
Faster Adaptive Set Interse
tionsfor Text Sear
hingJ�er�emy Barbay, Alejandro L�opez-Ortiz, and Tyler LuDavid R. Cheriton S
hool of Computer S
ien
eUniversity of Waterloo, Waterloo, ON N2L 3G1, Canadafjbarbay,alopez-o,ttlug�uwaterloo.
aAbstra
t. The interse
tion of large ordered sets is a
ommon problemin the
ontext of the evaluation of boolean queries to a sear
h engine.In this paper we engineer a better algorithm for this task, whi
h im-proves over those proposed by Demaine, Munro and L�opez-Ortiz [SODA2000/ALENEX 2001℄, by using a variant of interpolation sear
h. Morespe
i�
ally, our
ontributions are threefold. First, we
orroborate and
omplete the pra
ti
al study fromDemaine et al. on
omparison based in-terse
tion algorithms. Se
ond, we show that in pra
ti
e repla
ing binarysear
h and galloping (one-sided binary) sear
h by interpolation sear
himproves the performan
e of ea
h main interse
tion algorithms. Third,we introdu
e and test variants of interpolation sear
h: this results in aneven better interse
tion algorithm.Topi
s. Evaluation of Algorithms for Realisti
 Environments, Implemen-tation, Testing, Evaluation and Fine-tuning of Algorithms, InformationRetrieval.1 Introdu
tionThe interse
tion of large ordered sets is a
ommon problem in the
ontext of theevaluation of relational queries to databases as well as boolean queries to a sear
hengine. The worst
ase
omplexity of this problem has long been well understood,dating ba
k to the algorithm by Hwang and Lin from over three de
ades ago[12℄. In 2000, Demaine et al. improved over this by proposing a faster methodfor
omputing the interse
tion of k sorted sets [6℄ using an adaptive algorithm.Their algorithm has optimal worst-
ase behaviour on a mu
h �ner analysis thansimply worst-
ase input size. We refer the reader to [6℄ for the pre
ise details onthe adaptive measure used.In a followup study they showed that the adaptive theoreti
al optimal al-gorithm is not always best in pra
ti
e in the
ontext of sear
h engines [7℄. Inthat study, they
ompared a straightforward implementation of an interse
tionalgorithm, termed SvS, with their adaptive algorithm, termed Adaptive, andshowed that on the given data Adaptive is superior only for queries involvingtwo or three terms, while thereafter SvS outperforms it by a
onstant fa
tor.Their study uses what at the time was a sizable
olle
tion of plain text from

2web pages. Using this data set, Demaine et al. engineered an algorithm, termedSmall Adaptive, that
ombines the best aspe
ts of both Adaptive and SvS.They showed experimentally that on the given data set this algorithm outper-forms both the Adaptive and SvS algorithm.In this paper we revisit that study. Our
ontributions are threefold. First, we
orroborate the pra
ti
al study from [7℄ by
onsidering a mu
h larger web
rawland extend their study to in
lude two more re
ent algorithms, introdu
ed in [3℄.The results are similar to those of the original study: the algorithm termed SmallAdaptive is the one whi
h performs the best. Se
ond, we study the impa
t ofrepla
ing binary sear
hes and galloping (one-sided binary) sear
hes by interpo-lation sear
hes, for ea
h of the main interse
tion algorithms. Our results showthat this improves the performan
e of ea
h interse
tion algorithm. The optimalalgorithm, Interpolation Small Adaptive, is based on Small Adaptive, andour results show that the relative performan
e of the interse
tion algorithmsare the same when using interpolation sear
h than when using binary sear
hand galloping. Third, we introdu
e several parameterized variants of extrapola-tion sear
h, whi
h
ombine the
on
epts of interpolation sear
h and galloping,taking advantage of both. We evaluate the performan
e of ea
h of those vari-ants using Small Adaptive as a base, and we identify the best variant, termedExtrapolate Ahead Small Adaptive, whi
h at ea
h step
omputes the posi-tion of the next
omparison using the values of elements at distan
e l of ea
hother, and whi
h performs the best when l is logarithmi
 on the size of the set.This results in an interse
tion algorithm whi
h performs even better in pra
ti
ethan simply introdu
ing interpolation.The paper is stru
tured as follows: in the next se
tion we des
ribe the data seton whi
h we evaluated the various algorithms dis
ussed. In Se
tion 3 we des
ribein detail the interse
tion algorithms studied, and the basis of the interpolationalgorithms. In Se
tion 4 we present our experimental results. We
on
lude inSe
tion 5 with a summary of the results.2 DatasetThe interse
tion of sets in the
ontext of sear
h engines is a driving appli
ationfor this work. Thus we test our algorithms using a web
rawl together with arepresentative query log from a sear
h engine. Ea
h set
orresponds to a keywordo

