
EÆ
ient View Point Sele
tion for Silhouettes ofConvex Polyhedra?Therese Biedl1, Masud Hasan1??, and Alejandro L�opez-Ortiz1S
hool of Computer S
ien
e, University of Waterloo, Waterloo, Ontario N2L 3G1,Canada. fbiedl,m2hasan,alopez-og�uwaterloo.
a.Abstra
t. The silhouette of polyhedra is an important primitive in ap-pli
ation areas su
h as ma
hine vision and 
omputer graphi
s. In thispaper, we study how to sele
t view points of 
onvex polyhedra su
h thatthe silhouette satis�es 
ertain properties. Spe
i�
ally, we give algorithmsto �nd all proje
tions of a 
onvex polyhedron su
h that a given set ofedges, fa
es and/or verti
es appear on the silhouette.We present an algorithm to solve this problem in O(k2) time for k edges.For orthogonal proje
tions, we give an improved algorithm that is fullyadaptive in the number l of 
onne
ted 
omponents formed by the edges,and has a time 
omplexity of O(k log k + kl). We then generalize thisalgorithm to edges and/or fa
es appearing on the silhouette.1 Introdu
tionPolyhedra are solids in 3-dimensional spa
e. When looking at a polyhedron froma view point, the eye or 
amera 
omputes a 2-dimensional proje
tion of thepolyhedron whi
h may be an orthogonal or a perspe
tive proje
tion, dependingon whether the view point is at in�nity or not. In parti
ular, some features ofthe polyhedron, su
h as verti
es, edges or fa
es, are visible, while others arehidden in this proje
tion. Espe
ially noti
eable are those features that reside onthe shadow boundary of the proje
tion, i.e., those that are just barely visible.Closely related is the 
on
ept of the silhouette, whi
h are those edges for whi
hexa
tly one in
ident fa
e is visible; the two 
on
epts des
ribe the same set for
onvex polyhedra.Silhouettes are useful in various settings, espe
ially in the area of ma
hinevision. For 3D gauging systems, in order to gauge a given part, video 
am-eras are used to a
quire silhouettes of the part along with the lo
ations of thelighting element. These silhouettes help identify key elements of the part [16℄.For assembling purposes, silhouettes are used to 
ompute the boundary and theorientation of the me
hani
al parts to be pi
ked up by a robot for assembly[15℄. Silhouettes are also used for quality 
ontrol [24℄, obje
t re
ognition [17, 23℄,illuminating 
riti
al features [18℄ and others.? Resear
h supported by NSERC.?? On leave from Bangladesh University of Engineering and Te
hnology, Dhaka,Bangladesh.



For image re
ognition, resear
hers 
onsider the topologi
al graph repre-sentation of proje
tions of polyhedra, whi
h are 
alled a 
hara
teristi
 view [19℄.A similar topologi
al graph is also 
onsidered for the silhouette [10℄. Silhouettesfrom the proje
tion of an obje
t 
an be mat
hed against stored pre-
omputed
hara
teristi
 views hen
e aiding in re
ognition of the obje
t (see [19℄ and thereferen
es therein). This has the advantage that the views from two nearby viewpoints likely result in the same 
hara
teristi
 view, whi
h makes the system ro-bust under small positional errors. The 
hara
teristi
 views of a polyhedron arebetter known as aspe
t graphs. See [22℄ for a detailed survey on aspe
t graphs.Re
onstru
tion from images 
on
erns the problem of approximately re
on-stru
ting a 3D obje
t from one or more images [13, 14, 25℄. Instead of full imagesof an obje
t, often only silhouettes are used in a pro
ess 
alled volume interse
-tion [13, 14℄. In 
omputer graphi
s, silhouette edges represent dis
ontinuitiesin the visibility of an obje
t, and are one of the strongest visual 
ues of the shapeof an obje
t [12℄. When rendering the obje
t, it often suÆ
es to render only theedges on the silhouette, whi
h 
an result in substantial speedup [20℄.The 
omputation of silhouettes has been studied extensively both in the 
om-putational geometry and in the 
omputer graphi
s 
ommunity. Pop et al. [20℄gave an algorithm for perspe
tive proje
tions that maintains the silhouette ofpolyhedra during arbitrary 
hanges of the view point. They use duality theory(see also Se
tion 3.2) to develop a pra
ti
al and eÆ
ient heuristi
 to maintainthe 
orresponding visibility properties. Efrat et al. [10℄ presented several 
ombi-natorial bounds on the silhouette stru
ture of a 
olle
tion of 
onvex polyhedrawhen the view point moves along a straight line or along an algebrai
 
