Experiments on Adaptive Set Intersections
for Text Retrieval Systems

Erik D. Demaine', Alejandro Lépez-Ortiz?, and J. Ian Munro!

! Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada, {eddemaine, imunro}@uwaterloo.ca
2 Faculty of Computer Science, University of New Brunswick, P. O. Box 4400,
Fredericton, N. B. E3B 5A3, Canada, alopez-o@unb.ca

Abstract. In [3] we introduced an adaptive algorithm for computing the
intersection of k sorted sets within a factor of at most 8% comparisons
of the information-theoretic lower bound under a model that deals with
an encoding of the shortest proof of the answer. This adaptive algorithm
performs better for “burstier” inputs than a straightforward worst-case
optimal method. Indeed, we have shown that, subject to a reasonable
measure of instance difficulty, the algorithm adapts optimally up to a
constant factor. This paper explores how this algorithm behaves un-
der actual data distributions, compared with standard algorithms. We
present experiments for searching 114 megabytes of text from the World
Wide Web using 5,000 actual user queries from a commercial search en-
gine. From the experiments, it is observed that the theoretically optimal
adaptive algorithm is not always the optimal in practice, given the distri-
bution of WWW text data. We then proceed to study several improve-
ment techniques for the standard algorithms. These techniques combine
improvements suggested by the observed distribution of the data as well
as the theoretical results from [3]. We perform controlled experiments
on these techniques to determine which ones result in improved perfor-
mance, resulting in an algorithm that outperforms existing algorithms
in most cases.

1 Introduction

In SODA 2000 [3] we proposed an adaptive algorithm for computing the in-
tersection of sorted sets. This problem arises in many contexts, including data
warehousing and text-retrieval databases. Here we focus on the latter applica-
tion, specifically web search engines. In this case, for each keyword in the query,
we are given the set of references to documents in which it occurs, obtained
quickly by an appropriate data structure [1,5,9]. Our goal is to identify those
documents containing all the query keywords. Typically these keyword sets are
stored in some natural order, such as document date, crawl date, or by URL
identifier. In practice, the sets are large. For example, as of July 2000, the av-
erage word from user query logs matches approximately nine million documents
on the Google web search engine. Of course, one would hope that the answer

to the query is small, particularly if the query is an intersection. It may also be
expected that in dealing with grouped documents such as news articles or web
sites, one will find a large number of references to one term over a few relatively
short intervals of documents, and little outside these intervals. We refer to this
data nonuniformity as “burstiness.”

An extreme example that makes this notion more precise arises in computing
the intersection of two sorted sets of size n. In this case, it is necessary to verify
the total order of the elements via comparisons. More precisely, for an algorithm
to be convinced it has the right answer, it should be able to prove that it has
the right answer by demonstrating the results of certain comparisons. At one
extreme, if the sets interleave perfectly, {2(n) comparisons are required to prove
that the intersection is empty. At the other extreme, if all the elements in one
set precede all the elements in the other set, a single comparison suffices to
prove that the intersection is empty. In between these extremes, the number of
comparisons required is the number of “groups” of contiguous elements from a
common set in the total order of elements. The fewer the groups the burstier the
data.

This example leads to the idea of an adaptive algorithm [2,4,10]. Such an
algorithm makes no a priori assumptions about the input, but determines the
kind of instance it faces as the computation proceeds. The running time should
be reasonable for the particular instance not the overall worst-case.

In the case of two sets, it is possible to obtain a running time that is roughly
a logarithmic factor more than the minimum number of comparisons needed
for a proof for that instance. This logarithmic factor is necessary on average.
Intersection of several sorted sets becomes more interesting because then it is no
longer necessary to verify the total order of the elements. Nonetheless, in [3], we
demonstrate a simple algorithmic characterization of the proof with the fewest
comparisons. Another difference with & > 2 sets is that there is no longer an
adaptive algorithm that matches the minimum proof length within a roughly
logarithmic factor; it can be necessary to spend roughly an additional factor of
k in comparisons [3]. Although we have been imprecise here, the exact lower
bound can be matched by a fairly simple adaptive algorithm described in [3].
The method proposed, while phrased in terms of a pure comparison model, is
immediately applicable to any balanced tree (e.g., B-tree) model.

