
Experiments on Adaptive Set Interse
tionsfor Text Retrieval SystemsErik D. Demaine1, Alejandro L�opez-Ortiz2, and J. Ian Munro11 Department of Computer S
ien
e, University of Waterloo,Waterloo, Ontario N2L 3G1, Canada, feddemaine,imunrog�uwaterloo.
a2 Fa
ulty of Computer S
ien
e, University of New Brunswi
k, P. O. Box 4400,Frederi
ton, N. B. E3B 5A3, Canada, alopez-o�unb.
aAbstra
t. In [3℄ we introdu
ed an adaptive algorithm for 
omputing theinterse
tion of k sorted sets within a fa
tor of at most 8k 
omparisonsof the information-theoreti
 lower bound under a model that deals withan en
oding of the shortest proof of the answer. This adaptive algorithmperforms better for \burstier" inputs than a straightforward worst-
aseoptimal method. Indeed, we have shown that, subje
t to a reasonablemeasure of instan
e diÆ
ulty, the algorithm adapts optimally up to a
onstant fa
tor. This paper explores how this algorithm behaves un-der a
tual data distributions, 
ompared with standard algorithms. Wepresent experiments for sear
hing 114 megabytes of text from the WorldWide Web using 5,000 a
tual user queries from a 
ommer
ial sear
h en-gine. From the experiments, it is observed that the theoreti
ally optimaladaptive algorithm is not always the optimal in pra
ti
e, given the distri-bution of WWW text data. We then pro
eed to study several improve-ment te
hniques for the standard algorithms. These te
hniques 
ombineimprovements suggested by the observed distribution of the data as wellas the theoreti
al results from [3℄. We perform 
ontrolled experimentson these te
hniques to determine whi
h ones result in improved perfor-man
e, resulting in an algorithm that outperforms existing algorithmsin most 
ases.1 Introdu
tionIn SODA 2000 [3℄ we proposed an adaptive algorithm for 
omputing the in-terse
tion of sorted sets. This problem arises in many 
ontexts, in
luding datawarehousing and text-retrieval databases. Here we fo
us on the latter appli
a-tion, spe
i�
ally web sear
h engines. In this 
ase, for ea
h keyword in the query,we are given the set of referen
es to do
uments in whi
h it o

urs, obtainedqui
kly by an appropriate data stru
ture [1, 5, 9℄. Our goal is to identify thosedo
uments 
ontaining all the query keywords. Typi
ally these keyword sets arestored in some natural order, su
h as do
ument date, 
rawl date, or by URLidenti�er. In pra
ti
e, the sets are large. For example, as of July 2000, the av-erage word from user query logs mat
hes approximately nine million do
umentson the Google web sear
h engine. Of 
ourse, one would hope that the answer



to the query is small, parti
ularly if the query is an interse
tion. It may also beexpe
ted that in dealing with grouped do
uments su
h as news arti
les or websites, one will �nd a large number of referen
es to one term over a few relativelyshort intervals of do
uments, and little outside these intervals. We refer to thisdata nonuniformity as \burstiness."An extreme example that makes this notion more pre
ise arises in 
omputingthe interse
tion of two sorted sets of size n. In this 
ase, it is ne
essary to verifythe total order of the elements via 
omparisons. More pre
isely, for an algorithmto be 
onvin
ed it has the right answer, it should be able to prove that it hasthe right answer by demonstrating the results of 
ertain 
omparisons. At oneextreme, if the sets interleave perfe
tly, 
(n) 
omparisons are required to provethat the interse
tion is empty. At the other extreme, if all the elements in oneset pre
ede all the elements in the other set, a single 
omparison suÆ
es toprove that the interse
tion is empty. In between these extremes, the number of
omparisons required is the number of \groups" of 
ontiguous elements from a
ommon set in the total order of elements. The fewer the groups the burstier thedata.This example leads to the idea of an adaptive algorithm [2, 4, 10℄. Su
h analgorithm makes no a priori assumptions about the input, but determines thekind of instan
e it fa
es as the 
omputation pro
eeds. The running time shouldbe reasonable for the parti
ular instan
e|not the overall worst-
ase.In the 
ase of two sets, it is possible to obtain a running time that is roughlya logarithmi
 fa
tor more than the minimum number of 
omparisons neededfor a proof for that instan
e. This logarithmi
 fa
tor is ne
essary on average.Interse
tion of several sorted sets be
omes more interesting be
ause then it is nolonger ne
essary to verify the total order of the elements. Nonetheless, in [3℄, wedemonstrate a simple algorithmi
 