urve.They 
ompute the silhouette map whi
h is the arrangement of the silhouettes ofall obje
ts with their hidden parts removed. Their 
ombinatorial 
omplexity isthe bound on the number of 
ombinatorial 
hanges in the silhouette map duringthe motion of the view point. For orthogonal proje
tions only, Beni
hoe and El-ber [4℄ give output-sensitive algorithms to �nd silhouettes from polyhedral s
enesfor a given view point. By mapping all proje
tion dire
tions onto the surfa
e ofa sphere and then mapping the sphere onto the surfa
e of a 
ube, they redu
ethis problem to a segment interse
tion problem in 2D. Using known te
hniquesfrom [1, 8℄, they �nd the silhouette in time linear in the size of the output.Our results. In general the �eld has 
on
entrated in 
omputing the sil-houette eÆ
iently, or re
onstru
tion and/or re
ognition of a polyhedron froma given set of silhouettes. In 
ontrast to this, in this paper we do not 
onsiderthe view point as given or �xed, instead we ask the question how to 
hoose itsuitably. Thus we 
onsider the problem of given a polyhedron and given somedesired property of the silhouette, how easy is it to �nd one or all proje
tionsthat have the property?This question is motivated by numerous appli
ations of the silhouettes men-tioned before. Two appli
ations spe
i�
ally bene�t from the ability to bring
ertain features su
h as edges or fa
es to the silhouette. In quality 
ontrol of amanufa
turing pro
ess su
h as 
asting, we 
an 
he
k for 
aws su
h as air po
ketsby examining whether ea
h edge is a smooth and 
ontinuous line. This 
an be



done eÆ
iently if edges appear on the silhouette using video 
ameras to a
quirethe silhouette of the part. In visualization, 
ru
ial features should be for
ed tothe silhouette to make them easily dete
table. Also, if features are to be labeledit is advantageous to move them to the silhouette, sin
e the outside area allowsfor spa
e to pla
e labels.In this paper we 
onsider how to sele
t a proje
tion of a polyhedron su
h thatthe silhouette satis�es 
ertain properties. A straightforward approa
h to doingso is to 
ompute all possible proje
tions (depending on the 
onditions imposedon the silhouette, there is usually only a �nite number of 
onne
ted regions ofview points that have these properties). Brunet et al. 
onsidered the 
ase of
omputing the viewpoints from whi
h the proje
tions of a given polygonal 
hainproje
ts a 
onvex shadow [6℄. They apply this spe
ial 
ase to 
ompute eÆ
ientlythe o

lusion properties in a 3-D s
ene.This paper addresses the following question: Given a set of edges E , a set offa
es F and a set of verti
es V of a 
onvex polyhedron, how 
an we eÆ
iently�nd all proje
tions su
h that all elements in E ;F ; and/or V are on the silhouetteunder a perspe
tive or orthogonal proje
tion?The straightforward algorithm for this problem would have a runtime ofO(k3) for k edges (see Se
tion 2 for a more detailed dis
ussion). We show inSe
tion 3 that the time 
an be improved to O(k2) by using geometri
 dualityand transversal theory. In Se
tion 4, we develop an adaptive algorithm in termsof the number of 
onne
ted paths l formed by the edges, with time 
omplexityO(k log k + kl). We 
on
lude in Se
tion 5 with open problems.2 PreliminariesA 
onvex polyhedron is the interse
tion of �nitely many half-spa
es. We willnot 
onsider non-
onvex polyhedra in this paper and hen
e o