This means that while in theory the advantages of the adaptive algorithm are
undeniable—it is no worse than the worst-case optimal [6, 7] and it does as well
as theoretically possible—in practice the improvement depends on the burstiness
of the actual data. The purpose of this paper is to evaluate this improvement,
which leads to the following questions: what is a reasonable model of data, and
how bursty is that data?

Our results are experiments on “realistic” data, a 114-megabyte crawl from
the web and 5,000 actual user queries made on the Google™ search engine; see
Section 2 for details.

What do we measure of this data? We begin by comparing two algorithms
for set intersection: the optimal adaptive algorithm from [3], and a standard

algorithm used in some search engines that has a limited amount of adaptive-
ness already, making it a tough competitor. We refer to the former algorithm
as Adaptive, and to the latter algorithm as SvS, small versus small, because it
repeatedly intersects the two smallest sets. As a measure of burstiness, we also
compute the fewest comparisons required just to prove that the answer is correct.
This value can be viewed as the number of comparisons made by an omniscient,
algorithm that knows precisely where to make comparisons, and hence we call it
Ideal. It is important to keep in mind that this lower bound is not even achiev-
able: there are two factors unaccounted, one required and roughly logarithmic,
and the other roughly k in the worst case, not to mention any constant factors
implicit in the algorithms. (Indeed we have proved stronger lower bounds in [3].)
We also implement a metric called IdealLog that approximately incorporates the
necessary logarithmic factor. See Section 3 for descriptions of these algorithms.

In all cases, we measure the number of comparisons used by the algorithms.
Of course, this cost metric does not always accurately predict running time,
which is of the most practical interest, because of caching effects and data-
structuring overhead. However, the data structuring is fairly simple in both
algorithms, and the memory access patterns have similar regularities, so we be-
lieve that our results are indicative of running time as well. There are many
positive consequences of comparison counts in terms of reproducability, specif-
ically machine-independence and independence from much algorithm tuning.
Comparison counts are also inherently interesting because they can be directly
compared with the theoretical results in [3].

Our results regarding these algorithms (see Section 4) are somewhat surpris-
ing in that the standard algorithm outperforms the optimal adaptive algorithm
in many instances, albeit the minority of instances. This phenomenon seems to
be caused by the overhead of the adaptive algorithm repeatedly cycling through
the sets to exploit any obtainable shortcuts. Such constant awareness of all sets
is necessary to guarantee how well the algorithm adapts. Unfortunately, it seems
that for this data set the overhead is too great to improve performance on aver-
age, for queries with several sets. Thus in Section 5 we explore various compro-
mises between the two algorithms, to evaluate which adaptive techniques have
a globally positive effect. We end up with a partially adaptive algorithm that
outperforms both the adaptive and standard algorithms in most cases.

2 The Data

Because our exploration of the set-intersection problem was motivated by text
retrieval systems in general and web search engines in particular, we tested the
algorithm on a 114-megabyte subset of the World Wide Web using a query log
from Google. The subset consists of 11,788,110 words!, with 515,277 different
words, for an average of 22.8 occurrences per word. Note that this average is in

! The text is tokenized into “words” consisting of alphanumerical characters; all other
characters are considered whitespace.

keywords|# queries in log
2 1,481
3 1,013
4 341
5 103
6 57
7 26
8 14
9 4
10 2
11 1

Table 1. Query distribution in Google log.

sharp contrast to the average number of documents containing a query word,
because a small number of very common words are used very often.

We indexed this corpus using an inverted word index, which lists the docu-
ment(s) in which each term occurs. The plain-text word index is 48 megabytes.

