Efficient View Point Selection for Silhouettes of
Convex Polyhedra*

Therese Biedl', Masud Hasan'**, and Alejandro Lépez-Ortiz!

School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada. {biedl,m2hasan,alopez-o}@uwaterloo.ca.

Abstract. The silhouette of polyhedra is an important primitive in ap-
plication areas such as machine vision and computer graphics. In this
paper, we study how to select view points of convex polyhedra such that
the silhouette satisfies certain properties. Specifically, we give algorithms
to find all projections of a convex polyhedron such that a given set of
edges, faces and/or vertices appear on the silhouette.

We present an algorithm to solve this problem in O(k?) time for k edges.
For orthogonal projections, we give an improved algorithm that is fully
adaptive in the number ! of connected components formed by the edges,
and has a time complexity of O(klogk + kl). We then generalize this
algorithm to edges and/or faces appearing on the silhouette.

1 Introduction

Polyhedra are solids in 3-dimensional space. When looking at a polyhedron from
a view point, the eye or camera computes a 2-dimensional projection of the
polyhedron which may be an orthogonal or a perspective projection, depending
on whether the view point is at infinity or not. In particular, some features of
the polyhedron, such as vertices, edges or faces, are visible, while others are
hidden in this projection. Especially noticeable are those features that reside on
the shadow boundary of the projection, i.e., those that are just barely visible.
Closely related is the concept of the silhouette, which are those edges for which
exactly one incident face is visible; the two concepts describe the same set for
convex polyhedra.

Silhouettes are useful in various settings, especially in the area of machine
vision. For 3D gauging systems, in order to gauge a given part, video cam-
eras are used to acquire silhouettes of the part along with the locations of the
lighting element. These silhouettes help identify key elements of the part [16].
For assembling purposes, silhouettes are used to compute the boundary and the
orientation of the mechanical parts to be picked up by a robot for assembly
[15]. Silhouettes are also used for quality control [24], object recognition [17, 23],
illuminating critical features [18] and others.

* Research supported by NSERC.
** On leave from Bangladesh University of Engineering and Technology, Dhaka,
Bangladesh.

For image recognition, researchers consider the topological graph repre-
sentation of projections of polyhedra, which are called a characteristic view [19].
A similar topological graph is also considered for the silhouette [10]. Silhouettes
from the projection of an object can be matched against stored pre-computed
characteristic views hence aiding in recognition of the object (see [19] and the
references therein). This has the advantage that the views from two nearby view
points likely result in the same characteristic view, which makes the system ro-
bust under small positional errors. The characteristic views of a polyhedron are
better known as aspect graphs. See [22] for a detailed survey on aspect graphs.
Reconstruction from images concerns the problem of approximately recon-
structing a 3D object from one or more images [13, 14, 25]. Instead of full images
of an object, often only silhouettes are used in a process called volume intersec-
tion [13, 14]. In computer graphics, silhouette edges represent discontinuities
in the visibility of an object, and are one of the strongest visual cues of the shape
of an object [12]. When rendering the object, it often suffices to render only the
edges on the silhouette, which can result in substantial speedup [20].

The computation of silhouettes has been studied extensively both in the com-
putational geometry and in the computer graphics community. Pop et al. [20]
gave an algorithm for perspective projections that maintains the silhouette of
polyhedra during arbitrary changes of the view point. They use duality theory
(see also Section 3.2) to develop a practical and efficient heuristic to maintain
the corresponding visibility properties. Efrat et al. [10] presented several combi-
natorial bounds on the silhouette structure of a collection of convex polyhedra
when the view point moves along a straight line or along an algebraic curve.
They compute the silhouette map which is the arrangement of the silhouettes of
all objects with their hidden parts removed. Their combinatorial complexity is
the bound on the number of combinatorial changes in the silhouette map during
the motion of the view point. For orthogonal projections only, Benichoe and El-
ber [4] give output-sensitive algorithms to find silhouettes from polyhedral scenes
for a given view point. By mapping all projection directions onto the surface of
a sphere and then mapping the sphere onto the surface of a cube, they reduce
this problem to a segment intersection problem in 2D. Using known techniques
from [1, 8], they find the silhouette in time linear in the size of the output.

Our results. In general the field has concentrated in computing the sil-
houette efficiently, or reconstruction and/or recognition of a polyhedron from
a given set of silhouettes. In contrast to this, in this paper we do not consider
the view point as given or fixed, instead we ask the question how to choose it
suitably. Thus we consider the problem of given a polyhedron and given some
desired property of the silhouette, how easy is it to find one or all projections
that have the property?