urring in a query, and the elements of ea
h set refer to integer do
umentidenti�ers of those web pages
ontaining the keyword. We use a sample web
orpus from Google of 6.85 gigabytes of text as well as a 5000 entry query log,also from Google. The query log is the same as in [7℄, while the web
rawl is asubstantially larger and more re
ent data set. In the past we empiri
ally veri�edthat the relative performan
e of the algorithms did not
hange when run on
orpora varying in size by orders of magnitude. Our results using this new largerset are
onsistent with this observation.The web
orpus was indexed into an inverted word index, whi
h lists a set ofdo
ument identi�ers in in
reasing order for ea
h word appearing in the
orpus.The total number of web pages indexed is approximately 600,000. The size of the

3resulting inverted word index is 1.06 gigabytes with HTML markup removed,and the number of words in the index is 2,604,335. Note that words
onsists ofonly alphanumeri
al
hara
ters.In the sample query log from Google, we do not
onsider queries that
ontainwords not found in our index nor queries that
onsists of a single keyword sin
eno set interse
tion need be performed in this
ase. We refer the reader to [7℄ fora more thorough dis
ussion on the query log.3 Algorithms3.1 Interse
tion AlgorithmsVarious algorithms for the interse
tion of k sets have been introdu
ed in the lit-erature [3, 6, 7℄. In this study we fo
us on four parti
ular ones, des
ribed below.We do not
onsider, however, the most na��ve sequential (linear merging) algo-rithm as both theoreti
al and experimental analysis show that its performan
eis signi�
antly worse than the ones studied here.Algorithm 1 Pseudo-
ode for Adaptive1: Choose eliminator e = set[0℄[0℄, in the set elimset 0.2: Consider the �rst set, i 13: while the eliminator e 6=1 do4: perform one step of the galloping sear
h in set[i℄.5: if the gallop overshot then6: binary sear
h in set[i℄ for e.7: if e was found then8: in
rease the o

urren
e
ounter, and let i i+ 1 mod k; i 6= elimset.9: if the value of o

urren
e
ounter is k then10: output e and let e set[i℄[su

(e)℄; elimset ii i+ 1 mod k; i 6= elimset.11: else12: set e to the �rst element in set[i℄ whi
h is larger than e.13: update the set elimset i and
onsider the next set i i+1 mod k; i 6=elimset.14: end if15: end if16: end if17: end whileThe theoreti
al study in [6℄ introdu
ed an information theoreti
al optimumalgorithm, whi
h was implemented in [7℄ under the name Adaptive. This algo-rithm performs a sear
h in all other sets for an element from one set, using aone-sided binary sear
h or \galloping" sear
h. The element being sear
hed for isupdated using a greedy te
hnique. For the details we refer the reader to [6℄.The experimental study in [7℄ introdu
ed more algorithms, simulating four-teen di�erent algorithms to study their pra
ti
al performan
e on a query set pro-vided by Google and a data set obtained through their own web
rawl. Of those,