The query log is a list of 5,000 queries as recorded by the Google search
engine. Queries consisting of just a single keyword were eliminated because they
require no intersections. This reduces the query set to 3,561 entries. Of those,
703 queries resulted in trivially empty sets because one or more of the query
terms did not occur in the index at all. The remaining 2,858 queries were used
to test the intersection algorithms. Table 1 shows the distribution of the number
of keywords per query. Note that the average number of keyword terms per query
is 2.286, which is in line with data reported elsewhere for queries to web search
engines [8]. Notice that beyond around seven query terms the query set is not
large enough to be representative.

The data we use is realistic in the sense that it comes from a real crawl of the
web and a real query log. It is idisosincratic in the sense that it is a collection
of pages, grouped by topic, time and language. Other set intersections outside
text retrieval, or even other text-retrieval intersections outside the web, might
not share these characteristics.

The query log has some anomalies. First, the Google search engine does not
search for stop words in a query unless they are preceded by ‘+’. This may
cause knowledgeable users to refrain from using stop words, and thus produce
an underrepresentation of the true frequency of stop words in a free-form search
engine. Second, it seems that in the Google logs, all stop words have been re-
placed by a canonical stop word ‘a’. Third, the lexically last query begins with
‘sup’, so for example no queries start with ‘the’ (which is not a Google stop
word).

Figure 1 shows how the different set sizes are represented in the query log.
At the top of the chart we see a large set corresponding to the word ‘a’, which
is very common both in the corpus and in the query log. In Figure 2 we see
the distribution of the total set sizes of the queries. In other words, given a

Size of each set, counted repeatedly per query Size of each query, i.e., sum of sizes of sets in each query
100000 1e+06

00000

10000

10000

1000
1000

=
o
S
i
o
S

i
o

o
o

Number of elements in a set in a query
Total number of elements in a quegy

Fig. 1. Size of each set, counted repeatedly Fig. 2. Total number of elements involved
per query. in each query.

query from the query log, we sum the number of elements in each of the sets in
that query and plot this value. As it is to be expected from the sum of a set of
random variables, the distribution roughly resembles a normal distribution, with
the exception of those queries involving the stop word ‘a’, as discussed above.

3 Main Algorithms

We begin by studying three main methods in the comparison model for deter-
mining the intersection of sorted sets. The first algorithm, which we refer to as
SvS, repeatedly intersects the two smallest sets; to intersect a pair of sets, it
binary searches in the larger set for each element in the smaller set. A more
formal version of the algorithm is presented below.

Algorithm SvS.

— Sort the sets by size.
— Initially let the candidate answer set be the smallest set.
— For every other set S in increasing order by size:
e Initially set ¢ to 1.
e For each each element e in the candidate answer set:
o Perform a binary search for e in S, between ¢ and |S|.
o If e is not found, remove it from the candidate answer set.
o Set ¢ to the value of low at the end of the binary search.

This algorithm is widely used in practice, and even possesses a certain amount
of adaptivity. Because intersections only make sets smaller, as the algorithm
progresses with several sets, the time to do each intersection effectively reduces.
In particular, the algorithm benefits largely if the set sizes vary widely, and

2 John Bentley (personal communication, September 2000) has pointed out that it is
frequently more efficient to binary search between 1 and |S| all the time, because of
similar access patterns causing good cache behavior. However, since we are working
in the comparison model, searching from ¢ can only make SvS a stonger competitor.

performs poorly if the set sizes are all roughly the same. More precisely, the
algorithm SvS makes at least {2(r logn) and at most O(nlog(n/k)) comparisons,
where r is the size of the resulting intersection and n is the total number of
elements over all k sets.

The second algorithm, which we refer to as Adaptive, is the adaptive method
proposed by the authors [3]. It has two main adaptive features. The most promi-
nent is that the algorithm takes an element (the smallest element in a particular
set whose status in the intersection is unknown) and searches for it in each of
the other sets “simultaneously,” and may update this candidate value in “mid
search.” A second adaptive feature is the manner in which the algorithm per-
forms this search. It uses the well-known approach of starting at the beginning
of an array and doubling the index of the queried location until we overshoot. A
binary search between the last two locations inspected completes the search for
a total time of 21g¢ comparisons, where ¢ denotes the final location inspected.
We refer to this approach as galloping.