asionally drop\
onvex" from now on. A fa
e/edge/vertex of the 
onvex polyhedron is the max-imal 
onne
ted set of points whi
h belong to exa
tly one/exa
tly two/at leastthree planes that support these half-spa
es. Every polyhedron with n verti
eshas �(n) edges and �(n) fa
es. Throughout this paper, we assume that the givenpolyhedron is fully-dimensional and that the origin o is inside the polyhedron.A perspe
tive proje
tion is de�ned relative to a point p, whereas an orthogonalproje
tion is de�ned relative to a point at in�nity, i.e., a dire
tion dp. A fa
ef of a 
onvex polyhedron with supporting plane � is visible with respe
t to aview point p (possibly at in�nity) if the normal ve
tor of f has a positive innerprodu
t with the ve
tor from the origin to p (whi
h is the dire
tion ve
tor dpfor the orthogonal proje
tion). The proje
tion of a polyhedron with respe
t to aview point p is the set of all those fa
es visible from p. An edge or vertex is inthe proje
tion if and only if at least one in
ident fa
e is in the proje
tion.The silhouette of a proje
tion from view point p is the set of all those edgesfor whi
h one in
ident fa
e is in the proje
tion and the other fa
e is not. Inparti
ular, note that we do not 
onsider an edge to be on the silhouette if itsproje
tion is the degenerate 
ase of a single point. The shadow boundary is the



set of edges of the silhouette that are in
ident to the unbounded region. For a
onvex polyhedron, the notion of silhouette and shadow boundary is identi
al.In the following, we will study how to �nd all view points for whi
h a givenset of edges is in the silhouette. Note that the set of su
h view points is ingeneral not 
onne
ted. We let a viewing region be a maximal 
onne
ted regionfor whi
h all points in it are view points with the desired property. Note thatsin
e proje
tions in whi
h edges proje
t to points are 
onsidered degenerate andhen
e not to be proper view points, the viewing regions are always open sets.First we study when exa
tly is an edge on the silhouette. Assume edge e isin
ident to fa
es f1 and f2, whi
h are de�ned by half-spa
es h1 and h2 withsupporting planes �1 and �2. For i = 1; 2, fa
e fi is visible from view point p ifand only if p is not in half-spa
e hi (re
all that the origin is inside the polyhedronand hen
e belongs to all half-spa
es of all fa
es). Edge e is on the silhouette ifand only if exa
tly one of its in
ident fa
es is visible from p, so p must be inexa
tly one of the half-spa
es h1 and h2. Thus, p belongs to (h1\h2)[ (h2 \h1)(or more pre
isely, to the maximal open set 
ontained within this set), whi
h isa double-wedge formed by planes �1 and �2.3 Perspe
tive proje
tionsIn this se
tion, we study how to �nd eÆ
iently all view points of a 
onvex poly-hedron su
h that a given set of edges, verti
es and/or fa
es is on the silhouetteunder perspe
tive proje
tions. Our results rely heavily on duality theory andtransversal theory, whi
h we review in Se
tion 3.2.3.1 Computing perspe
tive proje
tions from plane arrangementsA straightforward approa
h to �nd all view points from whi
h a set E of edges ison the silhouette is to 
ompute the interse
tion of all the double-wedges asso
i-ated with the edges in E . In general the interse
tion of k double-wedges may haveas many as �(k3) 
onne
ted 
omponents under perspe
tive proje
tions. There-fore, �nding all proje
tions with 
ertain properties 
an be done in O(k3T ) time,where T is the time to 
he
k whether a proje
tion from a given view region hasthe desired property. In what follows we use duality theory to improve on this.3.2 Geometri
 duality and transversal theoryGiven a point p = (a; b; 
), the dual of the point is a plane dual(p) = f(x; y; z) :ax+ by + 
z = 1g. For a plane � = f(x; y; z) : ax + by + 
z = dg, the dual is apoint dual(�) = (a=d; b=d; 
=d). If � passes through the origin, then dual(�) is atin�nity. Re
all that a point p lies in plane � if and only if dual(�) lies in dual(p).One 
an also easily prove the following observation:Lemma 1. Let � be a plane that does not 
ontain the origin o, and let p be apoint that is not the origin o. Then � interse
ts the line segment [o; p℄ if andonly if dual(p) interse
ts the line segment [o; dual(�)℄.