4we fo
us on two parti
ular ones: SvS and Small Adaptive. SvS is a straightfor-Algorithm 2 Pseudo-
ode for SvS1: Sort the sets by size (jset[0℄j � jset[1℄j � : : : � jset[k℄j).2: Let the smallest set s[0℄ be the
andidate answer set.3: for ea
h set s[i℄, i = 1 : : : k do initialize `[k℄ = 0.4: for ea
h set s[i℄, i = 1 : : : k do5: for ea
h element e in the
andidate answer set do6: binary sear
h for e in s[i℄ in the range `[i℄ to js[i℄j,7: and update `[i℄ to the last position probed in the previous step.8: if e was not found then9: remove e from
andidate answer set, and advan
e e to the next element inthe answer set.10: end if11: end for12: end forward algorithm widely used in pra
ti
e, whi
h interse
ts the sets two at a timein in
reasing order by size, starting with the two smallest. It uses a binary sear
hpro
edure to determine if an element in the �rst set appears in the se
ond set.Algorithm 3 Pseudo-
ode for Small Adaptive1: Sort the sets by size (jset[0℄j � jset[1℄j � : : : � jset[k℄j).2: Choose an eliminator e = set[0℄[0℄ in the set elimset 0.3: Consider the �rst set, i 1.4: while the eliminator e 6=1 do5: gallop on
e in set[i℄.6: if the gallop overshot then7: binary sear
h in set[i℄ for e.8: if e was found then9: in
rease the o

urren
e
ounter and let i i+ 1 mod k; i 6= elimset.10: if the value of o

urren
e
ounter is k then11: add e to answer.12: resort the sets, and let e set[0℄[su

(e)℄; elimset 0; i 113: end if14: else15: resort the sets.16: if i = 0 or i = 1 then
onsider the set i 1� i,17: else
onsider the �rst set: elimset 0; i 1. end if18: end if19: end if20: end whileSmall Adaptive is a hybrid algorithm,whi
h
ombines the best properties ofSvS and Adaptive. For ea
h element in the smallest set, it performs a galloping

5one-sided sear
h on the se
ond smallest set. If a
ommon element is found, a newsear
h is performed in the remaining k � 2 sets to determine if the element isindeed in the interse
tion of all sets, otherwise a new sear
h is performed. Observethat the algorithm
omputes the interse
tion from left to right, produ
ing theanswer in in
reasing order. After ea
h step, ea
h set has an already examinedrange and an unexamined range. Small Adaptive sele
ts the two sets with thesmallest unexamined range and repeats the pro
ess des
ribed above until thereis a set that has been fully examined.Algorithm 4 Pseudo-
ode for Sequential1: Choose an eliminator e = set[0℄[0℄, in the set elimset 0.2: Consider the �rst set, i 1.3: while the eliminator e 6=1 do4: Gallop for e in set[i℄ till overshot5: binary sear
h in set[i℄ for e6: if the binary sear
h found e then7: in
rease the o

urren
e
ounter.8: if the value of o

urren
e
ounter is k then output e end if9: end if10: if the value of the o

urren
e
ounter is k, or e was not found then11: update the eliminator to e set[i℄[su

(e)℄:12: end if13: Consider the next set in
y
li
 order i i+ 1 mod k.14: end whileThe theoreti
al study in [3℄ introdu
es a fourth algorithm,
alled Sequential,whi
h is optimal for a di�erent measure of diÆ
ulty, based on the non-deterministi

omplexity of the instan
e. It
y
les through the sets performingone entire gallop sear
h at a time in ea
h (as opposed to a single galloping step inAdaptive), so that it performs at most k sear
hes for ea
h
omparison performedby an optimal non-deterministi
 algorithm.The pseudo-
ode for the algorithms des
ribed above is given in Algorithms 1to 4. Ea
h of those algorithms has linear time worst
ase behaviour, and ea
hperforms better than the others on at least one instan
e. Adaptive performswell on instan
es with an interse
tion
erti�
ate that
an be en
oded in a smallamount of spa
e, while Sequential performs well on instan
es whose interse
tion
erti�
ate
ontains a small number of
omparisons. SvS redu
es the numberof sets by interse
ting the two smallest sets, sear
hing for the elements of thesmallest set in the larger set; Small Adaptive performs similarly so long as noelement is found to be in the interse
tion of the two sets, at whi
h point it
he
ks for it in the other sets, and after whi
h it updates whi
h sets are thesmallest. Note that Small Adaptive and SvS are the only algorithms takinga
tive advantage of the di�eren
e of sizes of the sets, and that Small Adaptiveis the only one whi
h takes advantage of how this size varies as the algorithmeliminates elements: Adaptive and Sequential ignore this information.

