
Experiments on Adaptive Set Intersetionsfor Text Retrieval SystemsErik D. Demaine1, Alejandro L�opez-Ortiz2, and J. Ian Munro11 Department of Computer Siene, University of Waterloo,Waterloo, Ontario N2L 3G1, Canada, feddemaine,imunrog�uwaterloo.a2 Faulty of Computer Siene, University of New Brunswik, P. O. Box 4400,Frederiton, N. B. E3B 5A3, Canada, alopez-o�unb.aAbstrat. In [3℄ we introdued an adaptive algorithm for omputing theintersetion of k sorted sets within a fator of at most 8k omparisonsof the information-theoreti lower bound under a model that deals withan enoding of the shortest proof of the answer. This adaptive algorithmperforms better for \burstier" inputs than a straightforward worst-aseoptimal method. Indeed, we have shown that, subjet to a reasonablemeasure of instane diÆulty, the algorithm adapts optimally up to aonstant fator. This paper explores how this algorithm behaves un-der atual data distributions, ompared with standard algorithms. Wepresent experiments for searhing 114 megabytes of text from the WorldWide Web using 5,000 atual user queries from a ommerial searh en-gine. From the experiments, it is observed that the theoretially optimaladaptive algorithm is not always the optimal in pratie, given the distri-bution of WWW text data. We then proeed to study several improve-ment tehniques for the standard algorithms. These tehniques ombineimprovements suggested by the observed distribution of the data as wellas the theoretial results from [3℄. We perform ontrolled experimentson these tehniques to determine whih ones result in improved perfor-mane, resulting in an algorithm that outperforms existing algorithmsin most ases.1 IntrodutionIn SODA 2000 [3℄ we proposed an adaptive algorithm for omputing the in-tersetion of sorted sets. This problem arises in many ontexts, inluding datawarehousing and text-retrieval databases. Here we fous on the latter applia-tion, spei�ally web searh engines. In this ase, for eah keyword in the query,we are given the set of referenes to douments in whih it ours, obtainedquikly by an appropriate data struture [1, 5, 9℄. Our goal is to identify thosedouments ontaining all the query keywords. Typially these keyword sets arestored in some natural order, suh as doument date, rawl date, or by URLidenti�er. In pratie, the sets are large. For example, as of July 2000, the av-erage word from user query logs mathes approximately nine million doumentson the Google web searh engine. Of ourse, one would hope that the answer

to the query is small, partiularly if the query is an intersetion. It may also beexpeted that in dealing with grouped douments suh as news artiles or websites, one will �nd a large number of referenes to one term over a few relativelyshort intervals of douments, and little outside these intervals. We refer to thisdata nonuniformity as \burstiness."An extreme example that makes this notion more preise arises in omputingthe intersetion of two sorted sets of size n. In this ase, it is neessary to verifythe total order of the elements via omparisons. More preisely, for an algorithmto be onvined it has the right answer, it should be able to prove that it hasthe right answer by demonstrating the results of ertain omparisons. At oneextreme, if the sets interleave perfetly,
(n) omparisons are required to provethat the intersetion is empty. At the other extreme, if all the elements in oneset preede all the elements in the other set, a single omparison suÆes toprove that the intersetion is empty. In between these extremes, the number ofomparisons required is the number of \groups" of ontiguous elements from aommon set in the total order of elements. The fewer the groups the burstier thedata.This example leads to the idea of an adaptive algorithm [2, 4, 10℄. Suh analgorithm makes no a priori assumptions about the input, but determines thekind of instane it faes as the omputation proeeds. The running time shouldbe reasonable for the partiular instane|not the overall worst-ase.In the ase of two sets, it is possible to obtain a running time that is roughlya logarithmi fator more than the minimum number of omparisons neededfor a proof for that instane. This logarithmi fator is neessary on average.Intersetion of several sorted sets beomes more interesting beause then it is nolonger neessary to verify the total order of the elements. Nonetheless, in [3℄, wedemonstrate a simple algorithmi haraterization of the proof with the fewestomparisons. Another di�erene with k > 2 sets is that there is no longer anadaptive algorithm that mathes the minimum proof length within a roughlylogarithmi fator; it an be neessary to spend roughly an additional fator ofk in omparisons [3℄. Although we have been impreise here, the exat lowerbound an be mathed by a fairly simple adaptive algorithm desribed in [3℄.The method proposed, while phrased in terms of a pure omparison model, isimmediately appliable to any balaned tree (e.g., B-tree) model.This means that while in theory the advantages of the adaptive algorithm areundeniable|it is no worse than the worst-ase optimal [6, 7℄ and it does as wellas theoretially possible|in pratie the improvement depends on the burstinessof the atual data. The purpose of this paper is to evaluate this improvement,whih leads to the following questions: what is a reasonable model of data, andhow bursty is that data?Our results are experiments on \realisti" data, a 114-megabyte rawl fromthe web and 5,000 atual user queries made on the GoogleTM searh engine; seeSetion 2 for details.What do we measure of this data? We begin by omparing two algorithmsfor set intersetion: the optimal adaptive algorithm from [3℄, and a standard