For an edge e, the dual is de�ned as the line segment [dual(�1); dual(�2)℄,where �1 and �2 are the planes supporting the two in
ident fa
es of e. Pop etal. [20℄ made the following 
ru
ial observation.Lemma 2. [20℄ An edge e of a 
onvex polyhedron is on the silhouette from viewpoint p if and only if dual(p) interse
ts dual(e).A geometri
 transversal is an aÆne subspa
e of Rd, su
h as a point, line,plane, or hyper-plane, that interse
ts every member of a family of 
onvex sets.The set of [point, line, plane, or hyper-plane℄ transversals of a family forms atopologi
al spa
e in Rd. Geometri
 transversal theory 
on
erns the 
omplexityand eÆ
ient 
omputation of this topologi
al spa
e, espe
ially in 2D and 3D. Wewill use the following result:Theorem 1. ([9℄, see also [11℄, Theorem 5.6) Let A be a family of n 
ompa
t
onvex polytopes in 3D with a total of n verti
es. All plane transversals of A 
anbe found in O(n2�(n)) time, where �(n) is the inverse A
kerman fun
tion. If A
onsists of n line segments, then all plane traversals 
an be found in O(n2) time.We 
ombine duality with transversal theory. Interestingly enough, the theo-rem above in turn uses dual geometri
 spa
e (thus returning to the primal spa
e)and analyzes double-wedges; it would thus be possible to express our algorithmdire
tly in terms of double-wedges by tra
ing the results from transversal theory.We will not do this here for brevity and 
larity's sake.3.3 View point sele
tion algorithmLemma 2 
hara
terizes when an edge is on the silhouette of a proje
tion. Com-bining this with transversal theory gives an algorithm to �nd all proje
tions witha given set of k edges in O(k2) time. We apply the same approa
h to obtain analgorithm for given sets of verti
es and fa
es. We �rst need to 
larify what itmeans for a vertex or a fa
e to be on the silhouette. This is relatively straight-forward for a vertex, whi
h is on the silhouette if and only if two in
ident edgesare on the silhouette. The notion of a fa
e being on the silhouette is not entirelyobvious, sin
e the silhouette by nature 
onsists of line segments, so the entirefa
e 
annot be on it. However, for the purpose of displaying the fa
e \near" thesilhouette, the following de�nition seems appropriate: A fa
e f is 
onsidered tobe on the silhouette from view point p if and only if f is visible from p and atleast one edge of f is on the silhouette.As in Lemma 2, we 
hara
terize when a vertex or a fa
e is on the silhouette.Assume that v is a vertex, and let f1; : : : ; fl be the fa
es, in 
ir
ular order,adja
ent to the vertex v. In dual spa
e, the dual of v is a plane and the dualsof the planes supporting f1; : : : ; fl are points in dual(v). So the dual points ofthe planes of f1; : : : ; fl are 
o-planar and thus form a polygon, whi
h we 
all thedual polygon asso
iated with vertex v. Observe that this dual polygon is 
onvexas we assume that the origin is inside the polyhedron.