hara
terization of the proof with the fewest
omparisons. Another di�eren
e with k > 2 sets is that there is no longer anadaptive algorithm that mat
hes the minimum proof length within a roughlylogarithmi
 fa
tor; it 
an be ne
essary to spend roughly an additional fa
tor ofk in 
omparisons [3℄. Although we have been impre
ise here, the exa
t lowerbound 
an be mat
hed by a fairly simple adaptive algorithm des
ribed in [3℄.The method proposed, while phrased in terms of a pure 
omparison model, isimmediately appli
able to any balan
ed tree (e.g., B-tree) model.This means that while in theory the advantages of the adaptive algorithm areundeniable|it is no worse than the worst-
ase optimal [6, 7℄ and it does as wellas theoreti
ally possible|in pra
ti
e the improvement depends on the burstinessof the a
tual data. The purpose of this paper is to evaluate this improvement,whi
h leads to the following questions: what is a reasonable model of data, andhow bursty is that data?Our results are experiments on \realisti
" data, a 114-megabyte 
rawl fromthe web and 5,000 a
tual user queries made on the GoogleTM sear
h engine; seeSe
tion 2 for details.What do we measure of this data? We begin by 
omparing two algorithmsfor set interse
tion: the optimal adaptive algorithm from [3℄, and a standard



algorithm used in some sear
h engines that has a limited amount of adaptive-ness already, making it a tough 
ompetitor. We refer to the former algorithmas Adaptive, and to the latter algorithm as SvS, small versus small, be
ause itrepeatedly interse
ts the two smallest sets. As a measure of burstiness, we also
ompute the fewest 
omparisons required just to prove that the answer is 
orre
t.This value 
an be viewed as the number of 
omparisons made by an omnis
ientalgorithm that knows pre
isely where to make 
omparisons, and hen
e we 
all itIdeal. It is important to keep in mind that this lower bound is not even a
hiev-able: there are two fa
tors una

ounted, one required and roughly logarithmi
,and the other roughly k in the worst 
ase, not to mention any 
onstant fa
torsimpli
it in the algorithms. (Indeed we have proved stronger lower bounds in [3℄.)We also implement a metri
 
alled IdealLog that approximately in
orporates thene
essary logarithmi
 fa
tor. See Se
tion 3 for des
riptions of these algorithms.In all 
ases, we measure the number of 
omparisons used by the algorithms.Of 
ourse, this 
ost metri
 does not always a

urately predi
t running time,whi
h is of the most pra
ti
al interest, be
ause of 
a
hing e�e
ts and data-stru
turing overhead. However, the data stru
turing is fairly simple in bothalgorithms, and the memory a

ess patterns have similar regularities, so we be-lieve that our results are indi
ative of running time as well. There are manypositive 
onsequen
es of 
omparison 
ounts in terms of reprodu
ability, spe
if-i
ally ma
hine-independen
e and independen
e from mu
h algorithm tuning.Comparison 
ounts are also inherently interesting be
ause they 
an be dire
tly
ompared with the theoreti
al results in [3℄.Our results regarding these algorithms (see Se
tion 4) are somewhat surpris-ing in that the standard algorithm outperforms the optimal adaptive algorithmin many instan
es, albeit the minority of instan
es. This phenomenon seems tobe 
aused by the overhead of the adaptive algorithm repeatedly 
y
ling throughthe sets to exploit any obtainable short
uts. Su
h 
onstant awareness of all setsis ne
essary to guarantee how well the algorithm adapts. Unfortunately, it seemsthat for this data set the overhead is too great to improve performan
e on aver-age, for queries with several sets. Thus in Se
tion 5 we explore various 
ompro-mises between the two algorithms, to evaluate whi
h adaptive te
hniques havea globally positive e�e
t. We end up with a partially adaptive algorithm thatoutperforms both the adaptive and standard algorithms in most 
ases.2 The DataBe
ause our exploration of the set-interse
tion problem was motivated by textretrieval systems in general and web sear
h engines in parti
ular, we tested thealgorithm on a 114-megabyte subset of the World Wide Web using a query logfrom Google. The subset 
onsists of 11,788,110 words1, with 515,277 di�erentwords, for an average of 22.8 o

urren
es per word. Note that this average is in1 The text is tokenized into \words" 
onsisting of alphanumeri
al 
hara
ters; all other
hara
ters are 
onsidered whitespa
e.