algorithm used in some searh engines that has a limited amount of adaptive-ness already, making it a tough ompetitor. We refer to the former algorithmas Adaptive, and to the latter algorithm as SvS, small versus small, beause itrepeatedly intersets the two smallest sets. As a measure of burstiness, we alsoompute the fewest omparisons required just to prove that the answer is orret.This value an be viewed as the number of omparisons made by an omnisientalgorithm that knows preisely where to make omparisons, and hene we all itIdeal. It is important to keep in mind that this lower bound is not even ahiev-able: there are two fators unaounted, one required and roughly logarithmi,and the other roughly k in the worst ase, not to mention any onstant fatorsimpliit in the algorithms. (Indeed we have proved stronger lower bounds in [3℄.)We also implement a metri alled IdealLog that approximately inorporates theneessary logarithmi fator. See Setion 3 for desriptions of these algorithms.In all ases, we measure the number of omparisons used by the algorithms.Of ourse, this ost metri does not always aurately predit running time,whih is of the most pratial interest, beause of ahing e�ets and data-struturing overhead. However, the data struturing is fairly simple in bothalgorithms, and the memory aess patterns have similar regularities, so we be-lieve that our results are indiative of running time as well. There are manypositive onsequenes of omparison ounts in terms of reproduability, speif-ially mahine-independene and independene from muh algorithm tuning.Comparison ounts are also inherently interesting beause they an be diretlyompared with the theoretial results in [3℄.Our results regarding these algorithms (see Setion 4) are somewhat surpris-ing in that the standard algorithm outperforms the optimal adaptive algorithmin many instanes, albeit the minority of instanes. This phenomenon seems tobe aused by the overhead of the adaptive algorithm repeatedly yling throughthe sets to exploit any obtainable shortuts. Suh onstant awareness of all setsis neessary to guarantee how well the algorithm adapts. Unfortunately, it seemsthat for this data set the overhead is too great to improve performane on aver-age, for queries with several sets. Thus in Setion 5 we explore various ompro-mises between the two algorithms, to evaluate whih adaptive tehniques havea globally positive e�et. We end up with a partially adaptive algorithm thatoutperforms both the adaptive and standard algorithms in most ases.2 The DataBeause our exploration of the set-intersetion problem was motivated by textretrieval systems in general and web searh engines in partiular, we tested thealgorithm on a 114-megabyte subset of the World Wide Web using a query logfrom Google. The subset onsists of 11,788,110 words1, with 515,277 di�erentwords, for an average of 22.8 ourrenes per word. Note that this average is in1 The text is tokenized into \words" onsisting of alphanumerial haraters; all otherharaters are onsidered whitespae.