This question is motivated by numerous applications of the silhouettes men-
tioned before. Two applications specifically benefit from the ability to bring
certain features such as edges or faces to the silhouette. In quality control of a
manufacturing process such as casting, we can check for flaws such as air pockets
by examining whether each edge is a smooth and continuous line. This can be

done efficiently if edges appear on the silhouette using video cameras to acquire
the silhouette of the part. In visualization, crucial features should be forced to
the silhouette to make them easily detectable. Also, if features are to be labeled
it is advantageous to move them to the silhouette, since the outside area allows
for space to place labels.

In this paper we consider how to select a projection of a polyhedron such that
the silhouette satisfies certain properties. A straightforward approach to doing
so is to compute all possible projections (depending on the conditions imposed
on the silhouette, there is usually only a finite number of connected regions of
view points that have these properties). Brunet et al. considered the case of
computing the viewpoints from which the projections of a given polygonal chain
projects a convex shadow [6]. They apply this special case to compute efficiently
the occlusion properties in a 3-D scene.

This paper addresses the following question: Given a set of edges &, a set of
faces F and a set of vertices V of a convex polyhedron, how can we efficiently
find all projections such that all elements in £, F, and/or V are on the silhouette
under a perspective or orthogonal projection?

The straightforward algorithm for this problem would have a runtime of
O(k3) for k edges (see Section 2 for a more detailed discussion). We show in
Section 3 that the time can be improved to O(k?) by using geometric duality
and transversal theory. In Section 4, we develop an adaptive algorithm in terms
of the number of connected paths [formed by the edges, with time complexity
O(klog k + kl). We conclude in Section 5 with open problems.

2 Preliminaries

A convex polyhedron is the intersection of finitely many half-spaces. We will
not consider non-convex polyhedra in this paper and hence occasionally drop
“convex” from now on. A face/edge/vertex of the convex polyhedron is the max-
imal connected set of points which belong to exactly one/exactly two/at least
three planes that support these half-spaces. Every polyhedron with n vertices
has 0(n) edges and 0(n) faces. Throughout this paper, we assume that the given
polyhedron is fully-dimensional and that the origin o is inside the polyhedron.
A perspective projection is defined relative to a point p, whereas an orthogonal
projection is defined relative to a point at infinity, i.e., a direction d,. A face
f of a convex polyhedron with supporting plane 7 is visible with respect to a
view point p (possibly at infinity) if the normal vector of f has a positive inner
product with the vector from the origin to p (which is the direction vector d,
for the orthogonal projection). The projection of a polyhedron with respect to a
view point p is the set of all those faces visible from p. An edge or vertex is in
the projection if and only if at least one incident face is in the projection.

The silhouette of a projection from view point p is the set of all those edges
for which one incident face is in the projection and the other face is not. In
particular, note that we do not consider an edge to be on the silhouette if its
projection is the degenerate case of a single point. The shadow boundary is the

set of edges of the silhouette that are incident to the unbounded region. For a
convex polyhedron, the notion of silhouette and shadow boundary is identical.

In the following, we will study how to find all view points for which a given
set of edges is in the silhouette. Note that the set of such view points is in
general not connected. We let a viewing region be a maximal connected region
for which all points in it are view points with the desired property. Note that
since projections in which edges project to points are considered degenerate and
hence not to be proper view points, the viewing regions are always open sets.

First we study when exactly is an edge on the silhouette. Assume edge e is
incident to faces fi; and f5, which are defined by half-spaces hy and hy, with
supporting planes m; and m,. For ¢ = 1, 2, face f; is visible from view point p if
and only if p is not in half-space h; (recall that the origin is inside the polyhedron
and hence belongs to all half-spaces of all faces). Edge e is on the silhouette if
and only if exactly one of its incident faces is visible from p, so p must be in
exactly one of the half-spaces k1 and hy. Thus, p belongs to (hy ﬂh_g) U (he ﬂh_l)
(or more precisely, to the maximal open set contained within this set), which is
a double-wedge formed by planes 7 and ms.

3 Perspective projections

In this section, we study how to find efficiently all view points of a convex poly-
hedron such that a given set of edges, vertices and/or faces is on the silhouette
under perspective projections. Qur results rely heavily on duality theory and
transversal theory, which we review in Section 3.2.