# keywords # queries in log2 1,4813 1,0134 3415 1036 577 268 149 410 211 1Table 1. Query distribution in Google log.sharp 
ontrast to the average number of do
uments 
ontaining a query word,be
ause a small number of very 
ommon words are used very often.We indexed this 
orpus using an inverted word index, whi
h lists the do
u-ment(s) in whi
h ea
h term o

urs. The plain-text word index is 48 megabytes.The query log is a list of 5,000 queries as re
orded by the Google sear
hengine. Queries 
onsisting of just a single keyword were eliminated be
ause theyrequire no interse
tions. This redu
es the query set to 3,561 entries. Of those,703 queries resulted in trivially empty sets be
ause one or more of the queryterms did not o

ur in the index at all. The remaining 2,858 queries were usedto test the interse
tion algorithms. Table 1 shows the distribution of the numberof keywords per query. Note that the average number of keyword terms per queryis 2.286, whi
h is in line with data reported elsewhere for queries to web sear
hengines [8℄. Noti
e that beyond around seven query terms the query set is notlarge enough to be representative.The data we use is realisti
 in the sense that it 
omes from a real 
rawl of theweb and a real query log. It is idisosin
rati
 in the sense that it is a 
olle
tionof pages, grouped by topi
, time and language. Other set interse
tions outsidetext retrieval, or even other text-retrieval interse
tions outside the web, mightnot share these 
hara
teristi
s.The query log has some anomalies. First, the Google sear
h engine does notsear
h for stop words in a query unless they are pre
eded by `+'. This may
ause knowledgeable users to refrain from using stop words, and thus produ
ean underrepresentation of the true frequen
y of stop words in a free-form sear
hengine. Se
ond, it seems that in the Google logs, all stop words have been re-pla
ed by a 
anoni
al stop word `a'. Third, the lexi
ally last query begins with`sup', so for example no queries start with `the' (whi
h is not a Google stopword).Figure 1 shows how the di�erent set sizes are represented in the query log.At the top of the 
hart we see a large set 
orresponding to the word `a', whi
his very 
ommon both in the 
orpus and in the query log. In Figure 2 we seethe distribution of the total set sizes of the queries. In other words, given a
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Fig. 2. Total number of elements involvedin ea
h query.query from the query log, we sum the number of elements in ea
h of the sets inthat query and plot this value. As it is to be expe
ted from the sum of a set ofrandom variables, the distribution roughly resembles a normal distribution, withthe ex
eption of those queries involving the stop word `a', as dis
ussed above.3 Main AlgorithmsWe begin by studying three main methods in the 
omparison model for deter-mining the interse
tion of sorted sets. The �rst algorithm, whi
h we refer to asSvS, repeatedly interse
ts the two smallest sets; to interse
t a pair of sets, itbinary sear
hes in the larger set for ea
h element in the smaller set. A moreformal version of the algorithm is presented below.Algorithm SvS.{ Sort the sets by size.{ Initially let the 
andidate answer set be the smallest set.{ For every other set S in in
reasing order by size:� Initially set ` to 1.� For ea
h ea
h element e in the 
andidate answer set:Æ Perform a binary sear
h for e in S, between ` and jSj.2Æ If e is not found, remove it from the 
andidate answer set.Æ Set ` to the value of low at the end of the binary sear
h.This algorithm is widely used in pra
ti
e, and even possesses a 
ertain amountof adaptivity. Be
ause interse
tions only make sets smaller, as the algorithmprogresses with several sets, the time to do ea
h interse
tion e�e
tively redu
es.In parti
ular, the algorithm bene�ts largely if the set sizes vary widely, and2 John Bentley (personal 
ommuni
ation, September 2000) has pointed out that it isfrequently more eÆ
ient to binary sear
h between 1 and jSj all the time, be
ause ofsimilar a

ess patterns 
ausing good 
a
he behavior. However, sin
e we are workingin the 
omparison model, sear
hing from ` 
an only make SvS a stonger 
ompetitor.