A more precise description of the algorithm is the following;:

Algorithm Adaptive.

— Initially set the eliminator to the first element of the first set.
— Repeatedly cycle through the sets:
e Perform one galloping step in the current set.
o If we overshoot:
o Binary search to identify the precise location of the eliminator.
o If present, increase occurrence counter and output if the count reaches k.
o Otherwise, set the new eliminator to the first element in the current set
that is larger than the current eliminator. If no such element exists, exit
loop.

In [3], Adaptive is described as working from both ends of each set, but for
simplicity we do not employ this feature at all in this work. The worst-case
performance of Adaptive is within a factor of at most O(k) of any intersec-
tion algorithm, on average, and its best-case performance is within a roughly
logarithmic factor of the “offline ideal method.”

This last metric, which we refer to as Ideal, measures the minimum number
of comparisons required in a proof of the intersection computed. Recall that an
intersection proof is a sequence of comparisons that uniquely determines the
result of the intersection. For example, given the sorted sets {1,3} and {2},
the comparisons (1 < 2) and (2 < 3) form a proof of the emptiness of the
intersection. Of course, computing the absolute smallest number of comparisons
required takes significantly more comparisons than the value itself, but it can be
computed in linear time as proved in [3].

Because any algorithm produces a proof, the smallest descriptive complexity
of a proof for a given instance is a lower bound on the time complexity of
the intersection of that instance. Unfortunately this descriptive complexity or
Kolmogorov complexity is not computable, so we cannot directly use this lower
bound as a measure of instance difficulty or burstiness. Instead we employ two
approximations to this lower bound.

First observe that the number of comparisons alone (as opposed to a binary
encoding of which comparisons) is a lower bound on the descriptive complexity
of a proof. This is precisely the Ideal metric. The adaptive algorithm takes a
roughly logarithmic factor more than Ideal, and it may take roughly a factor
of k£ longer in the worst case. However, Ideal provides a baseline unachievable
optimum, similar to that used in online competitive analysis.

This baseline can be refined by computing the complexity of a description of
this proof. Specifically, we describe a proof by encoding the compared elements,
for each element writing the set and displacement from the previously compared
element in that set. To encode this gap we need, on average, the log of the
displacement value, so we term this the log-gap metric. For the purposes of this
work we ignore the cost of encoding which sets are involved in each comparison.

In SODA we show that a log-gap encoding is efficient, using information-
theoretic arguments. As we mentioned above, Ideal can be found in linear time,
yet the shortest proof even by the log-gap metric seems difficult to compute.
One can estimate this value, though, by computing the log-gap encoding of the
proof with the fewest comparisons. This leads to a metric called IdealLog, Ideal
with a log gap. We cannot claim that this is the shortest proof description but
it seems a reasonable approximation.

4 Main Experimental Results

Ideal intersection Log-gap of ideal proof
10000 100000
1000 10000
@ @
2 2
o o
2 2
2 2 -
8 100 | - & 1000 - I
£ £ .
S S
3 e S +
s + =
s 1) . ! 1 = 100) '. E24
2 L 2 o]
-l e g o
z st [Torirss [+ 2 & o +
"
1 10 i 1 +
1
= PN
= SRR 1
.1 14 L
0 4 5 7 10 11 2 3 4 5 7 10 11
Number of sets Number of sets

Fig. 3. Number of comparisons of Ideal by Fig. 4. Encoding size of Ideall.og by terms
terms in query. in query.

Figure 3 shows the number of comparisons required by Ideal to show that
the intersection is empty, and Figure 4 shows the size of the log-gap encoding of
this proof. The integral points on the z-axis correspond to the number of terms
per query, and the y-axis is the number of comparisons taken by either metric
on a logarithmic scale. Within each integral gap on the z-axis is a frequency
histogram. Each cross represents a query. The crosses are spaced horizontally
to be vertically separated by at least a constant amount, and they are scaled

to fill the horizontal space available. Thus, at a given vertical level, the width
of the chart approximates the relative frequency, and the density of the chart is
indicative of the number of queries with that cost.? In addition, to the left of
each histogram is a bar (interval) centered at the mean (marked with an ‘X’) and
extending up and down by the standard deviation. This histogram/bar format
is used in most of our charts.