3.1 Computing perspective projections from plane arrangements

A straightforward approach to find all view points from which a set £ of edges is
on the silhouette is to compute the intersection of all the double-wedges associ-
ated with the edges in £. In general the intersection of k& double-wedges may have
as many as 0(k3) connected components under perspective projections. There-
fore, finding all projections with certain properties can be done in O(k3T') time,
where T is the time to check whether a projection from a given view region has
the desired property. In what follows we use duality theory to improve on this.

3.2 Geometric duality and transversal theory

Given a point p = (a, b, ¢), the dual of the point is a plane dual(p) = {(=,y, 2) :
ax 4+ by + ¢z = 1}. For a plane 7 = {(z,y, z) : ax + by + ¢z = d}, the dual is a
point dual(r) = (a/d,b/d,c/d). If m passes through the origin, then dual(r) is at
infinity. Recall that a point p lies in plane 7 if and only if dual(w) lies in dual(p).
One can also easily prove the following observation:

Lemma 1. Let w be a plane that does not contain the origin o, and let p be a
point that is not the origin o. Then m intersects the line segment [o,p] if and
only if dual(p) intersects the line segment [o, dual(r)].

For an edge e, the dual is defined as the line segment [dual(my), dual(ms)],
where m; and 7y are the planes supporting the two incident faces of e. Pop et
al. [20] made the following crucial observation.

Lemma 2. [20] An edge e of a convex polyhedron is on the silhouetie from view
point p if and only if dual(p) intersects dual(e).

A geometric transversal is an affine subspace of R¢ such as a point, line,
plane, or hyper-plane, that intersects every member of a family of convex sets.
The set of [point, line, plane, or hyper-plane] transversals of a family forms a
topological space in R Geometric transversal theory concerns the complexity
and efficient computation of this topological space, especially in 2D and 3D. We
will use the following result:

Theorem 1. ([9], see also [11], Theorem 5.6) Let A be a family of n compact
convex polytopes in 3D with a total of n vertices. All plane transversals of A can
be found in O(n?a(n)) time, where a(n) is the inverse Ackerman function. If A
consists of n line segments, then all plane traversals can be found in O(n?) time.

We combine duality with transversal theory. Interestingly enough, the theo-
rem above in turn uses dual geometric space (thus returning to the primal space)
and analyzes double-wedges; it would thus be possible to express our algorithm
directly in terms of double-wedges by tracing the results from transversal theory.
We will not do this here for brevity and clarity’s sake.

3.3 View point selection algorithm

Lemma 2 characterizes when an edge is on the silhouette of a projection. Com-
bining this with transversal theory gives an algorithm to find all projections with
a given set of k edges in O(k?) time. We apply the same approach to obtain an
algorithm for given sets of vertices and faces. We first need to clarify what it
means for a vertex or a face to be on the silhouette. This is relatively straight-
forward for a vertex, which is on the silhouette if and only if two incident edges
are on the silhouette. The notion of a face being on the silhouette is not entirely
obvious, since the silhouette by nature consists of line segments, so the entire
face cannot be on it. However, for the purpose of displaying the face “near” the
silhouette, the following definition seems appropriate: A face f is considered to
be on the silhouette from view point p if and only if f is visible from p and at
least one edge of f is on the silhouette.

As in Lemma 2, we characterize when a vertex or a face is on the silhouette.
Assume that v is a vertex, and let fi,...,fi be the faces, in circular order,
adjacent to the vertex v. In dual space, the dual of v is a plane and the duals
of the planes supporting f1,..., fi are points in dual(v). So the dual points of
the planes of fi,..., f; are co-planar and thus form a polygon, which we call the
dual polygon associated with vertex v. Observe that this dual polygon is convex
as we assume that the origin is inside the polyhedron.

Lemma 3. A vertex v is on the silhouette from view point p if and only if its
associated dual polygon is intersected by dual(p).

Proof. The polygon associated with v consists exactly of the union of the dual
of the edges incident to v. If dual(p) intersects this polygon, then it intersects
exactly two edges incident to v. These two edges are then on the silhouette, and
in consequence, v is also on the silhouette. a

For a face f, let fi, f2,..., fi be the faces adjacent to f and let w, mq,...,m
be the planes that support f, f1,..., fi. Define the dual polyhedron of face f to
be the convex hull of dual(r), dual(ry), ..., dual(m;) (see Figure 1).