keywords # queries in log2 1,4813 1,0134 3415 1036 577 268 149 410 211 1Table 1. Query distribution in Google log.sharp ontrast to the average number of douments ontaining a query word,beause a small number of very ommon words are used very often.We indexed this orpus using an inverted word index, whih lists the dou-ment(s) in whih eah term ours. The plain-text word index is 48 megabytes.The query log is a list of 5,000 queries as reorded by the Google searhengine. Queries onsisting of just a single keyword were eliminated beause theyrequire no intersetions. This redues the query set to 3,561 entries. Of those,703 queries resulted in trivially empty sets beause one or more of the queryterms did not our in the index at all. The remaining 2,858 queries were usedto test the intersetion algorithms. Table 1 shows the distribution of the numberof keywords per query. Note that the average number of keyword terms per queryis 2.286, whih is in line with data reported elsewhere for queries to web searhengines [8℄. Notie that beyond around seven query terms the query set is notlarge enough to be representative.The data we use is realisti in the sense that it omes from a real rawl of theweb and a real query log. It is idisosinrati in the sense that it is a olletionof pages, grouped by topi, time and language. Other set intersetions outsidetext retrieval, or even other text-retrieval intersetions outside the web, mightnot share these harateristis.The query log has some anomalies. First, the Google searh engine does notsearh for stop words in a query unless they are preeded by `+'. This mayause knowledgeable users to refrain from using stop words, and thus produean underrepresentation of the true frequeny of stop words in a free-form searhengine. Seond, it seems that in the Google logs, all stop words have been re-plaed by a anonial stop word `a'. Third, the lexially last query begins with`sup', so for example no queries start with `the' (whih is not a Google stopword).Figure 1 shows how the di�erent set sizes are represented in the query log.At the top of the hart we see a large set orresponding to the word `a', whihis very ommon both in the orpus and in the query log. In Figure 2 we seethe distribution of the total set sizes of the queries. In other words, given a

1

10

100

1000

10000

100000

N
um

be
r

of
 e

le
m

en
ts

 in
 a

 s
et

 in
 a

 q
ue

ry

Size of each set, counted repeatedly per query

Fig. 1. Size of eah set, ounted repeatedlyper query. 1

10

100

1000

10000

100000

1e+06

T
ot

al
 n

um
be

r
of

 e
le

m
en

ts
 in

 a
 q

ue
ry

Size of each query, i.e., sum of sizes of sets in each query

Fig. 2. Total number of elements involvedin eah query.query from the query log, we sum the number of elements in eah of the sets inthat query and plot this value. As it is to be expeted from the sum of a set ofrandom variables, the distribution roughly resembles a normal distribution, withthe exeption of those queries involving the stop word `a', as disussed above.3 Main AlgorithmsWe begin by studying three main methods in the omparison model for deter-mining the intersetion of sorted sets. The �rst algorithm, whih we refer to asSvS, repeatedly intersets the two smallest sets; to interset a pair of sets, itbinary searhes in the larger set for eah element in the smaller set. A moreformal version of the algorithm is presented below.Algorithm SvS.{ Sort the sets by size.{ Initially let the andidate answer set be the smallest set.{ For every other set S in inreasing order by size:� Initially set ` to 1.� For eah eah element e in the andidate answer set:Æ Perform a binary searh for e in S, between ` and jSj.2Æ If e is not found, remove it from the andidate answer set.Æ Set ` to the value of low at the end of the binary searh.This algorithm is widely used in pratie, and even possesses a ertain amountof adaptivity. Beause intersetions only make sets smaller, as the algorithmprogresses with several sets, the time to do eah intersetion e�etively redues.In partiular, the algorithm bene�ts largely if the set sizes vary widely, and2 John Bentley (personal ommuniation, September 2000) has pointed out that it isfrequently more eÆient to binary searh between 1 and jSj all the time, beause ofsimilar aess patterns ausing good ahe behavior. However, sine we are workingin the omparison model, searhing from ` an only make SvS a stonger ompetitor.