Figure 5 shows the number of comparisons used by Adaptive to compute the
intersection, with axes as in Figure 3. These values are normalized in Figure 7
by dividing by the IdealLog metric for each query. We observe Adaptive requires
on the average about 1+ 0.4k times as many comparisons as IdealLog. This ob-
servation matches the worst-case ratio of around @(k), suggesting that Adaptive
is wasting time cycling through the sets.

Adaptive intersection Pairwise two-smallest binary-search intersection (SvS)

100000 1le+06

10000 100000
@ @
2 = 2
2 1000 |- 210000
g . o g
£ + r £
8 100 . - 8 1000 |- L
S S
2 R 5
£ 10 |- £ 100 |- 7
]]
z ¥ z

b .
1 10+ * x
.
= i i
I
ot 7 0 11 : 3 0 11
Number of sets Number of sets

Fig. 5. Number of comparisons of Adap- Fig. 6. Numbers of comparisons of SvS by
tive by terms in query. terms in query.

Adaptive [low wins] vs. Two-Smallest Binary Search (SvS) [low wins] vs.

10 IdealLog [high wins] 100 IdealLog [high wins]

10

S £ %
P
e Ty
- . r
IR
i :

.

Ratio of numbers of comparisons
.
Ratio of numbers of comparisons

.1 .1
0 7 0 5 7
Number of sets Number of sets

Fig. 7. Ratio of number of comparisons of Fig. 8. Ratio of number of comparisons of
Adaptive over IdealLog. SvS over IdealLog.

3 Unfortunately, there is a limit to the visual density, so that, for example, the leftmost
histograms in Figures 3 and 4 both appear black, even though the histogram in
Figure 3 is packed more tightly because of many points with value 2 (coming from
queries with 1-element sets see Figure 1).

Figures 6 and 8 show the same charts for SvS, as absolute numbers of compar-
isons and as ratios to IdealLog. They show that SvS also requires a substantially
larger amount of comparisons than IdealLog, and for few sets (2 or 3) often more
comparisons than Adaptive, but the dependence on k is effectively removed. In
fact, SvS appears to improve slightly as the number of sets increases, presumably
because more sets allows SvS’s form of adaptivity (removing candidate elements
using small sets) to become more prominent.

Figure 9 shows the ratio of the running times of Adaptive and SvS, computed
individually for each query. Figure 10 shows the difference in another way, sub-
tracting the two running times and normalizing by dividing by IdealLog. Either
way, we see directly that Adaptive performs frequently better than SvS only for
a small number of sets (2 or 3), presumably because of Adaptive’s overhead in
cycling through the sets. SvS gains a significant advantage because the intersec-
tion of the smallest two sets is very small and indeed often empty, and therefore
SvS often terminates after the first pass, having only examined two sets, while
Adaptive constantly examines all k sets.

Adaptive [low wins] vs.
Two-Smallest Binary Search (SvS) [high wins]

Adaptive [low wins] vs.
10 Two-Smallest Binary Search (SvS) [high wins]

++
Fs
s
+ [FET *
.

=
o

o

%ﬂ£§;+{f+¥ s)

e

o

&

AN
o

AN
@

Ratio of numbers of comparisons

N
S]

0.01

N
a

4 5 10 11
Number of sets

Difference in number of comparisons, divided by IdealLog

Number of sets

Fig. 9. Ratio of number of comparisons of Fig.10. Difference in number of compar-
Adaptive over SvS. isons of Adaptive and SvS, normalized by
IdealLog.