Lemma 4. A face f with supporting plane © of a convex polyhedron is on the
silhouette from view point p if and only if dual(p) intersects both the line segment
[0, dual(m)] and the dual polyhedron associated with f.

5, dual(m1)

fe fa
dual(m™
(re) ; dual(mg) dual dual(my)
- 2 dual(mg) ual(m) /
dnal dual(ms)
d“‘(ﬂ-‘r’) ® dual(ms) dual(m
‘. 8 (ms) dual(ms)
7 ! \ dual(my)
s f4 e

Fig. 1. The dual polyhedron associated with a face.

Proof. Let P’ be the dual polyhedron of f. This polyhedron has one vertex vy
for f, which is incident to all other vertices. Now, if dual(p) intersects P’, then
it separates the vertices of P’ into two groups, and in particular intersects some
of the edges incident to vy, since all vertices are incident to v;. Therefore, some
of the edges of f are on the silhouette if and only if dual(p) intersects P’.

For f itself to be on the silhouette, we additionally need that f is visible (i.e.,
not occluded) from view point p. This holds if and only if the plane through f
separates the origin o (which is inside the polyhedron) from p. By Lemma 1, this
holds if and only if dual(p) intersects the line segment [o, dual(r)]. O

Using the above lemmas, in combination with transversal theory, we can now
compute all projections that have a given set of features on the silhouette.

Theorem 2. Let P be a convexr polyhedron with n vertices, and let £,V, and
F be sets of edges, vertices and faces, respectively. All view points from which
all edges in &, all vertices in'V, and all faces in F are on the silhouette under
perspective projections can be found in O(n?a(n)) time. The time reduces to

O(|€1?) if only edges are specified.

Proof. Compute the dual of the edges in &£, the dual polygons associated with
vertices in V and the dual polyhedra associated with faces in F. Also, for each
face f € F, compute the line segment [o, dual(w)], where 7 is the plane supporting

f. Now find all plane transversals that intersect these convex objects. By the
above lemmas this gives exactly the perspective projections for which the features
are on the silhouette.

Every edge creates one line segment to be transversed; by Theorem 1 we
can find the projections for a set of edges in O(|€]?) time. For a vertex v, the
associated polygon has degree(v) many vertices, and for a face f, the associated
polyhedron has degree(f) + 1 many vertices. For a set of vertices and faces, the
total size of the associated polygons and polyhedra can be at most the number
of edges and faces in P, which is O(n). Hence, by Theorem 1 we can find all
projections for a set of edges, vertices and faces in O(n?a(n)) time. O

4 Orthogonal projections

In this section, we show how to compute efficiently all orthogonal projections
such that a given set of edges is on the silhouette. This can be done with the same
approach as in Theorem 2 (i.e., using duality theory and transversal theory.)
However, a much simpler approach also works. Since the location of the origin
is irrelevant in an orthogonal projection, we can identify directly the wedge for
each edge and translate it such that all wedges intersect in one point. Then the
hyperplane arrangement defined by the k wedges has only O(k?) cells, and we
can thus find all projections in O(k?) time.

We improve on this further to give an algorithm that is adaptive in the
number of paths formed by the set of edges. We study the case of one path in
Section 4.1 and the case of many paths in Section 4.2. Finally, the ability to
search all O(k?) cells of the arrangement allows us more flexibility in choosing
projections; we study in Section 4.3 how to choose projections such that certain
edges are not on the silhouette.

4.1 One connected path

If a set of edges forms a path in the polyhedron, then it is easier to compute
viewing regions for which they are on the silhouette, mostly because (as we will
show) there are only two viewing regions. This is not the case for arbitrary edges.
For example Figure 2 shows a polyhedron where we have at least four viewing
regions with edges eq,eq,e3 on the silhouette. Two views from two different
viewing regions are shown in (a) and (c); the other two viewing regions are
origin-symmetric to the ones illustrated here. We now show that there are only
two regions from which the path can be realized!.

Theorem 3. Given a path of k edges on a convex polyhedron P, there are only
two viewing regions from which all k edges of the path are in the silhouette of P,
and we can find them in O(klogk) time.

Proof. Let the path consist of edges eq,...,ex. For 1 <7 <k, let f; be the face to
the left of edge €;, where “to the left” is taken with respect to walking along the

! This theorem is implicitly assumed without proof in [6].