6 All of these algorithms are based on galloping and binary sear
h, and useonly
omparisons between the elements: we study the impa
t on the performan
eof repla
ing those sear
hes with interpolation sear
h, or a suitably engineeredvariant of interpolation sear
h, as des
ribed in the next se
tion.3.2 Sear
h AlgorithmsInterpolation sear
h has long been known to perform signi�
antly better thanbinary sear
h on data randomly drawn from a uniform distribution, hen
e itis only natural to test if this holds using web
rawled data. Moreover, re
entdevelopments suggest that interpolation sear
h is also a reasonable te
hnique fornon-uniform data [5℄. Our experiments, whi
h we des
ribe in the next Se
tion,
on�rm this
onje
ture.Re
all that interpolation sear
h for an element of value e in an array set[i℄on the range a to b probes a position as given by the formula:I(a; b) = � e � set[i℄[a℄set[i℄[b℄� set[i℄[a℄�+ aIn ea
h of Adaptive, Small Adaptive and Sequential we repla
e ea
h gal-loping step by an interpolation probe, and we repla
e binary sear
h with in-terpolation sear
h. In essen
e, the two
hanges are equivalent to performing aninterpolation sear
h in set[i℄ for the eliminator. The index probed is I(`[i℄; ni),where `[i℄ is the
urrent position in set[i℄ and ni is the size jset[i℄j of set[i℄.4 Experimental ResultsWe
ompare the performan
e of ea
h of the four algorithms des
ribed in theprevious se
tion by fo
using on the number of
omparisons performed by thealgorithms. For large data sets su
h as in sear
h engines, the run time is domi-nated by external memory a

esses. It has long been known that the number of
omparisons by an algorithm generally shows high
orrelation with the numberof I/O operations, so we follow this
onvention. Our model has
ertain othersimpli�
ations; for example posting sets are likely to be stored in a
ompressedform, albeit one suitable for random a

ess. We posit that most su
h re�nementsand other system spe
i�
 improvements are likely orthogonal to the relative per-forman
e of the sear
h algorithms presented here.4.1 Comparing Interse
tion AlgorithmsHere we present the part of our study whi
h
orroborates the study of [7℄, as wemeasure the performan
e of the algorithms on a larger data set, and
ompletesit as we
ompare one more interse
tion algorithm (Sequential).Figures 1 and 2 show that, when using binary sear
h, Small Adaptiveis mu
h better than Sequential. This is likely due to the fa
t that SmallAdaptive sear
hes for the eliminator in sets of in
reasing order, and that itdoes not
y
le through the sets when
hoosing an eliminator.

7
 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

to
ta

l #
 o

f c
om

pa
ris

on
s

of sets

Adaptive
Small Adaptive

Sequential

Fig. 1. Performan
e of various Interse
tion algorithms when using binary sear
h.
0

100000

200000

300000

400000

500000

600000

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 2. Small Adaptive (high wins) vs.Sequential (low wins). The algorithmSmall Adaptive is always better. 0

50000

100000

150000

200000

250000
di

ffe
re

nc
e

in
 #

 c
om

pa
ris

on
s

2 4 6 8 10 12
of setsFig. 3. Interpolation Small Adaptive(high wins) vs. Small Adaptive (lowwins). It improves on all instan
es, andis
onsistent over k.4.2 Comparing Interpolation and binary sear
hHere we present a �rst approa
h of the impa
t of repla
ing the binary sear
hesand galloping by interpolation sear
hes in the interse
tion algorithms. It is wellknown that interpolation sear
h outperforms binary sear
h, on average on arrayswhose elements are well behaved (uniformly distributed). Thus it is expe
ted thatrepla
ing binary sear
h by interpolation sear
h would improve the performan
eof the interse
tion algorithms. As gallop sear
h [4℄ is a lo
al sear
h algorithm,it is not ne
essarily outperformed by interpolation sear
h: we show here that inpra
ti
e it is.Figure 3, 4 and 5 show the
lear advantage of using interpolation sear
h overbinary sear
h, as ea
h of the three interse
tion algorithm using interpolationsear
h has a
lear advantage over its variant using binary sear
h, outperformingit on almost all instan
es.