performs poorly if the set sizes are all roughly the same. More pre
isely, thealgorithm SvS makes at least 
(r logn) and at most O(n log(n=k)) 
omparisons,where r is the size of the resulting interse
tion and n is the total number ofelements over all k sets.The se
ond algorithm, whi
h we refer to as Adaptive, is the adaptive methodproposed by the authors [3℄. It has two main adaptive features. The most promi-nent is that the algorithm takes an element (the smallest element in a parti
ularset whose status in the interse
tion is unknown) and sear
hes for it in ea
h ofthe other sets \simultaneously," and may update this 
andidate value in \midsear
h." A se
ond adaptive feature is the manner in whi
h the algorithm per-forms this sear
h. It uses the well-known approa
h of starting at the beginningof an array and doubling the index of the queried lo
ation until we overshoot. Abinary sear
h between the last two lo
ations inspe
ted 
ompletes the sear
h fora total time of 2 lg i 
omparisons, where i denotes the �nal lo
ation inspe
ted.We refer to this approa
h as galloping.A more pre
ise des
ription of the algorithm is the following:Algorithm Adaptive.{ Initially set the eliminator to the �rst element of the �rst set.{ Repeatedly 
y
le through the sets:� Perform one galloping step in the 
urrent set.� If we overshoot:Æ Binary sear
h to identify the pre
ise lo
ation of the eliminator.Æ If present, in
rease o

urren
e 
ounter and output if the 
ount rea
hes k.Æ Otherwise, set the new eliminator to the �rst element in the 
urrent setthat is larger than the 
urrent eliminator. If no su
h element exists, exitloop.In [3℄, Adaptive is des
ribed as working from both ends of ea
h set, but forsimpli
ity we do not employ this feature at all in this work. The worst-
aseperforman
e of Adaptive is within a fa
tor of at most O(k) of any interse
-tion algorithm, on average, and its best-
ase performan
e is within a roughlylogarithmi
 fa
tor of the \o�ine ideal method."This last metri
, whi
h we refer to as Ideal, measures the minimum numberof 
omparisons required in a proof of the interse
tion 
omputed. Re
all that aninterse
tion proof is a sequen
e of 
omparisons that uniquely determines theresult of the interse
tion. For example, given the sorted sets f1; 3g and f2g,the 
omparisons (1 < 2) and (2 < 3) form a proof of the emptiness of theinterse
tion. Of 
ourse, 
omputing the absolute smallest number of 
omparisonsrequired takes signi�
antly more 
omparisons than the value itself, but it 
an be
omputed in linear time as proved in [3℄.Be
ause any algorithm produ
es a proof, the smallest des
riptive 
omplexityof a proof for a given instan
e is a lower bound on the time 
omplexity ofthe interse
tion of that instan
e. Unfortunately this des
riptive 
omplexity orKolmogorov 
omplexity is not 
omputable, so we 
annot dire
tly use this lowerbound as a measure of instan
e diÆ
ulty or burstiness. Instead we employ twoapproximations to this lower bound.



First observe that the number of 
omparisons alone (as opposed to a binaryen
oding of whi
h 
omparisons) is a lower bound on the des
riptive 
omplexityof a proof. This is pre
isely the Ideal metri
. The adaptive algorithm takes aroughly logarithmi
 fa
tor more than Ideal, and it may take roughly a fa
torof k longer in the worst 
ase. However, Ideal provides a baseline una
hievableoptimum, similar to that used in online 
ompetitive analysis.This baseline 
an be re�ned by 
omputing the 
omplexity of a des
ription ofthis proof. Spe
i�
ally, we des
ribe a proof by en
oding the 
ompared elements,for ea
h element writing the set and displa
ement from the previously 
omparedelement in that set. To en
ode this gap we need, on average, the log of thedispla
ement value, so we term this the log-gap metri
. For the purposes of thiswork we ignore the 
ost of en
oding whi
h sets are involved in ea
h 
omparison.In SODA we show that a log-gap en
oding is eÆ
ient, using information-theoreti
 arguments. As we mentioned above, Ideal 
an be found in linear time,yet the shortest proof even by the log-gap metri
 seems diÆ
ult to 
ompute.One 
an estimate this value, though, by 
omputing the log-gap en
oding of theproof with the fewest 
omparisons. This leads to a metri
 