5 Further Experiments

In this section we explore various compromises between the adaptive algorithm
and SvS to develop a new algorithm better than both for any number of sets.
More precisely, we decompose the differences between the two algorithms into
main techniques. To measure the relative effectiveness of each of these techniques
we examine most (though not all) of the possible combinations of the techniques.

The first issue is how to search for an element in a set. Binary search is optimal
when trying to locate a random element. However, in the case of computing
an intersection using SvS (say), on the average the element being located is
likelier to be near the front of the array. Therefore starting the search from

the front, as galloping does, is a natural improvement. Figure 11 confirms that
galloping in the second-smallest set (“half galloping”) is usually better than
binary searching (SvS). Variations in galloping may also result in improvements;
one simple example is increasing the galloping factor from 2 to 4. This particular
change has no substantial effect, positive or negative, in the case of half galloping;
see Figure 12. Another natural candidate is the Hwang-Lin merging algorithm
for optimal intersection of two random sets [6, 7]. Again, comparing to the half-
galloping method, there is no clear advantage either way; see Figure 13.

Two-Smallest Binary Search (SvS) [low wins] vs. Two-Smallest Half-Gallop [low wins] vs.

10 Two-Smallest Half-Gallop [high wins] 10 Two-Smallest Half-Gallop 1 [high wins]
¥
2 H 2
S S
2 . 2 +
g . g
£ 3 1t * £
3 sl 53T S 4 8 :
S 1 ther g1 .+ 15} 1 n L cop I
o o e
H s il H A
£ £
2 2 e
S S
=] i =]
T T
o o
+
0.1t} L 0.1t} L
2 3 4 5 10 11 2 3 4 5 10 11

Number of sets Number of sets

Fig. 11. Ratio of number of comparisons
of SvS over SvS with galloping (Two-
Smallest Half-Gallop).

Fig. 12. Ratio of number of comparisons
of Two-Smallest Half-Gallop (factor 2)
over Two-Smallest Half-Gallop Acceler-

ated (factor 4).

Two-Smallest Half-Gallop [low wins] vs.
Two-Smallest Adaptive [high wins]

Two-Smallest Half-Gallop [low wins] vs.

Two-Smallest Hwang-Lin [high wins]

10 — 10 —

» »
2 2
5 5
0 n
5 5
g g
g I g
5 5 A
o 1 % £ E 4 e 1%& £+ H -
3 | 3 ?
£ i e |
b e b
[=} + [=}
i<} i<}
g | ! g
[
i
01k 01k ;
2 3 4 s 0 11 2 3 4 s 0 11

Number of sets Number of sets

Fig. 14. Ratio of number of comparisons
of Two-Smallest Half-Gallop over Two-
Smallest Adaptive.

Fig. 13. Ratio of number of comparisons
of Two-Smallest Half-Gallop over Two-
Smallest Hwang-Lin.

A second issue is that SvS sequentially scans the smallest set, and for each
element searches for a matching element in the second-smallest set. Alternatively,
one could alternate the set from which the candidate element comes from. In one
step we search in the second-smallest set for the first element in the smallest set;
in the next step we search in the smallest set for the first uneliminated element
in the second-smallest set; etc. This is equivalent to repeatedly applying the

adaptive algorithm to the smallest pair of sets, and hence we call the algorithm
Two-Smallest Adaptive. The results in Figure 14 show that this galloping in
both sets rarely performs differently from galloping in just one set, but when
there is a difference it is usually an improvement.

A third issue is that Adaptive performs galloping steps cyclically on all sets.
This global awareness is necessary to guarantee that the number of comparisons
is within a factor of optimal, but can be inefficient, especially considering that
in our data the pairwise intersection of the smallest two sets is often empty. On
the other hand, SvS blindly computes the intersection of these two sets with
no lookahead. One way to blend the approaches of Adaptive and SvS is what
we call Small Adaptive. We apply a galloping binary search (or the first step of
Hwang-Lin) to see how the first element of the smallest set fits into the second-
smallest set. If the element is in the second-smallest set, we next see whether it
is in the third-smallest and so on until we determine whether it is in the answer.
(Admittedly this forces us to make estimates of the set size if we use Hwang-Lin.)