8
0

100000

200000

300000

400000

500000
di

ffe
re

nc
e

in
 #

 c
om

pa
ris

on
s

2 4 6 8 10 12
of setsFig. 4. Interpolation Sequential(high wins) vs. Sequential (low wins).Interpolation sear
h provides roughly atwo-fold improvement. 0

50000

100000

150000

200000

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 5. Interpolation Adaptive (highwins) vs. Adaptive (low wins). The im-provement is more noti
eable if k issmaller.As a side note, the study of the ratio of the performan
es (not shown herebe
ause of spa
e limitations) shows that the ratio between the performan
eof Interpolation Adaptive and Adaptive, while always larger than one, de-
reases when k in
reases. This is likely due to the fa
t that the algorithm
ontin-ually
y
les through the sets trying to �nd a set whi
h does not
ontain the elim-inator [7℄. Thus, the overhead
aused by the
y
ling, whi
h performs one interpo-lation going through ea
h set (as opposed to galloping), is dominating the num-ber of
omparisons when k is relative large. Note that, in
ontrast, sin
e SmallAdaptive does not
y
le through the sets, the average ratio between the per-forman
e of Small Adaptive and Interpolation Small Adaptive stays fairly
onstant with respe
t to k.The experiments suggest that web
rawled data is amenable to interpolationsear
h, and hen
e using this te
hnique gives a noti
eable redu
tion in the numberof
omparisons required.4.3 Introdu
ing and Comparing Extrapolation VariantsIn this se
tion, we introdu
e an adaptation of interpolation sear
h, whi
h wenamed extrapolation, and some variants of it. We test those variants on our dataset. Interestingly, our experimental results show that the di�eren
e in perfor-man
e between sear
h algorithms is independent of the interse
tion algorithm
hosen. Sin
e Small Adaptive is the fastest algorithm among those tested in [7℄(when using binary sear
h) and in our measures (when using binary sear
h aswell as when using interpolation sear
h), we use it as a referen
e to show theperforman
e of di�erent interpolation te
hniques (See Figure 6).The �rst variant, whi
h we
all Extrapolation Small Adaptive, involvesextrapolating on the
urrent and previous positions in set[i℄. Spe
i�
ally, theextrapolation step probes the index I(p0i; pi), where p0i is the previous extrapo-lation probe. This has the advantage of using \explored data" as the basis for
al
ulating the expe
ted index: this strategy is similar to galloping, whi
h usesthe previous jump value as the basis for the next jump (i.e. the value of the

9
 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

to
ta

l #
 o

f c
om

pa
ris

on
s

of sets

Small Adaptive
Interpolation Small Adaptive

Extrapolation Small Adaptive
Extrapolate Many (m=4, l=80) Small Adaptive

Extrapolate Ahead (l=log(n)) Small Adaptive
Extrapolate Ahead (l=sqrt(n)) Small Adaptive

Fig. 6. Relative performan
e of sear
h algorithms in Small Adaptive: binary sear
h isoutperformed by both interpolation sear
h and Extrapolation-based algorithms.next jump is the double of the value of the
urrent jump). Figure 7 shows thatextrapolation alone does worse than interpolation. Those results suggest thatusing the previous \explored data" for extrapolation is not as a

urate as usinga standard interpolation probe, given by I(pi; ni), on the remaining elements inset[i℄.
0

10000

20000

30000

40000

50000

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 7. Extrapolation (low wins) vsInterpolation Small Adaptive (highwins). Using extrapolation on previousexplored data is less a

urate. –7000

–6000

–5000

–4000

–3000

–2000

–1000

0

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 8. Extrapolate Ahead (l = 50)(low wins) vs. Interpolation SmallAdaptive (high wins). The look-aheadrange improves the performan
e.The se
ond variant, Extrapolate Ahead Small Adaptive, is similar toExtrapolation Small Adaptive, but rather than basing the extrapolation onthe
urrent and previous positions, we base it on the
urrent position and a po-sition that is further ahead. Thus, our probe index is
al
ulated by I(pi; pi + l)where l is a positive integer that essentially measures the degree to whi
h the ex-trapolation uses lo
al information. The algorithm uses the lo
al distribution as a