Lemma 3. A vertex v is on the silhouette from view point p if and only if itsasso
iated dual polygon is interse
ted by dual(p).Proof. The polygon asso
iated with v 
onsists exa
tly of the union of the dualof the edges in
ident to v. If dual(p) interse
ts this polygon, then it interse
tsexa
tly two edges in
ident to v. These two edges are then on the silhouette, andin 
onsequen
e, v is also on the silhouette. utFor a fa
e f , let f1; f2; :::; fl be the fa
es adja
ent to f and let �; �1; : : : ; �lbe the planes that support f; f1; : : : ; fl. De�ne the dual polyhedron of fa
e f tobe the 
onvex hull of dual(�); dual(�1); : : : ; dual(�l) (see Figure 1).Lemma 4. A fa
e f with supporting plane � of a 
onvex polyhedron is on thesilhouette from view point p if and only if dual(p) interse
ts both the line segment[o; dual(�)℄ and the dual polyhedron asso
iated with f .dual=)dual(�1)fdual(�)dual(�4) dual(�3)f1f6dual(�6)dual(�5) f2f3f5 f4 dual(�5) dual(�4) dual(�2)dual(�3)dual(�1)dual(�)dual(�6)dual(�2)Fig. 1. The dual polyhedron asso
iated with a fa
e.Proof. Let P 0 be the dual polyhedron of f . This polyhedron has one vertex vffor f , whi
h is in
ident to all other verti
es. Now, if dual(p) interse
ts P 0, thenit separates the verti
es of P 0 into two groups, and in parti
ular interse
ts someof the edges in
ident to vf , sin
e all verti
es are in
ident to vf . Therefore, someof the edges of f are on the silhouette if and only if dual(p) interse
ts P 0.For f itself to be on the silhouette, we additionally need that f is visible (i.e.,not o

luded) from view point p. This holds if and only if the plane through fseparates the origin o (whi
h is inside the polyhedron) from p. By Lemma 1, thisholds if and only if dual(p) interse
ts the line segment [o; dual(�)℄. utUsing the above lemmas, in 
ombination with transversal theory, we 
an now
ompute all proje
tions that have a given set of features on the silhouette.Theorem 2. Let P be a 
onvex polyhedron with n verti
es, and let E ;V, andF be sets of edges, verti
es and fa
es, respe
tively. All view points from whi
hall edges in E , all verti
es in V, and all fa
es in F are on the silhouette underperspe
tive proje
tions 
an be found in O(n2�(n)) time. The time redu
es toO(jEj2) if only edges are spe
i�ed.Proof. Compute the dual of the edges in E , the dual polygons asso
iated withverti
es in V and the dual polyhedra asso
iated with fa
es in F . Also, for ea
hfa
e f 2 F , 
ompute the line segment [o; dual(�)℄, where � is the plane supporting



f . Now �nd all plane transversals that interse
t these 
onvex obje
ts. By theabove lemmas this gives exa
tly the perspe
tive proje
tions for whi
h the featuresare on the silhouette.Every edge 
reates one line segment to be transversed; by Theorem 1 we
an �nd the proje
tions for a set of edges in O(jEj2) time. For a vertex v, theasso
iated polygon has degree(v) many verti
es, and for a fa
e f , the asso
iatedpolyhedron has degree(f) + 1 many verti
es. For a set of verti
es and fa
es, thetotal size of the asso
iated polygons and polyhedra 
an be at most the numberof edges and fa
es in P , whi
h is O(n). Hen
e, by Theorem 1 we 
an �nd allproje
tions for a set of edges, verti
es and fa
es in O(n2�(n)) time. ut4 Orthogonal proje
tionsIn this se
tion, we show how to 
ompute eÆ
iently all orthogonal proje
tionssu
h that a given set of edges is on the silhouette. This 
an be done with the sameapproa
h as in Theorem 2 (i.e., using duality theory and transversal theory.)However, a mu
h simpler approa
h also works. Sin
e the lo
ation of the originis irrelevant in an orthogonal proje
tion, we 
an identify dire
tly the wedge forea
h edge and translate it su
h that all wedges interse
t in one point. Then thehyperplane arrangement de�ned by the k wedges has only O(k2) 
ells, and we
an thus �nd all proje
tions in O(k2) time.We improve on this further to give an algorithm that is adaptive in thenumber of paths formed by the set of edges. We study the 
ase of one path inSe
tion 4.1 and the 
ase of many paths in Se
tion 4.2. Finally, the ability tosear
h all O(k2) 
ells of the arrangement allows us more 
exibility in 
hoosingproje
tions; we study in Se
tion 4.3 how to 
hoose proje
tions su
h that 
ertainedges are not on the silhouette.4.1 One 
onne
ted pathIf a set of edges forms a path in the polyhedron, then it is easier to 
omputeviewing regions for whi
h they are on the silhouette, mostly be
ause (as we willshow) there are only two viewing regions. This is not the 
ase for arbitrary edges.For example Figure 2 shows a polyhedron where we have at least four viewingregions with edges e1; e2; e3 on the silhouette. Two views from two di�erentviewing regions are shown in (a) and (
); the other two viewing regions areorigin-symmetri
 to the ones illustrated here. We now show that there are onlytwo regions from whi
h the path 
an be realized1.Theorem 3. Given a path of k edges on a 
onvex polyhedron P , there are onlytwo viewing regions from whi
h all k edges of the path are in the silhouette of P ,and we 
an �nd them in O(k log k) time.Proof. Let the path 
onsist of edges e1; : : : ; ek. For 1 � i � k, let fi be the fa
e tothe left of edge ei, where \to the left" is taken with respe
t to walking along the1 This theorem is impli
itly assumed without proof in [6℄.