This method does not increase the work from SvS because we are just moving
some of the comparisons ahead in the schedule of SvS. The advantage, though,
is that this action will eliminate arbitrary numbers of elements from sets and
so will change their relative sizes. Most notably it may change which are the
smallest two sets, which would appear to be a clear advantage.

Thus, if we proceed in set-size order, examining the remaining sets, this
approach has the advantage that the work performed is no larger than SvS,
and on occasion it might result in savings if another set becomes completely
eliminated. For example, if we are intersecting the sets 4, = {3,6,8}, Ay =
{4,6,8,10} and A3 = {1,2,3,4,5}, we start by examining A; and A,, we discard
3 and 4, and identify 6 as a common element. SvS would carry on in these two sets
obtaining the provisional result set R = {6,8} which would then be intersected
against A3. On the other hand an algorithm that immediately examines the
remaining sets would discover that all elements in A3 are smaller than 6 and
immediately report that the entire intersection is empty.

Another source of improvement from examining the remaining sets once

a common element has been identified is that another set might become the
smallest. For example, let A; and A, be as in the previous example and let
5 ={1,2,3,4,5,9}. Then after reaching the common element 6 in 4; and A
the algorithm examines Az and eliminates all but {9}. At this stage the remain-
ing elements to be explored are {8} from Ay, {8,10} from A, and {9} from As.
Now the new two smallest sets are A; and A3 and it proceeds on these two sets.

As a final tuning, if the two smallest sets do not change, Small Adaptive
searches alternately between the two sets, as in Two-Smallest Adaptive. Thus
the only difference between these two algorithms is when the two smallest sets
intersect. On the web dataset, this happens so infrequently that the difference
between Small Adaptive and Two-Smallest Adaptive is slight; see Figure 15.
However, when Small Adaptive makes a difference it is usually an improvement,
and there are several instances with a fairly large improvement.

Two-Smallest Adaptive [low wins] vs. Adaptive [low wins] vs.
Small Adaptive [high wins] 10 Small Adaptive [high wins]

.
.
. b 1[A
Egg% .
o
.

10

4 B

Ratio of numbers of comparisons
.

Ratio of numbers of comparisons
.

.1 L .1
0 7 o 5 7
Number of sets Number of sets

Fig.15. Ratio of number of compar- Fig.16. Ratio of number of comparisons
isons of Two-Smallest Adaptive over Small of Adaptive over Small Adaptive.
Adaptive.

We have reached the conclusion that four techniques have positive impact:
galloping, alternating between the two smallest sets, advancing early to addi-
tional sets when a common element is encountered (a limited form of adap-
tivity), and updating which sets are smallest. The techniques which had little
effect, positive or negative, were the Hwang-Lin replacement for galloping, and
accelerating galloping. The only technique with significant negative impact is
the full-blown adaptivity based on cycling through all the sets.

We designed Small Adaptive by starting with SvS and incorporating many es-
sential features from Adaptive to improve past SvS. In particular, Figures 11, 14,
and 15 have shown that Small Adaptive wins over SvS. (This can also be veri-
fied directly.) But how does Small Adaptive compare to our other “extreme,” the
adaptive algorithm from [3]? Surprisingly, Figure 16 shows that Small Adaptive
almost always performs better than Adaptive, regardless of the number of sets
(unlike SvS which was incomparable with Adaptive).

Table 2 summarizes the algorithms encountered, and a few other possible
combinations. Table 3 shows the average overall running times for these algo-
rithms, as well as the standard deviations. Interestingly, in this aggregate metric,
Adaptive outperforms SvS; this is because many queries have only 2 or 3 sets. In
addition, the algorithm with the smallest average running time is Small Adap-
tive. We conclude that Small Adaptive seems like the best general algorithm for
computing set intersections based on these ideas, for this dataset.