@ & (b) (0

€2 €3 €2

€3

Fig. 2. The polyhedron has four viewing regions for edges e1, €2, e3. (a) One incident
face of e; is visible. (b) A rotation such that e; reduces to a point; this view point is on
the boundary between two viewing regions. (c¢) The other incident face of e; is visible.

path from e; to ex. Let f! be the other face incident to e;. The crucial observation
is that if the path is on the silhouette, then we either see all of fy,..., fr or all of
f1, .-+, [t. To prove this, let v be the common vertex of e; and ez. The clockwise
order of faces around v is then f1, (possibly) some other faces, fa, f}, (possibly)
some other faces, f{ (see Figure 3). Since the visible incident faces of v are

Fig. 3. The order of faces around a vertex.

connected, and for each of {f1, f{} and {f2, fi} exactly one is invisible, there
are only two possibilities: either all of fi,..., f2 are visible (and the others are
invisible), or all of fj,..., f{ are visible (and the others are invisible). So either
{f1, f2} are visible or {f1, f4} are visible, but it is not possible (for example) that
J1 and f} are visible. Assume f; and f2 are visible. Repeating the argument for

e and ez, this shows that f3 must also be visible, and so on, so fi,..., fi are all
visible (and f{,..., f, are invisible). Alternatively, if f{ and f} are visible, then
all of f{,..., fi. are visible (and f1,..., fx are invisible).

Recall that a face f is visible if and only if the view point is not in the half-
space that defined the face. Thus, the view points from which fy,..., fi are all
visible and f{,..., f; are all invisible are defined as the intersection of 2k half-
spaces. This defines one viewing region. A second viewing region is the one from
which fi,..., f, are all visible and fi,..., fx are invisible. This region is again
the intersection of half-spaces —the opposite half-spaces as those for the first
viewing region. The half-spaces can be found in O(k) time, and their intersection
can be computed in O(klogk) time (see e.g. [21]). There are no other viewing
regions. Thus, all viewing regions can be computed in O(klogk) time. a

Note that the above theorem applies to both orthogonal and perspective pro-
jections, and it is hence possible to find all viewpoints for which a path P with
k edges is on the silhouette in O(klog k) time for both orthogonal and perspec-
tive projections. In contrast, the results in the next subsections apply only to
orthogonal projections.

4.2 Multiple paths

In this section, we show how to use the above results to improve the time com-
plexity in the case when k edges are not all disjoint. Assume that & edges are in
[connected components which we refer to as P1,...,Ps; obviously [< k. From
Theorem 3 we know how to compute all projections from which P; is on the
silhouette. We now show that for orthogonal projections, we can intersect these
viewing regions in O(klogk + kl) time, which is an improvement over the O(k?)
result of Section 3 if [= o(k). Observe that for orthogonal projections, the set of
view points from which e is on the silhouette is translation-invariant, since the
view points are at infinity and correspond to directions. Hence, we are allowed
to translate the double-wedge arbitrarily, and in particular we may assume that
the intersection of the two planes contains the origin.

Theorem 4. Given | disjoint paths of a convex polyhedron P, we can find all
orthogonal projections of P such that all k edges of the paths are on the silhouette
in O(klogk + ki) time.

Proof. From Theorem 3 we know that for 1 < ¢ < [there are exactly two
viewing regions from which P; is on the silhouette. Since we are considering
orthogonal projections, these two viewing regions are two disjoint convex cones,
say C’Z»‘" and C; , and after a suitable translation we may assume that the apex
of each cone is at the origin. Let C; = C’Z»‘" U be the double-cone for path P;,
and set C* = [C}; the desired viewing regions are then exactly the connected
components of C*.

In general, [double-cones may have 6(I®) connected components in their
intersection. For double-cones with origin at the apex this reduces to O(I?), but
computing all connected components of C* directly is still too slow. We therefore
consider a projection of the double-cones onto a 2D surface (see [4, 5]). Consider
a unit cube D centered at the origin. To compute C*, it suffices to compute the
intersection of C* with each face of D. We explain how to do this in the following
for one face f of D only.

For any i, where 1 < ¢ < [, both C’Z»‘" and C] can intersect f, but these
intersections are disjoint (see Figure 4). Set B; = C; N f; then B; is a single
convex polygon or the union of two convex polygons. We call each B; a cone
polygon. Let B* = [B;, then each connected component of B* corresponds to
one viewing region.