10representative sample of the distribution between set[i℄[pi℄ and the eliminator: alarge value of l
orresponds to an algorithm using more global information, whilea small value of l
orrespond to an algorithm using only lo
al information. If theindex of the su

essor su

(e) of e in set[i℄ is not far from pi, then the distributionbetween set[i℄[pi℄ and set[i℄[pi + l℄ is expe
ted to be similar to the distributionbetween set[i℄[pi℄ and set[i℄[su

(e)℄, and the estimate will be fairly a

urate.Figure 8 shows that for l = 50, Extrapolate Ahead Small Adaptive performsas well as Interpolation Small Adaptive, and that their performan
e stays
lose when it is worse. Figure 10 shows a similar result for l = pni.
–12000
–10000

–8000
–6000
–4000
–2000

0
2000

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 9. Extrapolate Ahead (l= lg ni)(low wins) vs. Interpolation SmallAdaptive (high wins). More
omplexresults with a logarithmi
 look-aheadrange. –1000

–500

0

500

1000

1500

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 10. Extrapolate Ahead (l=pni)(low wins) vs. Interpolation SmallAdaptive (high wins). Deterioration ofperforman
e for a polynomial look-aheadrange.Figure 9 shows that
hoosing a smaller value for the look-ahead range l, su
has l = log2 ni, deteriorates slightly the performan
e: the algorithm has a mu
hless pre
ise approximation of the distribution of the values in the array.The third variant involves extrapolating many times, whi
h we
allExtrapolate Many Small Adaptive. We
al
ulate the index by taking the av-erage of several extrapolations, whi
h is based on the
urrent position and severalpositions ahead. That is, our probe index
an be
al
ulated by 1m Pmj=1 I(pi; pi+j lm), where m is the number of times we extrapolate and l is the farthest rea
hof the extrapolations. This has the advantage of a more a

urate extrapolationand
ould result in less
omparisons. Figures 11 and 12 show that it is not the
ase, as Interpolation Small Adaptive is still better, if only by a small mar-gin. This is perhaps due to the fa
t that the extrapolations with larger valuesof j in I(pi; pi + j lm) is more a

urate than those with smaller values of j, thuswhen taking the average of all extrapolations, the ones with small values of j
ontribute more to the ina

ura
y of the estimate.5 Con
lusions and Open QuestionsWe showed that using binary sear
h, the interse
tion algorithm Small Adaptiveoutperforms all the other interse
tion algorithms in
luding Sequential the most

11
–5000

–4000

–3000

–2000

–1000

0

1000

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 11. Extrapolate Many (m=4,l=80) (low wins) vs InterpolationSmall Adaptive (high wins). –4000

–2000

0

2000

di
ffe

re
nc

e
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
of setsFig. 12. Extrapolate Many (m=8,l=80) (low wins) vs InterpolationSmall Adaptive (high wins).re
ent interse
tion algorithm proposed in the theory
ommunity, whi
h hereto-fore had not been
ompared in pra
ti
e. Our results also
on�rm the superiorityof Small Adaptive over all other algorithms as reported in [7℄, even on a dataset substantially larger than the one used in that study. Considering variants ofthose interse
tion algorithms using interpolation sear
h instead of binary sear
hand galloping, we showed that for any �xed interse
tion te
hnique, su
h as SmallAdaptive, using interpolation sear
h always improves the performan
e. Finally,we
ombine the two
on
epts of interpolation sear
h and galloping to de�ne theextrapolation sear
h and several variants of it. Comparing the pra
ti
al perfor-man
e of these on the interse
tion algorithm Small Adaptive, we found oneparti
ularly e�e
tive, whi
h results in an even better interse
tion algorithm,termed Extrapolate Ahead Small Adaptive, whi
h at ea
h step
omputes theposition of the next
omparison using the values of elements at distan
e l of ea
hother, and whi
h performs the best when l = lgni.Algorithm # of
omparisonsSequential 119479075Adaptive 83326341Small Adaptive 68706234Interpolation Sequential 55275738Interpolation Adaptive 58558408Interpolation Small Adaptive 44525318Extrapolation Small Adaptive 50018852Extrapolate Many Small Adaptive (m = 4, l = 80) 44119573Extrapolate Many Small Adaptive (m = 8, l = 80) 44087712Extrapolate Ahead Small Adaptive (l = 50) 44133783Extrapolate Ahead Small Adaptive (l = lg n) 43930174Extrapolate Ahead Small Adaptive (l = pn) 44379689Table 1. Total number of
omparisons performed by ea
h algorithm over thedata set.Extrapolate Ahead Small Adaptive with look-ahead range l = lg(n) is best.

