
Drawing K2;n: A Lower Bound�Therese Biedly Timothy M. Chany Alejandro L�opez-Ortizy1 IntroductionIn graph drawing [1], the main objective is to obtaina representation of a graph in the plane under someaesthetic or functional criteria. For the purposesof visualization and chip layout, one would like todevise planar embeddings in a rectangular grid thathave both small area and small aspect ratio. Here,the area of an embedding is de�ned as WH and theaspect ratio as maxfW=H; H=Wg, if the minimumenclosing axis-parallel rectangle has width W andheight H.It is known that some graphs on n vertices re-quire 
(n2) area for any planar embedding. A re-lated question is whether there are graphs for whicha constant aspect ratio can only be achieved at theexpense of non-optimal area usage. Steve Wismathat the 2001 Graph Drawing Symposium [2] conjec-tured that a graph containingK2;n has non-constantaspect ratio for all optimal-area, planar embeddings.In this note we show that indeed this is thecase, provided that \embeddings" are taken to meanstraight-line drawings, where vertices are mappedto grid points and edges are mapped to noncrossingstraight line segments.2 PreliminariesK2;n is the complete bipartite graph with two ver-tices (say a and b) in one class and n vertices (sayv1; : : : ; vn) in the other class, and all possible edgesbetween them. Figure 1 shows an embedding ofK2;n in an n�2 grid. Since clearly K2;n needs 
(n)grid points, this drawing has asymptotically optimalarea. However, the aspect ratio is �(n). A naturalquestion is hence: What is the smallest area of adrawing of K2;n that has a constant aspect ratio?Or more speci�cally, is it possible to drawK2;n in anO(pn)�O(pn)-grid? (It is not diÆcult to see that�Research supported by NSERC. The authors would liketo thank the participants of the Algorithms Problem Sessionat University of Waterloo for helpful input.ySchool of Computer Science, University of Wa-terloo, Waterloo, Ontario, Canada, N2L 3G1, email:fbiedl,tmchan,alopez-og@uwaterloo.ca

the graph K1;n can be drawn that way; in contrast,K3;n is not planar for n � 3.)abv1 vnFigure 1: A drawing of K2;n of area O(n).a bRFigure 2: Each row outside R cannot contain twovertices without introducing crossings.We �rst state an easy lemma for counting gridpoints inside rectangles (one possible self-containedproof is given for completeness):Lemma 2.1 A w�h rectangle (of arbitrary slopes)can contain at most O((w + 1)(h+ 1)) grid points.Proof: Suppose there are k grid points inside therectangle. Draw disks of radius 1/2 around eachsuch point. These disks are disjoint and their unionhas area (�=4)k, but since the union is contained ina (w+1)�(h+1) rectangle, (�=4)k � (w+1)(h+1).23 The ProofConsider a planar straight-line drawing of K2;n ina W � H grid. We will upper-bound the numberof vertices n in terms of W and H, thereby show-ing that W or H must be large. Without loss ofgenerality, assume W � H.Let R be the minimum axis-parallel rectangle en-closing a and b. Let ` be the line through a and b,denote by L the distance between a and b, and de-note by D the distance of ` to an opposite corner of



R. Observe that L = O(W ) and D = O(H). In thesequel, we will only count vertices vj 's in the upperhalfplane of `, as vertices in the lower halfplane canbe dealt with similarly. (See Figure 3 (left).)Any horizontal line above R can contain at mostone vertex (see Figure 2), and similarly, any verticalline left of R can contain at most one vertex. Thus,at most W + H = O(W ) vertices can be drawnoutside R. We therefore focus our attention now oncounting vertices inside R.a LD b� W � H
a T LT 0Si vj 1S1 bFigure 3: Proof of the claim.Form dDe strips S1; : : : ; SdDe of width 1, whereSi contains all points above ` whose distance to `lies in the interval (i� 1; i] (see Figure 3 (right)).Claim 1 Strip Si contains at most O(L=i+1) ver-tices inside R.Proof: Assume that Si \ R contains at least onevertex, and let vj be the farthest such vertex fromthe line `. Let T 0 be the triangle 4avjb and let Tbe the intersection of T 0 with Si (the triangle T isshaded in Figure 3).Note that no vertex within Si can be outside T ,because otherwise its line towards a or b would crossan edge of T 0. So the number of vertices within Siis bounded by the number of grid points inside T .The height of T is at most 1, and the width of T isat most L=i, because T is similar to T 0 (which haswidth L) and has at most 1=i times its height. Since

vj 2 R, the triangle T is obtuse and is thereforecontained in a 1� (L=i) rectangle. By Lemma 2.1,the number of grid points inside T is O(L=i + 1),which proves the claim. 2The number of vertices inside R, in all strips to-gether, is at most a constant timesdDeXi=1 �Li + 1� � L(1+ln dDe)+dDe = O(W logH):We conclude that the overall number of vertices nis bounded by O(W logH).Theorem 1 Every planar straight-line drawing ofK2;n in a W � H grid with W � H satis�esW logH = 
(n).In particular, one dimension W must exceed
(n= logn) since W = 
(n= logH) = 
(n= logn).So, if we have a drawing of K2;n with aspect ratioO(1), then H = �(W ) = 
(n= logn) and the areais at least 
(n2= log2 n).Furthermore, if a drawing has optimal areaWH = O(n), then by division, H= logH = O(1),i.e., H = O(1), so one dimension W must be 
(n).4 Open problemsThe main arguments in our proof (modulo the sim-ple counting trick for vertices outside R) actuallyhold for any embedding where every pair of verticesis of distance at least 1. It is interesting to see ifproperties of the integer lattice would allow us toeliminate the extra logH factor in Theorem 1.Another question that remains open is if the lowerbounds shown hold for planar polyline drawings,where edges may bend at grid points.References[1] G. Di Battista, P. Eades, R. Tamassia, and I.Tollis. Graph Drawing: Algorithms for the Vi-sualization of Graphs. Prentice-Hall, 1998.[2] S. Felsner, G. Liotta, and S. Wismath. Straight-line drawings on restricted integer grids in twoand three dimensions. In Proc. Graph Drawing(GD 2001), Lect. Notes in Comput. Sci., vol.2265, pages 328{342, 2001.