(a) (b) (c)

e1 e1 e1e2e2e2 e3e3 e3Fig. 2. The polyhedron has four viewing regions for edges e1; e2; e3. (a) One in
identfa
e of e1 is visible. (b) A rotation su
h that e1 redu
es to a point; this view point is onthe boundary between two viewing regions. (
) The other in
ident fa
e of e1 is visible.path from e1 to ek. Let f 0i be the other fa
e in
ident to ei. The 
ru
ial observationis that if the path is on the silhouette, then we either see all of f1; : : : ; fk or all off 01; : : : ; f 0k. To prove this, let v be the 
ommon vertex of e1 and e2. The 
lo
kwiseorder of fa
es around v is then f1; (possibly) some other fa
es, f2; f 02; (possibly)some other fa
es, f 01 (see Figure 3). Sin
e the visible in
ident fa
es of v are:::::: f2f 02e1f1 e2f 01 e3vFig. 3. The order of fa
es around a vertex.
onne
ted, and for ea
h of ff1; f 01g and ff2; f 02g exa
tly one is invisible, thereare only two possibilities: either all of f1; : : : ; f2 are visible (and the others areinvisible), or all of f 02; : : : ; f 01 are visible (and the others are invisible). So eitherff1; f2g are visible or ff 01; f 02g are visible, but it is not possible (for example) thatf1 and f 02 are visible. Assume f1 and f2 are visible. Repeating the argument fore2 and e3, this shows that f3 must also be visible, and so on, so f1; : : : ; fk are allvisible (and f 01; : : : ; f 0k are invisible). Alternatively, if f 01 and f 02 are visible, thenall of f 01; : : : ; f 0k are visible (and f1; : : : ; fk are invisible).Re
all that a fa
e f is visible if and only if the view point is not in the half-spa
e that de�ned the fa
e. Thus, the view points from whi
h f1; : : : ; fk are allvisible and f 01; : : : ; f 0k are all invisible are de�ned as the interse
tion of 2k half-spa
es. This de�nes one viewing region. A se
ond viewing region is the one fromwhi
h f 01; : : : ; f 0k are all visible and f1; : : : ; fk are invisible. This region is againthe interse
tion of half-spa
es |the opposite half-spa
es as those for the �rstviewing region. The half-spa
es 
an be found in O(k) time, and their interse
tion
an be 
omputed in O(k log k) time (see e.g. [21℄). There are no other viewingregions. Thus, all viewing regions 
an be 
omputed in O(k logk) time. utNote that the above theorem applies to both orthogonal and perspe
tive pro-je
tions, and it is hen
e possible to �nd all viewpoints for whi
h a path P withk edges is on the silhouette in O(k log k) time for both orthogonal and perspe
-tive proje
tions. In 
ontrast, the results in the next subse
tions apply only toorthogonal proje
tions.