12 For
ompleteness we summarize the results a
ross all algorithms on the wholedata set in Table 1.We would like to highlight some further experiments and open questions.First, it would be interesting to run the experiments over other data, su
h asthe TREC
orpus, parti
ularly on the web sli
e of the
olle
tion. Se
ond, tomeasure a
tual running times as opposed to the on number of
omparisons alone.We expe
t that I/O and
a
hing e�e
ts would have a signi�
ant impa
t on thereported times of ea
h algorithm.Referen
es1. Ri
ardo A. Baeza-Yates. A Fast Set Interse
tion Algorithm for Sorted Sequen
es.In Pro
eedings of 15th Annual Symposium on Combinatorial Pattern Mat
hing(CPM) 400-408, 2004.2. Ri
ardo A. Baeza-Yates, Alejandro Salinger. Experimental Analysis of a Fast In-terse
tion Algorithm for Sorted Sequen
es. In Pro
eedings of 12th InternationalConferen
e on String Pro
essing and Information Retrieval (SPIRE) 13-24, 2005.3. J�er�emy Barbay and Claire Kenyon. Adaptive Interse
tion and t-Threshold Prob-lems. In Pro
eedings of the 13th Annual ACM-SIAM Symposium on Dis
rete Al-gorithms (SODA) 390-399, January 2002.4. Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm forunbounded sear
hing. Information pro
essing letters, 5(3):82{87, 1976.5. Erik D. Demaine, Thouis R. Jones, Mihai Patras
u. Interpolation sear
h for non-independent data. In Pro
eedings of the 15th Annual ACM-SIAM Symposium onDis
rete Algorithms (SODA), 529-530, January 2004.6. Erik D. Demaine, Alejandro L�opez-Ortiz, and J. Ian Munro. Adaptive set inter-se
tions, unions, and di�eren
es. In Pro
eedings of the 11th Annual ACM-SIAMSymposium on Dis
rete Algorithms (SODA), 743-752, January 2000.7. Erik D. Demaine, Alejandro L�opez-Ortiz, and J. Ian Munro. Experiments on Adap-tive set interse
tions for text retrieval systems. In Pro
eedings of the 3rd Workshopon Algorithm Engineering and Experiments (ALENEX), 91-104, January 2001.8. V. Estivill-Castro and Deri
k Wood. A survey of adaptive sorting algorithms. ACMComputing Surveys, 24(4) 441-476, De
ember 19929. W. Frakes and R. Baeza-Yates. Information Retrieval. Prenti
e Hall, 199210. G. Gonnet, L. Rogers, and G. George. An algorithmi
 and
omplexity analysis ofinterpolation sear
h. A
ta Informati
a, 13(1) 39-52, 198011. Frank K. Hwang, Shen Lin. Optimal Merging of 2 Elements with n Elements. A
taInformati
a, v.1, pp. 145-158, 197112. Frank K. Hwang, Shen Lin. A Simple Algorithm for Merging Two Disjoint Linearly-Ordered Sets. SIAM Journal of Computing, v.1, pp. 31-39, 1972.13. Frank K. Hwang. Optimal Merging of 3 Elements with n Elements. SIAM Journalof Computing. v.9, pp. 298-320, 198014. U. Manber and G. Myers. SuÆx arrays: A new method for on-line string sear
hes.In Pro
eedings of the 1st Symposium on Dis
rete Algorithms (SODA),, 319-327,199015. Y. Perl, A. Itai, and H. Avni. Interpolation sear
h{A log log n sear
h. CACM, 21(7)550-554, 1978