To compute B*, we compute the arrangement A of the cone polygons By, ..., By,
which has at most 2/ convex polygons with a total of at most 2k edges. This can
be done in O(klog k+I) time where I is the number of intersecting points [3, 7].
Within the same time bound, we can also compute the planar graph GG defined by
this arrangement (see Figure 5(a)). G has O(k+1) vertices, edges and faces. Now
we want to find all cells in the arrangement A that belong to all cone polygons.
To do so, we compute a modified directed dual graph G’ of G' by computing the
dual graph of G and replacing each edge by a directed 2-cycle (see Figure 5(b)).
Note that here we use the term “dual” in the graph theoretical sense, which is
distinct from the geometric duality used before.

@

R N

f A cone polygon

Fig. 4. (a) Intersection of a double-cone C; with a face f. (b) The corresponding cone
polygon B; has two disjoint components.

Each vertex in G’ is a cell in A and each directed edge e in G’ corresponds
to entering or leaving a polygon of By,..., B;. We store with each edge of G’
whether traversing this edge means entering or leaving a cone polygon. Finding
all cells for which we are inside all [cone polygons can then be done by traversing
the graph G’ in such a way that all vertices are visited (e.g. with a DFS-traversal)
and maintaining a counter of the number of cone polygons that the currently
visited vertex is in. Since G’ has O(k + I) vertices and edges, this can be done
in O(k + I) time. The time complexity of our algorithm hence is O(klogk + I).
To find an upper bound on I, observe that there are O(l) convex polygons of
O(k) edges total. Each edge can intersect each convex polygon at most twice, so
I € O(kl) (and examples can be found where this is tight [2]). So the run-time

of our algorithm is O(klogk + kl). O
!
B1
By
(a) s (b)
By

Fig. 5. (a) The arrangement .4; the desired viewing regions are shown shaded. (b) The
corresponding modified dual graph. Some edges and vertices have been omitted for
clarity’s sake.

4.3 Hiding Edges

Another application of view point selection is industrial design, where we might
wish to make certain features easily visible or prominent, while some other fea-
tures (such as service trap doors or unsightly wiring) should be hidden. Thus
we would like to force edges, vertices or faces not to be on the silhouette; we
say that these features are hidden from the silhouelte. Note that a face/vertex
is hidden from the silhouette if and only if all its incident edges are hidden from
the silhouette, so it suffices to explain how to hide edges.

Lemma 5. The set of all view points from which a set of k edges is not visible
under an orthogonal projection can be computed in O(k?) time.

Proof. Each double-wedge from which an edge is visible also defines, by its com-
plement, a double-wedge from which the edge is not visible. Since we are con-
sidering orthogonal projections, we can translate all double-wedges such that
all hyperplanes that define them intersect the origin. Therefore, the hyperplane
arrangement now has only O(k?) cells and can be computed in O(k?) time.
By using a traversal technique similar to the one in Section 4.2, we can check
whether there is any cell in which all edges are hidden in O(k?) time. a

Note that we can at the same time force some edges into the silhouette and
hide some other edges from the silhouette. With the same proof as in Lemma
5, this can be done in O(k?) time. However, hiding edges unfortunately cannot
easily be made adaptive in the number of paths that these edges form. The
main obstacle is that Theorem 3 (“there are only two viewing regions”) does not
necessarily hold for hiding edges in one path.

5 Conclusions

In this paper, we studied the question of how to find all view points of a polyhe-
dron that force a given set of edges onto the silhouette of a convex polyhedron,
and gave an efficient algorithm to do so, as well as an adaptive algorithm in
terms of the number of connected paths formed by the edges for orthogonal
projections. A number of open questions remain:

— Transversal theory allowed us to force not only edges, but also vertices and
faces, onto the silhouette but at a higher cost since the size of the objects to
be transversed is proportional to the degree of the vertex or face involved.
Is it possible to improve on this, say find all projections with & vertices or k
faces on the silhouette in O(k?) or even O(k) time?

— The general adaptive algorithm (Section 4.2) applies only to orthogonal pro-
jections. Does a similar result hold for the perspective projections?

— Hiding edges in a perspective projection can effectively be phrased as a
transversal problem again, but Theorem 1 cannot be applied, since the re-
sulting shapes are not convex and compact. So how can we efficiently find
all view points from which a given set of edges is hidden?