performs poorly if the set sizes are all roughly the same. More preisely, thealgorithm SvS makes at least
(r logn) and at most O(n log(n=k)) omparisons,where r is the size of the resulting intersetion and n is the total number ofelements over all k sets.The seond algorithm, whih we refer to as Adaptive, is the adaptive methodproposed by the authors [3℄. It has two main adaptive features. The most promi-nent is that the algorithm takes an element (the smallest element in a partiularset whose status in the intersetion is unknown) and searhes for it in eah ofthe other sets \simultaneously," and may update this andidate value in \midsearh." A seond adaptive feature is the manner in whih the algorithm per-forms this searh. It uses the well-known approah of starting at the beginningof an array and doubling the index of the queried loation until we overshoot. Abinary searh between the last two loations inspeted ompletes the searh fora total time of 2 lg i omparisons, where i denotes the �nal loation inspeted.We refer to this approah as galloping.A more preise desription of the algorithm is the following:Algorithm Adaptive.{ Initially set the eliminator to the �rst element of the �rst set.{ Repeatedly yle through the sets:� Perform one galloping step in the urrent set.� If we overshoot:Æ Binary searh to identify the preise loation of the eliminator.Æ If present, inrease ourrene ounter and output if the ount reahes k.Æ Otherwise, set the new eliminator to the �rst element in the urrent setthat is larger than the urrent eliminator. If no suh element exists, exitloop.In [3℄, Adaptive is desribed as working from both ends of eah set, but forsimpliity we do not employ this feature at all in this work. The worst-aseperformane of Adaptive is within a fator of at most O(k) of any interse-tion algorithm, on average, and its best-ase performane is within a roughlylogarithmi fator of the \o�ine ideal method."This last metri, whih we refer to as Ideal, measures the minimum numberof omparisons required in a proof of the intersetion omputed. Reall that anintersetion proof is a sequene of omparisons that uniquely determines theresult of the intersetion. For example, given the sorted sets f1; 3g and f2g,the omparisons (1 < 2) and (2 < 3) form a proof of the emptiness of theintersetion. Of ourse, omputing the absolute smallest number of omparisonsrequired takes signi�antly more omparisons than the value itself, but it an beomputed in linear time as proved in [3℄.Beause any algorithm produes a proof, the smallest desriptive omplexityof a proof for a given instane is a lower bound on the time omplexity ofthe intersetion of that instane. Unfortunately this desriptive omplexity orKolmogorov omplexity is not omputable, so we annot diretly use this lowerbound as a measure of instane diÆulty or burstiness. Instead we employ twoapproximations to this lower bound.

First observe that the number of omparisons alone (as opposed to a binaryenoding of whih omparisons) is a lower bound on the desriptive omplexityof a proof. This is preisely the Ideal metri. The adaptive algorithm takes aroughly logarithmi fator more than Ideal, and it may take roughly a fatorof k longer in the worst ase. However, Ideal provides a baseline unahievableoptimum, similar to that used in online ompetitive analysis.This baseline an be re�ned by omputing the omplexity of a desription ofthis proof. Spei�ally, we desribe a proof by enoding the ompared elements,for eah element writing the set and displaement from the previously omparedelement in that set. To enode this gap we need, on average, the log of thedisplaement value, so we term this the log-gap metri. For the purposes of thiswork we ignore the ost of enoding whih sets are involved in eah omparison.In SODA we show that a log-gap enoding is eÆient, using information-theoreti arguments. As we mentioned above, Ideal an be found in linear time,yet the shortest proof even by the log-gap metri seems diÆult to ompute.One an estimate this value, though, by omputing the log-gap enoding of theproof with the fewest omparisons. This leads to a metri alled IdealLog, Idealwith a log gap. We annot laim that this is the shortest proof desription butit seems a reasonable approximation.4 Main Experimental Results
0.1