alled IdealLog, Idealwith a log gap. We 
annot 
laim that this is the shortest proof des
ription butit seems a reasonable approximation.4 Main Experimental Results
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Fig. 4. En
oding size of IdealLog by termsin query.Figure 3 shows the number of 
omparisons required by Ideal to show thatthe interse
tion is empty, and Figure 4 shows the size of the log-gap en
oding ofthis proof. The integral points on the x-axis 
orrespond to the number of termsper query, and the y-axis is the number of 
omparisons taken by either metri
on a logarithmi
 s
ale. Within ea
h integral gap on the x-axis is a frequen
yhistogram. Ea
h 
ross represents a query. The 
rosses are spa
ed horizontallyto be verti
ally separated by at least a 
onstant amount, and they are s
aled



to �ll the horizontal spa
e available. Thus, at a given verti
al level, the widthof the 
hart approximates the relative frequen
y, and the density of the 
hart isindi
ative of the number of queries with that 
ost.3 In addition, to the left ofea
h histogram is a bar (interval) 
entered at the mean (marked with an `X') andextending up and down by the standard deviation. This histogram/bar formatis used in most of our 
harts.Figure 5 shows the number of 
omparisons used by Adaptive to 
ompute theinterse
tion, with axes as in Figure 3. These values are normalized in Figure 7by dividing by the IdealLog metri
 for ea
h query. We observe Adaptive requireson the average about 1+ 0:4k times as many 
omparisons as IdealLog. This ob-servation mat
hes the worst-
ase ratio of around �(k), suggesting that Adaptiveis wasting time 
y
ling through the sets.
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Fig. 6. Numbers of 
omparisons of SvS byterms in query.
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Fig. 7. Ratio of number of 
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Fig. 8. Ratio of number of 
omparisons ofSvS over IdealLog.3 Unfortunately, there is a limit to the visual density, so that, for example, the leftmosthistograms in Figures 3 and 4 both appear bla
k, even though the histogram inFigure 3 is pa
ked more tightly be
ause of many points with value 2 (
oming fromqueries with 1-element sets|see Figure 1).



Figures 6 and 8 show the same 
harts for SvS, as absolute numbers of 
ompar-isons and as ratios to IdealLog. They show that SvS also requires a substantiallylarger amount of 
omparisons than IdealLog, and for few sets (2 or 3) often more
omparisons than Adaptive, but the dependen
e on k is e�e
tively removed. Infa
t, SvS appears to improve slightly as the number of sets in
reases, presumablybe
ause more sets allows SvS's form of adaptivity (removing 
andidate elementsusing small sets) to be
ome more prominent.Figure 9 shows the ratio of the running times of Adaptive and SvS, 
omputedindividually for ea
h query. Figure 10 shows the di�eren
e in another way, sub-tra
ting the two running times and normalizing by dividing by IdealLog. Eitherway, we see dire
tly that Adaptive performs frequently better than SvS only fora small number of sets (2 or 3), presumably be
ause of Adaptive's overhead in
y
ling through the sets. SvS gains a signi�
ant advantage be
ause the interse
-tion of the smallest two sets is very small and indeed often empty, and thereforeSvS often terminates after the �rst pass, having only examined two sets, whileAdaptive 
onstantly examines all k sets.
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Fig. 9. Ratio of number of 
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Fig. 10. Di�eren
e in number of 
ompar-isons of Adaptive and SvS, normalized byIdealLog.5 Further ExperimentsIn this se
tion we explore various 
ompromises between the adaptive algorithmand SvS to develop a new algorithm better than both for any number of sets.More pre
isely, we de
ompose the di�eren
es between the two algorithms intomain te
hniques. To measure the relative e�e
tiveness of ea
h of these te
hniqueswe examine most (though not all) of the possible 
ombinations of the te
hniques.The �rst issue is how to sear
h for an element in a set. Binary sear
h is optimalwhen trying to lo
ate a random element. However, in the 
ase of 
omputingan interse
tion using SvS (say), on the average the element being lo
ated islikelier to be near the front of the array. Therefore starting the sear
h from



the front, as galloping does, is a natural improvement. Figure 11 
on�rms thatgalloping in the se
ond-smallest set (\half galloping") is usually better thanbinary sear
hing (SvS). Variations in galloping may also result in improvements;one simple example is in
reasing the galloping fa
tor from 2 to 4. This parti
ular
hange has no substantial e�e
t, positive or negative, in the 
ase of half galloping;see Figure 12. Another natural 
andidate is the Hwang-Lin merging algorithmfor optimal interse
tion of two random sets [6, 7℄. Again, 
omparing to the half-galloping method, there is no 
lear advantage either way; see Figure 13.
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Fig. 11. Ratio of number of 
omparisonsof SvS over SvS with galloping (Two-Smallest Half-Gallop). 0.1
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Fig. 12. Ratio of number of 
omparisonsof Two-Smallest Half-Gallop (fa
tor 2)over Two-Smallest Half-Gallop A