— Given a family of edge sets &1, .. ., &, how quickly can we find all projections
such that for each set &;, at least one (but not necessarily all) of the edges
in & are on the silhouette?

— Rather than specifying the edges that must be on the silhouette, we might
be interested in the number of such edges. So given a number &, how can we
find all projections such that the silhouette has exactly k edges?

Last but not least, all our results were for convex polyhedra. What are effi-
cient algorithms for the same problems for non-convex polyhedra?
References

[1] P. K. Agarwal and M. Sharir. Applications of a new space partitioning technique.
Disc. Comp. Geom., 9:11-38, 1993.

(2]

[21]
[22]
[23]
[24]

[25]

B. Aronov and M. Sharir. The common exterior of convex polygons in the plane.
Comp. Geom., 8:139-149, 1997.

I. J. Balaben. An optimal algorithm for finding segments intersections. ACM
Symp. Comp. Geom., pages 211-219, 1995.

F. Benichou and G. Elber. Output sensitive extraction of silhouettes from polyg-
onal geometry. In 7th Pac. Conf. Comp. Grap. Appl., pages 60-69, 1999.

P. Bose, F. Gomez, P. Ramos, and G. T. Toussaint. Drawing nice projections of
objects in space. J. Vis. Comm. Image Represent., 10:155-172, 1999.

P. Brunet, 1. Navazo, J. Rossignac, and C. Saona-Vazquez. Hoops: 3d curves as
conservative occluders for cell-visibility. Comp. Grap. Forum, 20(3):431-442, 2001.
B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line
segments in the plane. J. ACM, 39:1-54, 1992.

B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Disc. Comp. Geom., 8:407-429, 1992.
H. Edelsbrunner, L. Guibas, and M. Sharir. The upper envelope of piecewise linear
functions: Algorithms and applications. Disc. Comp. Geom., 4:311-336, 1989.

A. Efrat, L. Guibas, O. Hall-Holt, and L. Zhang. On incremental rendering of
silhouette maps of a polyhedral scene. In ACM-SIAM Symp. Disc. Alg., pages
910-917, 2000.

J. E. Goodman, R. Pollack, and R. Wenger. Geometric transversals theory. In
New Trends in Discrete and Computational Geometry. Springer-Verlag, 1993.

J. J. Koenderink. What does the occluding contour tell us about solid shape?
Perception, 13:321-330, 1984.

A. Laurentini. How many 2D silhouettes does it take to reconstruct a 3D object?
Comp. Vis. Image Under., 67(1):81-87, 1997.

A. Laurentini. Introducing a new problem: Shape-from-silhouette when the rel-
ative positions of the viewpoints is unknown. [EFEE Pat. Ana. Mach. Int.,
25(11):1484-1493, 2003.

Melles Griot Corporation. Machine Vision Guide, 2003.
http://www.mellesgriot.com/products/machinevision /lif_3.htm.
J. Miller. Low-cost in-process machine vision gauging system. Techni-

cal report, Dept. Elec. Comp. Eng., Univ. Michigan-Dearborn, April 1998.
http://www.engin.umd.umich.edu/ceep/reports/96-97/jmiller.html.

F. Mokhtarian. Silhouette-based occluded object recognition through curvature
scale space. J. Mach. Vis. Appl., 10(3):87-97, 1997.

J. A. Muratore. Mumination for machine vision.
http://www.pinnaclevision.co.uk /illum02.htm.

H. Plantinga and C. R. Dyer. Visibility, occlusion, and the aspect graph. Intl. J.
Comp. Vis., 5(2):137-160, 1990.

M. Pop, G. Barequet, C. A. Duncan, M. T. Goodrich, W. Huang, and S. Kumar.
Efficient perspective-accurate silhouette computation and applications. In ACM
Symp. Comp. Geom., pages 60-68, 2001.

F. P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1995.

R. D. Schiffenbauer. A Survey of Aspect Graph. PhD thesis, Dept. Comp. Inf.
Sci., Polytechnic Univ., New York, 2001.

Siemens. Qutline inspection with SIMATIC VS 110. Product literature.
http://www.ad.siemens.de/dipdata/mk/pdf/e20001-a60-p285-x-7600.pdf.
SIGHTech Vision Systems. Eyebot Application, Inspecting Hard Disk Media. Prod-
uct literature. http://www.sightech.com /hard_disk_app_note.pdf.

K. Sugihara. Machine Interpretation of Line Drawing. MIT Press, 1986.