1

10

100

1000

10000

111098765432

N
um

be
r

of
 c

om
pa

ris
on

s

Number of sets

Ideal intersection

Fig. 3. Number of omparisons of Ideal byterms in query. 1

10

100

1000

10000

100000

111098765432

N
um

be
r

of
 c

om
pa

ris
on

s

Number of sets

Log-gap of ideal proof

Fig. 4. Enoding size of IdealLog by termsin query.Figure 3 shows the number of omparisons required by Ideal to show thatthe intersetion is empty, and Figure 4 shows the size of the log-gap enoding ofthis proof. The integral points on the x-axis orrespond to the number of termsper query, and the y-axis is the number of omparisons taken by either metrion a logarithmi sale. Within eah integral gap on the x-axis is a frequenyhistogram. Eah ross represents a query. The rosses are spaed horizontallyto be vertially separated by at least a onstant amount, and they are saled

to �ll the horizontal spae available. Thus, at a given vertial level, the widthof the hart approximates the relative frequeny, and the density of the hart isindiative of the number of queries with that ost.3 In addition, to the left ofeah histogram is a bar (interval) entered at the mean (marked with an `X') andextending up and down by the standard deviation. This histogram/bar formatis used in most of our harts.Figure 5 shows the number of omparisons used by Adaptive to ompute theintersetion, with axes as in Figure 3. These values are normalized in Figure 7by dividing by the IdealLog metri for eah query. We observe Adaptive requireson the average about 1+ 0:4k times as many omparisons as IdealLog. This ob-servation mathes the worst-ase ratio of around �(k), suggesting that Adaptiveis wasting time yling through the sets.
0.1

1

10

100

1000

10000

100000

111098765432

N
um

be
r

of
 c

om
pa

ris
on

s

Number of sets

Adaptive intersection

Fig. 5. Number of omparisons of Adap-tive by terms in query. 1

10

100

1000

10000

100000

1e+06

111098765432

N
um

be
r

of
 c

om
pa

ris
on

s

Number of sets

Pairwise two-smallest binary-search intersection (SvS)

Fig. 6. Numbers of omparisons of SvS byterms in query.
0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Adaptive [low wins] vs.
IdealLog [high wins]

Fig. 7. Ratio of number of omparisons ofAdaptive over IdealLog. 0.1

1

10

100

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Two-Smallest Binary Search (SvS) [low wins] vs.
IdealLog [high wins]

Fig. 8. Ratio of number of omparisons ofSvS over IdealLog.3 Unfortunately, there is a limit to the visual density, so that, for example, the leftmosthistograms in Figures 3 and 4 both appear blak, even though the histogram inFigure 3 is paked more tightly beause of many points with value 2 (oming fromqueries with 1-element sets|see Figure 1).

Figures 6 and 8 show the same harts for SvS, as absolute numbers of ompar-isons and as ratios to IdealLog. They show that SvS also requires a substantiallylarger amount of omparisons than IdealLog, and for few sets (2 or 3) often moreomparisons than Adaptive, but the dependene on k is e�etively removed. Infat, SvS appears to improve slightly as the number of sets inreases, presumablybeause more sets allows SvS's form of adaptivity (removing andidate elementsusing small sets) to beome more prominent.Figure 9 shows the ratio of the running times of Adaptive and SvS, omputedindividually for eah query. Figure 10 shows the di�erene in another way, sub-trating the two running times and normalizing by dividing by IdealLog. Eitherway, we see diretly that Adaptive performs frequently better than SvS only fora small number of sets (2 or 3), presumably beause of Adaptive's overhead inyling through the sets. SvS gains a signi�ant advantage beause the interse-tion of the smallest two sets is very small and indeed often empty, and thereforeSvS often terminates after the �rst pass, having only examined two sets, whileAdaptive onstantly examines all k sets.
0.01

0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Adaptive [low wins] vs.
Two-Smallest Binary Search (SvS) [high wins]

Fig. 9. Ratio of number of omparisons ofAdaptive over SvS. -25

-20

-15

-10

-5

0

5

10

111098765432

D
iff

er
en

ce
 in

 n
um

be
r

of
 c

om
pa

ris
on

s,
 d

iv
id

ed
 b

y
Id

ea
lL

og

Number of sets

Adaptive [low wins] vs.
Two-Smallest Binary Search (SvS) [high wins]