4.2 Multiple pathsIn this se
tion, we show how to use the above results to improve the time 
om-plexity in the 
ase when k edges are not all disjoint. Assume that k edges are inl 
onne
ted 
omponents whi
h we refer to as P1; : : : ;Pl; obviously l � k. FromTheorem 3 we know how to 
ompute all proje
tions from whi
h Pi is on thesilhouette. We now show that for orthogonal proje
tions, we 
an interse
t theseviewing regions in O(k log k+ kl) time, whi
h is an improvement over the O(k2)result of Se
tion 3 if l = o(k). Observe that for orthogonal proje
tions, the set ofview points from whi
h e is on the silhouette is translation-invariant, sin
e theview points are at in�nity and 
orrespond to dire
tions. Hen
e, we are allowedto translate the double-wedge arbitrarily, and in parti
ular we may assume thatthe interse
tion of the two planes 
ontains the origin.Theorem 4. Given l disjoint paths of a 
onvex polyhedron P , we 
an �nd allorthogonal proje
tions of P su
h that all k edges of the paths are on the silhouettein O(k log k + kl) time.Proof. From Theorem 3 we know that for 1 � i � l there are exa
tly twoviewing regions from whi
h Pi is on the silhouette. Sin
e we are 
onsideringorthogonal proje
tions, these two viewing regions are two disjoint 
onvex 
ones,say C+i and C�i , and after a suitable translation we may assume that the apexof ea
h 
one is at the origin. Let Ci = C+i [C�i be the double-
one for path Pi,and set C� = TCi; the desired viewing regions are then exa
tly the 
onne
ted
omponents of C�.In general, l double-
ones may have �(l3) 
onne
ted 
omponents in theirinterse
tion. For double-
ones with origin at the apex this redu
es to O(l2), but
omputing all 
onne
ted 
omponents of C� dire
tly is still too slow. We therefore
onsider a proje
tion of the double-
ones onto a 2D surfa
e (see [4, 5℄). Considera unit 
ube D 
entered at the origin. To 
ompute C�, it suÆ
es to 
ompute theinterse
tion of C� with ea
h fa
e of D. We explain how to do this in the followingfor one fa
e f of D only.For any i, where 1 � i � l, both C+i and C�i 
an interse
t f , but theseinterse
tions are disjoint (see Figure 4). Set Bi = Ci \ f ; then Bi is a single
onvex polygon or the union of two 
onvex polygons. We 
all ea
h Bi a 
onepolygon. Let B� = TBi, then ea
h 
onne
ted 
omponent of B� 
orresponds toone viewing region.To 
omputeB�, we 
ompute the arrangementA of the 
one polygonsB1; : : : ; Bl,whi
h has at most 2l 
onvex polygons with a total of at most 2k edges. This 
anbe done in O(k log k+I) time where I is the number of interse
ting points [3, 7℄.Within the same time bound, we 
an also 
ompute the planar graph G de�ned bythis arrangement (see Figure 5(a)). G has O(k+I) verti
es, edges and fa
es. Nowwe want to �nd all 
ells in the arrangement A that belong to all 
one polygons.To do so, we 
ompute a modi�ed dire
ted dual graph G0 of G by 
omputing thedual graph of G and repla
ing ea
h edge by a dire
ted 2-
y
le (see Figure 5(b)).Note that here we use the term \dual" in the graph theoreti
al sense, whi
h isdistin
t from the geometri
 duality used before.



(b)
(a)