eler-ated (fa
tor 4).
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Fig. 13. Ratio of number of 
omparisonsof Two-Smallest Half-Gallop over Two-Smallest Hwang-Lin. 0.1
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Fig. 14. Ratio of number of 
omparisonsof Two-Smallest Half-Gallop over Two-Smallest Adaptive.A se
ond issue is that SvS sequentially s
ans the smallest set, and for ea
helement sear
hes for a mat
hing element in the se
ond-smallest set. Alternatively,one 
ould alternate the set from whi
h the 
andidate element 
omes from. In onestep we sear
h in the se
ond-smallest set for the �rst element in the smallest set;in the next step we sear
h in the smallest set for the �rst uneliminated elementin the se
ond-smallest set; et
. This is equivalent to repeatedly applying the



adaptive algorithm to the smallest pair of sets, and hen
e we 
all the algorithmTwo-Smallest Adaptive. The results in Figure 14 show that this galloping inboth sets rarely performs di�erently from galloping in just one set, but whenthere is a di�eren
e it is usually an improvement.A third issue is that Adaptive performs galloping steps 
y
li
ally on all sets.This global awareness is ne
essary to guarantee that the number of 
omparisonsis within a fa
tor of optimal, but 
an be ineÆ
ient, espe
ially 
onsidering thatin our data the pairwise interse
tion of the smallest two sets is often empty. Onthe other hand, SvS blindly 
omputes the interse
tion of these two sets withno lookahead. One way to blend the approa
hes of Adaptive and SvS is whatwe 
all Small Adaptive. We apply a galloping binary sear
h (or the �rst step ofHwang-Lin) to see how the �rst element of the smallest set �ts into the se
ond-smallest set. If the element is in the se
ond-smallest set, we next see whether itis in the third-smallest and so on until we determine whether it is in the answer.(Admittedly this for
es us to make estimates of the set size if we use Hwang-Lin.)This method does not in
rease the work from SvS be
ause we are just movingsome of the 
omparisons ahead in the s
hedule of SvS. The advantage, though,is that this a
tion will eliminate arbitrary numbers of elements from sets andso will 
hange their relative sizes. Most notably it may 
hange whi
h are thesmallest two sets, whi
h would appear to be a 
lear advantage.Thus, if we pro
eed in set-size order, examining the remaining sets, thisapproa
h has the advantage that the work performed is no larger than SvS,and on o

asion it might result in savings if another set be
omes 
ompletelyeliminated. For example, if we are interse
ting the sets A1 = f3; 6; 8g, A2 =f4; 6; 8; 10g and A3 = f1; 2; 3; 4; 5g, we start by examining A1 and A2, we dis
ard3 and 4, and identify 6 as a 
ommon element. SvS would 
arry on in these two setsobtaining the provisional result set R = f6; 8g whi
h would then be interse
tedagainst A3. On the other hand an algorithm that immediately examines theremaining sets would dis
over that all elements in A3 are smaller than 6 andimmediately report that the entire interse
tion is empty.Another sour
e of improvement from examining the remaining sets on
ea 
ommon element has been identi�ed is that another set might be
ome thesmallest. For example, let A1 and A2 be as in the previous example and letA03 = f1; 2; 3; 4; 5; 9g. Then after rea
hing the 
ommon element 6 in A1 and A2the algorithm examines A3 and eliminates all but f9g. At this stage the remain-ing elements to be explored are f8g from A1, f8; 10g from A2 and f9g from A3.Now the new two smallest sets are A1 and A3 and it pro
eeds on these two sets.As a �nal tuning, if the two smallest sets do not 
hange, Small Adaptivesear
hes alternately between the two sets, as in Two-Smallest Adaptive. Thusthe only di�eren
e between these two algorithms is when the two smallest setsinterse
t. On the web dataset, this happens so infrequently that the di�eren
ebetween Small Adaptive and Two-Smallest Adaptive is slight; see Figure 15.However, when Small Adaptive makes a di�eren
e it is usually an improvement,and there are several instan
es with a fairly large improvement.
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Fig. 16. Ratio of number of 
omparisonsof Adaptive over Small Adaptive.We have rea
hed the 
on
lusion that four te
hniques have positive impa
t:galloping, alternating between the two smallest sets, advan
ing early to addi-tional sets when a 
ommon element is en
ountered (a limited form of adap-tivity), and updating whi
h sets are smallest. The te
hniques whi
h had littlee�e
t, positive or negative, were the Hwang-Lin repla
ement for galloping, anda