Fig. 10. Di�erene in number of ompar-isons of Adaptive and SvS, normalized byIdealLog.5 Further ExperimentsIn this setion we explore various ompromises between the adaptive algorithmand SvS to develop a new algorithm better than both for any number of sets.More preisely, we deompose the di�erenes between the two algorithms intomain tehniques. To measure the relative e�etiveness of eah of these tehniqueswe examine most (though not all) of the possible ombinations of the tehniques.The �rst issue is how to searh for an element in a set. Binary searh is optimalwhen trying to loate a random element. However, in the ase of omputingan intersetion using SvS (say), on the average the element being loated islikelier to be near the front of the array. Therefore starting the searh from

the front, as galloping does, is a natural improvement. Figure 11 on�rms thatgalloping in the seond-smallest set (\half galloping") is usually better thanbinary searhing (SvS). Variations in galloping may also result in improvements;one simple example is inreasing the galloping fator from 2 to 4. This partiularhange has no substantial e�et, positive or negative, in the ase of half galloping;see Figure 12. Another natural andidate is the Hwang-Lin merging algorithmfor optimal intersetion of two random sets [6, 7℄. Again, omparing to the half-galloping method, there is no lear advantage either way; see Figure 13.
0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Two-Smallest Binary Search (SvS) [low wins] vs.
Two-Smallest Half-Gallop [high wins]

Fig. 11. Ratio of number of omparisonsof SvS over SvS with galloping (Two-Smallest Half-Gallop). 0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Two-Smallest Half-Gallop [low wins] vs.
Two-Smallest Half-Gallop Accelerated [high wins]

Fig. 12. Ratio of number of omparisonsof Two-Smallest Half-Gallop (fator 2)over Two-Smallest Half-Gallop Aeler-ated (fator 4).
0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Two-Smallest Half-Gallop [low wins] vs.
Two-Smallest Hwang-Lin [high wins]

Fig. 13. Ratio of number of omparisonsof Two-Smallest Half-Gallop over Two-Smallest Hwang-Lin. 0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Two-Smallest Half-Gallop [low wins] vs.
Two-Smallest Adaptive [high wins]

Fig. 14. Ratio of number of omparisonsof Two-Smallest Half-Gallop over Two-Smallest Adaptive.A seond issue is that SvS sequentially sans the smallest set, and for eahelement searhes for a mathing element in the seond-smallest set. Alternatively,one ould alternate the set from whih the andidate element omes from. In onestep we searh in the seond-smallest set for the �rst element in the smallest set;in the next step we searh in the smallest set for the �rst uneliminated elementin the seond-smallest set; et. This is equivalent to repeatedly applying the