A cone polygonfFig. 4. (a) Interse
tion of a double-
one Ci with a fa
e f . (b) The 
orresponding 
onepolygon Bi has two disjoint 
omponents.Ea
h vertex in G0 is a 
ell in A and ea
h dire
ted edge e in G0 
orrespondsto entering or leaving a polygon of B1; : : : ; Bl. We store with ea
h edge of G0whether traversing this edge means entering or leaving a 
one polygon. Findingall 
ells for whi
h we are inside all l 
one polygons 
an then be done by traversingthe graph G0 in su
h a way that all verti
es are visited (e.g. with a DFS-traversal)and maintaining a 
ounter of the number of 
one polygons that the 
urrentlyvisited vertex is in. Sin
e G0 has O(k + I) verti
es and edges, this 
an be donein O(k+ I) time. The time 
omplexity of our algorithm hen
e is O(k logk + I).To �nd an upper bound on I, observe that there are O(l) 
onvex polygons ofO(k) edges total. Ea
h edge 
an interse
t ea
h 
onvex polygon at most twi
e, soI 2 O(kl) (and examples 
an be found where this is tight [2℄). So the run-timeof our algorithm is O(k log k + kl). utB1 (b)(a) f B3B2B1Fig. 5. (a) The arrangement A; the desired viewing regions are shown shaded. (b) The
orresponding modi�ed dual graph. Some edges and verti
es have been omitted for
larity's sake.4.3 Hiding EdgesAnother appli
ation of view point sele
tion is industrial design, where we mightwish to make 
ertain features easily visible or prominent, while some other fea-tures (su
h as servi
e trap doors or unsightly wiring) should be hidden. Thuswe would like to for
e edges, verti
es or fa
es not to be on the silhouette; wesay that these features are hidden from the silhouette. Note that a fa
e/vertexis hidden from the silhouette if and only if all its in
ident edges are hidden fromthe silhouette, so it suÆ
es to explain how to hide edges.Lemma 5. The set of all view points from whi
h a set of k edges is not visibleunder an orthogonal proje
tion 
an be 
omputed in O(k2) time.



Proof. Ea
h double-wedge from whi
h an edge is visible also de�nes, by its 
om-plement, a double-wedge from whi
h the edge is not visible. Sin
e we are 
on-sidering orthogonal proje
tions, we 
an translate all double-wedges su
h thatall hyperplanes that de�ne them interse
t the origin. Therefore, the hyperplanearrangement now has only O(k2) 
ells and 
an be 
omputed in O(k2) time.By using a traversal te
hnique similar to the one in Se
tion 4.2, we 
an 
he
kwhether there is any 
ell in whi
h all edges are hidden in O(k2) time. utNote that we 
an at the same time for
e some edges into the silhouette andhide some other edges from the silhouette. With the same proof as in Lemma5, this 
an be done in O(k2) time. However, hiding edges unfortunately 
annoteasily be made adaptive in the number of paths that these edges form. Themain obsta
le is that Theorem 3 (\there are only two viewing regions") does notne
essarily hold for hiding edges in one path.5 Con
lusionsIn this paper, we studied the question of how to �nd all view points of a polyhe-dron that for
e a given set of edges onto the silhouette of a 
onvex polyhedron,and gave an eÆ
ient algorithm to do so, as well as an adaptive algorithm interms of the number of 
onne
ted paths formed by the edges for orthogonalproje
tions. A number of open questions remain:{ Transversal theory allowed us to for
e not only edges, but also verti
es andfa
es, onto the silhouette but at a higher 
ost sin
e the size of the obje
ts tobe transversed is proportional to the degree of the vertex or fa
e involved.Is it possible to improve on this, say �nd all proje
tions with k verti
es or kfa
es on the silhouette in O(k2) or even O(k) time?{ The general adaptive algorithm (Se
tion 4.2) applies only to orthogonal pro-je
tions. Does a similar result hold for the perspe
tive proje
tions?{ Hiding edges in a perspe
tive proje
tion 
an e�e
tively be phrased as atransversal problem again, but Theorem 1 
annot be applied, sin
e the re-sulting shapes are not 
onvex and 
ompa
t. So how 
an we eÆ
iently �ndall view points from whi
h a given set of edges is hidden?{ Given a family of edge sets E1; : : : ; Es, how qui
kly 
an we �nd all proje
tionssu
h that for ea
h set Ei, at least one (but not ne
essarily all) of the edgesin Ei are on the silhouette?{ Rather than spe
ifying the edges that must be on the silhouette, we mightbe interested in the number of su
h edges. So given a number k, how 
an we�nd all proje
tions su
h that the silhouette has exa
tly k edges?Last but not least, all our results were for 
onvex polyhedra. What are eÆ-
ient algorithms for the same problems for non-
onvex polyhedra?Referen
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