dataset substantially larger than the one used in that study. Considering variants ofthose intersetion algorithms using interpolation searh instead of binary searhand galloping, we showed that for any �xed intersetion tehnique, suh as SmallAdaptive, using interpolation searh always improves the performane. Finally,we ombine the two onepts of interpolation searh and galloping to de�ne theextrapolation searh and several variants of it. Comparing the pratial perfor-mane of these on the intersetion algorithm Small Adaptive, we found onepartiularly e�etive, whih results in an even better intersetion algorithm,termed Extrapolate Ahead Small Adaptive, whih at eah step omputes theposition of the next omparison using the values of elements at distane l of eahother, and whih performs the best when l = lgni.Algorithm # of omparisonsSequential 119479075Adaptive 83326341Small Adaptive 68706234Interpolation Sequential 55275738Interpolation Adaptive 58558408Interpolation Small Adaptive 44525318Extrapolation Small Adaptive 50018852Extrapolate Many Small Adaptive (m = 4, l = 80) 44119573Extrapolate Many Small Adaptive (m = 8, l = 80) 44087712Extrapolate Ahead Small Adaptive (l = 50) 44133783Extrapolate Ahead Small Adaptive (l = lg n) 43930174Extrapolate Ahead Small Adaptive (l = pn) 44379689Table 1. Total number of omparisons performed by eah algorithm over thedata set.Extrapolate Ahead Small Adaptive with look-ahead range l = lg(n) is best.
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