adaptive algorithm to the smallest pair of sets, and hene we all the algorithmTwo-Smallest Adaptive. The results in Figure 14 show that this galloping inboth sets rarely performs di�erently from galloping in just one set, but whenthere is a di�erene it is usually an improvement.A third issue is that Adaptive performs galloping steps ylially on all sets.This global awareness is neessary to guarantee that the number of omparisonsis within a fator of optimal, but an be ineÆient, espeially onsidering thatin our data the pairwise intersetion of the smallest two sets is often empty. Onthe other hand, SvS blindly omputes the intersetion of these two sets withno lookahead. One way to blend the approahes of Adaptive and SvS is whatwe all Small Adaptive. We apply a galloping binary searh (or the �rst step ofHwang-Lin) to see how the �rst element of the smallest set �ts into the seond-smallest set. If the element is in the seond-smallest set, we next see whether itis in the third-smallest and so on until we determine whether it is in the answer.(Admittedly this fores us to make estimates of the set size if we use Hwang-Lin.)This method does not inrease the work from SvS beause we are just movingsome of the omparisons ahead in the shedule of SvS. The advantage, though,is that this ation will eliminate arbitrary numbers of elements from sets andso will hange their relative sizes. Most notably it may hange whih are thesmallest two sets, whih would appear to be a lear advantage.Thus, if we proeed in set-size order, examining the remaining sets, thisapproah has the advantage that the work performed is no larger than SvS,and on oasion it might result in savings if another set beomes ompletelyeliminated. For example, if we are interseting the sets A1 = f3; 6; 8g, A2 =f4; 6; 8; 10g and A3 = f1; 2; 3; 4; 5g, we start by examining A1 and A2, we disard3 and 4, and identify 6 as a ommon element. SvS would arry on in these two setsobtaining the provisional result set R = f6; 8g whih would then be intersetedagainst A3. On the other hand an algorithm that immediately examines theremaining sets would disover that all elements in A3 are smaller than 6 andimmediately report that the entire intersetion is empty.Another soure of improvement from examining the remaining sets onea ommon element has been identi�ed is that another set might beome thesmallest. For example, let A1 and A2 be as in the previous example and letA03 = f1; 2; 3; 4; 5; 9g. Then after reahing the ommon element 6 in A1 and A2the algorithm examines A3 and eliminates all but f9g. At this stage the remain-ing elements to be explored are f8g from A1, f8; 10g from A2 and f9g from A3.Now the new two smallest sets are A1 and A3 and it proeeds on these two sets.As a �nal tuning, if the two smallest sets do not hange, Small Adaptivesearhes alternately between the two sets, as in Two-Smallest Adaptive. Thusthe only di�erene between these two algorithms is when the two smallest setsinterset. On the web dataset, this happens so infrequently that the di�erenebetween Small Adaptive and Two-Smallest Adaptive is slight; see Figure 15.However, when Small Adaptive makes a di�erene it is usually an improvement,and there are several instanes with a fairly large improvement.

0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Two-Smallest Adaptive [low wins] vs.
Small Adaptive [high wins]

Fig. 15. Ratio of number of ompar-isons of Two-Smallest Adaptive over SmallAdaptive. 0.1

1

10

111098765432

R
at

io
 o

f n
um

be
rs

 o
f c

om
pa

ris
on

s

Number of sets

Adaptive [low wins] vs.
Small Adaptive [high wins]

Fig. 16. Ratio of number of omparisonsof Adaptive over Small Adaptive.We have reahed the onlusion that four tehniques have positive impat:galloping, alternating between the two smallest sets, advaning early to addi-tional sets when a ommon element is enountered (a limited form of adap-tivity), and updating whih sets are smallest. The tehniques whih had littlee�et, positive or negative, were the Hwang-Lin replaement for galloping, andaelerating galloping. The only tehnique with signi�ant negative impat isthe full-blown adaptivity based on yling through all the sets.We designed Small Adaptive by starting with SvS and inorporating many es-sential features from Adaptive to improve past SvS. In partiular, Figures 11, 14,and 15 have shown that Small Adaptive wins over SvS. (This an also be veri-�ed diretly.) But how does Small Adaptive ompare to our other \extreme," theadaptive algorithm from [3℄? Surprisingly, Figure 16 shows that Small Adaptivealmost always performs better than Adaptive, regardless of the number of sets(unlike SvS whih was inomparable with Adaptive).Table 2 summarizes the algorithms enountered, and a few other possibleombinations. Table 3 shows the average overall running times for these algo-rithms, as well as the standard deviations. Interestingly, in this aggregate metri,Adaptive outperforms SvS; this is beause many queries have only 2 or 3 sets. Inaddition, the algorithm with the smallest average running time is Small Adap-tive. We onlude that Small Adaptive seems like the best general algorithm foromputing set intersetions based on these ideas, for this dataset.6 ConlusionIn this paper we have measured the performane of an optimally adaptive algo-rithm for omputing set intersetion against the standard SvS algorithm and ano�ine optimal Ideal. From this measurement we observed a lass of instanes inwhih Adaptive outperforms SvS. The experiments then suggest several avenuesfor improvement, whih were tested in an almost orthogonal fashion. From theseadditional results we determined whih tehniques improve the performane of