elerating galloping. The only te
hnique with signi�
ant negative impa
t isthe full-blown adaptivity based on 
y
ling through all the sets.We designed Small Adaptive by starting with SvS and in
orporating many es-sential features from Adaptive to improve past SvS. In parti
ular, Figures 11, 14,and 15 have shown that Small Adaptive wins over SvS. (This 
an also be veri-�ed dire
tly.) But how does Small Adaptive 
ompare to our other \extreme," theadaptive algorithm from [3℄? Surprisingly, Figure 16 shows that Small Adaptivealmost always performs better than Adaptive, regardless of the number of sets(unlike SvS whi
h was in
omparable with Adaptive).Table 2 summarizes the algorithms en
ountered, and a few other possible
ombinations. Table 3 shows the average overall running times for these algo-rithms, as well as the standard deviations. Interestingly, in this aggregate metri
,Adaptive outperforms SvS; this is be
ause many queries have only 2 or 3 sets. Inaddition, the algorithm with the smallest average running time is Small Adap-tive. We 
on
lude that Small Adaptive seems like the best general algorithm for
omputing set interse
tions based on these ideas, for this dataset.6 Con
lusionIn this paper we have measured the performan
e of an optimally adaptive algo-rithm for 
omputing set interse
tion against the standard SvS algorithm and ano�ine optimal Ideal. From this measurement we observed a 
lass of instan
es inwhi
h Adaptive outperforms SvS. The experiments then suggest several avenuesfor improvement, whi
h were tested in an almost orthogonal fashion. From theseadditional results we determined whi
h te
hniques improve the performan
e of



Algorithm Cy
li
/2 Sym- Update Advan
e on GallopSmallest metri
 Smallest Common Elt. Fa
torAdaptive Cy
li
 Y | | 2Adaptive 2 Cy
li
 Y | | 4Ideal | | | | |Small Adaptive Two Y Y Y 2Small Adaptive A

el. Two Y Y Y 4Two-Smallest Adaptive Two Y N N 2Two-Smallest Adaptive A

el. Two Y N N 4Two-Smallest Binary Sear
h (SvS) Two N N N |Two-Smallest Half-Gallop Two N N N 2Two-Smallest Half-Gallop A

el. Two N N N 4Two-Smallest Hwang-Lin Two N N N |Two-S'est Smart Binary Sear
h Two N Y N |Two-S'est Smart Half-Gallop Two N Y N 2Two-S'est Smart Half-Gallop A

el. Two N Y N 4Table 2. Algorithm 
hara
teristi
s key table.
Algorithm Average Std. Dev. Min MaxAdaptive 371.46 1029.41 1 21792Adaptive A

elerated 386.75 1143.65 1 25528Ideal 75.44 263.37 1 7439Small Adaptive 315.10 962.78 1 21246Small Adaptive A

elerated 326.58 1057.41 1 24138Two-Smallest Adaptive 321.88 998.55 1 22323Two-Smallest Adaptive A

elerated 343.90 1153.32 1 26487Two-Smallest Binary Sear
h (SvS) 886.67 4404.36 1 134200Two-Smallest Half-Gallop 317.60 989.98 1 21987Two-Smallest Half-Gallop A

elerated 353.66 1171.77 1 27416Two-Smallest Hwang-Lin 365.76 1181.58 1 25880Two-Smallest Smart Binary Sear
h 891.36 4521.62 1 137876Two-Smallest Smart Half-Gallop 316.45 988.25 1 21968Two-Smallest Smart Half-Gallop A

elerated 350.59 1171.43 1 27220Table 3. Aggregate performan
e of algorithms on web data.

an interse
tion algorithm for web data. We blended theoreti
al improvementswith experimental observations to improve and tune interse
tion algorithms forthe proposed domain. In the end we obtained an algorithm that outperforms thetwo existing algorithms in most 
ases. We 
on
lude that these te
hniques are ofpra
ti
al signi�
an
e in the domain of web sear
h engines.
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