6 Conclusion

In this paper we have measured the performance of an optimally adaptive algo-
rithm for computing set intersection against the standard SvS algorithm and an
offline optimal Ideal. From this measurement we observed a class of instances in
which Adaptive outperforms SvS. The experiments then suggest several avenues
for improvement, which were tested in an almost orthogonal fashion. From these
additional results we determined which techniques improve the performance of

Algorithm Cyclic/2| Sym- | Update | Advance on |Gallop
Smallest |metric|Smallest|Common Elt.|Factor
Adaptive Cyclic Y — — 2
Adaptive 2 Cyclic Y — — 4
Ideal
Small Adaptive Two Y Y Y 2
Small Adaptive Accel. Two Y Y Y 4
Two-Smallest Adaptive Two Y N N 2
Two-Smallest Adaptive Accel. Two Y N N 4
Two-Smallest Binary Search (SvS) | Two N N N —
Two-Smallest Half-Gallop Two N N N 2
Two-Smallest Half-Gallop Accel. Two N N N 4
Two-Smallest Hwang-Lin Two N N N —
Two-S’est Smart Binary Search Two N Y N
Two-S’est Smart Half-Gallop Two N Y N 2
Two-S’est Smart Half-Gallop Accel.|] Two N Y N 4
Table 2. Algorithm characteristics key table.
Algorithm Average|Std. Dev.|Min| Max
Adaptive 371.46| 1029.41 1| 21792
Adaptive Accelerated 386.75| 1143.65| 1| 25528
Ideal 75.44| 263.37| 1| 7439
Small Adaptive 315.10 962.78| 1| 21246
Small Adaptive Accelerated 326.58| 1057.41| 1| 24138
Two-Smallest Adaptive 321.88 998.55 1| 22323
Two-Smallest Adaptive Accelerated 343.90(1153.32| 1| 26487
Two-Smallest Binary Search (SvS) 886.67| 4404.36| 1|134200
Two-Smallest Half-Gallop 317.60| 989.98| 1| 21987
Two-Smallest Half-Gallop Accelerated 353.66 1171.77| 1| 27416
Two-Smallest Hwang-Lin 365.76| 1181.58| 1| 25880
Two-Smallest Smart Binary Search 891.36 4521.62| 1|137876
Two-Smallest Smart Half-Gallop 316.45 988.25 1| 21968
Two-Smallest Smart Half-Gallop Accelerated| 350.59| 1171.43| 1| 27220
Table 3. Aggregate performance of algorithms on web data.

an intersection algorithm for web data. We blended theoretical improvements
with experimental observations to improve and tune intersection algorithms for
the proposed domain. In the end we obtained an algorithm that outperforms the
two existing algorithms in most cases. We conclude that these techniques are of
practical significance in the domain of web search engines.

Acknowledgments

We thank Monika Henzinger of Google for access to the query logs. This work
was supported by NSERC.

References

9.

R. Baeza-Yates. Efficient Text Searching. PhD thesis, Department of Computer
Science, University of Waterloo, 1989.

Svante Carlsson, Christos Levcopoulos, and Ola Petersson. Sublinear merging and
natural mergesort. Algorithmica, 9:629 648, 1993.

Erik D. Demaine, Alejandro Lépez-Ortiz, and J. Tan Munro. Adaptive set inter-
sections, unions, and differences. In Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 743 752, San Francisco, California, Jan-
uary 2000.

Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms.
ACM Computing Surveys, 24(4):441 476, December 1992.

William Frakes and Richardo Baeza-Yates. Information Retrieval. Prentice Hall,
1992.

F. K. Hwang. Optimal merging of 3 elements with n elements. SIAM Journal on
Computing, 9(2):298-320, 1980.

F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, 1(1):31 39, 1980.

Michael Lesk. “Real world” searching panel at SIGIR 1997. SIGIR Forum, 32(1),
Spring 1998.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searchs.
In Proceedings of the 1st Symposium on Discrete Algorithms, pages 319-327, 1990.

10. Alistair Moffat, Ola Petersson, and Nicholas C. Wormald. A tree-based Mergesort.

Acta Informatica, 35(9):775 793, August 1998.