Algorithm Cyli/2 Sym- Update Advane on GallopSmallest metri Smallest Common Elt. FatorAdaptive Cyli Y | | 2Adaptive 2 Cyli Y | | 4Ideal | | | | |Small Adaptive Two Y Y Y 2Small Adaptive Ael. Two Y Y Y 4Two-Smallest Adaptive Two Y N N 2Two-Smallest Adaptive Ael. Two Y N N 4Two-Smallest Binary Searh (SvS) Two N N N |Two-Smallest Half-Gallop Two N N N 2Two-Smallest Half-Gallop Ael. Two N N N 4Two-Smallest Hwang-Lin Two N N N |Two-S'est Smart Binary Searh Two N Y N |Two-S'est Smart Half-Gallop Two N Y N 2Two-S'est Smart Half-Gallop Ael. Two N Y N 4Table 2. Algorithm harateristis key table.
Algorithm Average Std. Dev. Min MaxAdaptive 371.46 1029.41 1 21792Adaptive Aelerated 386.75 1143.65 1 25528Ideal 75.44 263.37 1 7439Small Adaptive 315.10 962.78 1 21246Small Adaptive Aelerated 326.58 1057.41 1 24138Two-Smallest Adaptive 321.88 998.55 1 22323Two-Smallest Adaptive Aelerated 343.90 1153.32 1 26487Two-Smallest Binary Searh (SvS) 886.67 4404.36 1 134200Two-Smallest Half-Gallop 317.60 989.98 1 21987Two-Smallest Half-Gallop Aelerated 353.66 1171.77 1 27416Two-Smallest Hwang-Lin 365.76 1181.58 1 25880Two-Smallest Smart Binary Searh 891.36 4521.62 1 137876Two-Smallest Smart Half-Gallop 316.45 988.25 1 21968Two-Smallest Smart Half-Gallop Aelerated 350.59 1171.43 1 27220Table 3. Aggregate performane of algorithms on web data.

an intersetion algorithm for web data. We blended theoretial improvementswith experimental observations to improve and tune intersetion algorithms forthe proposed domain. In the end we obtained an algorithm that outperforms thetwo existing algorithms in most ases. We onlude that these tehniques are ofpratial signi�ane in the domain of web searh engines.

AknowledgmentsWe thank Monika Henzinger of Google for aess to the query logs. This workwas supported by NSERC.Referenes1. R. Baeza-Yates. EÆient Text Searhing. PhD thesis, Department of ComputerSiene, University of Waterloo, 1989.2. Svante Carlsson, Christos Levopoulos, and Ola Petersson. Sublinear merging andnatural mergesort. Algorithmia, 9:629{648, 1993.3. Erik D. Demaine, Alejandro L�opez-Ortiz, and J. Ian Munro. Adaptive set inter-setions, unions, and di�erenes. In Proeedings of the 11th Annual ACM-SIAMSymposium on Disrete Algorithms, pages 743{752, San Franiso, California, Jan-uary 2000.4. Vladimir Estivill-Castro and Derik Wood. A survey of adaptive sorting algorithms.ACM Computing Surveys, 24(4):441{476, Deember 1992.5. William Frakes and Rihardo Baeza-Yates. Information Retrieval. Prentie Hall,1992.6. F. K. Hwang. Optimal merging of 3 elements with n elements. SIAM Journal onComputing, 9(2):298{320, 1980.7. F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearlyordered sets. SIAM Journal on Computing, 1(1):31{39, 1980.8. Mihael Lesk. \Real world" searhing panel at SIGIR 1997. SIGIR Forum, 32(1),Spring 1998.9. U. Manber and G. Myers. SuÆx arrays: A new method for on-line string searhs.In Proeedings of the 1st Symposium on Disrete Algorithms, pages 319{327, 1990.10. Alistair Mo�at, Ola Petersson, and Niholas C. Wormald. A tree-based Mergesort.Ata Informatia, 35(9):775{793, August 1998.

