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School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

Email: {a2curtis, alopez-o}@uwaterloo.ca

Abstract—Valiant load balancing (VLB), also called two-stage
load balancing, is gaining popularity as a routing scheme that
can serve arbitrary traffic matrices. To date, VLB network design
is well understood on a logical full-mesh topology, where VLB
is optimal even when nodes can fail. In this paper, we address
the design and capacity provisioning of arbitrary VLB network
topologies. First, we introduce an algorithm to determine if VLB
can serve all traffic matrices when a fixed number of arbitrary
links fail, and we show how to find a min-cost expansion of the
network—via link upgrades and installs—so that it is resilient to
these failures. Additionally, we propose a method to designa new
VLB network under the fixed-charge network design cost model.
Finally, we prove that VLB is no longer optimal on unrestricted
topologies, and can require more capacity than shortest path
routing to serve all traffic matrices on some topologies. These
results rely on a novel theorem that characterizes the capacity
VLB requires of links crossing each cut, i.e., a partition, of the
network’s nodes.

I. I NTRODUCTION

Recent work onoblivious routing—where all routes are static
and do not change depending on congestion in the network—
has suggested Valiant load balancing (VLB) as an alternative to
direct routing [8], [11]. VLB is also commonly known as two-
stage load balancing, because it modifies routing to consistof
two stages. In stage 1 of routing, a node splits a predetermined
fraction of its ingress traffic to each node in the network. This
load-balanced node is chosen randomly for each packet and
does not depend on the packet’s final destination. In stage 2,
nodes forward all load-balanced packets they’ve received on
to the packets’ final destination.

Provisioning a logical full-mesh to serve all traffic matrices
with VLB has been extensively studied. VLB is optimal in
terms of the required link capacity to serve all traffic matrices
on a homogeneous full-mesh topology [11], and this optimal-
ity remains when nodes can fail [2]. At the logical layer,
VLB is always the best routing scheme for a homogeneous
network. This optimality does not necessarily transfer well
to the physical layer, however. We prove that a path is the
worst-case topology for VLB and can requireΘ(n) times the
capacity of the lower bound for any routing scheme, a sharp
contrast to VLB’s optimal capacity requirement on a full-mesh.
More generally, we show that VLB performs poorly on sparse
topologies, where the ratio of links to nodes is low; however,
we show that VLB’s capacity requirements approach the

theoretical optimum as the density of the topology increases—
these results are given in Section IV. We view this as a step
towards proving the viability of VLB. We emphasize that
this is a worst-case analysis, VLB is an oblivious routing
scheme, and it compares well to the theoretical lower bound
for required capacity. These results rely on a theorem we give
in Section III that characterizes the necessary and sufficient
capacity of links crossing each cut, or partition, of a network’s
nodes. This theorem also gives an algorithm to check if an
existing network can serve all traffic matrices with VLB when
a fixed number of links fail.

In this paper, we address the design and capacity pro-
visioning of physical VLB networks as well. Network de-
sign is a difficult optimization problem: one would like to
design a minimal cost network that meets several quality-
of-service constraints. Unlike current routing practices, VLB
routes traffic in a predictable fashion—using VLB, nodes are
not required to update forwarding paths due to congestion or
failures. Instead, the goal of VLB network design is to design a
minimal cost network with enough capacity to serve all traffic
matrices even under failures.

We show how to design an optimal VLB network under the
fixed-charge cost model, which allows the network operator
to estimate the expense of installing a link between each pair
of nodes. We give an integer program (IP) formulation that
designs a minimum-cost VLB network under the fixed-charge
cost model. We propose this VLB network design approach
in Section V.

II. M ODELS AND DEFINITIONS

Before giving the details of our results, we present the models
and notation used throughout the remainder of this paper.

A. Traffic model

We assume that the amount of traffic entering and exiting
the network from each node is fixed and that the two values
are equal. We say that the amount of ingress/egress traffic at
node i is the rate of i and we denote this value byri. We
assume that the rate of a node is bounded by the sum of the
ingress/egress links to that node; this is known as thehose
model[4], which was originally used to specify the bandwidth
requirements of a Virtual Private Network (VPN).
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We wish to consider traffic matrices that respect the rates
of each node, i.e., no nodei initiates or receives more thanri

traffic. A traffic matrix is ann×n matrix where thei, j entry
indicates the amount of traffic nodei is currently sending node
j. As observed in [8], it is enough to consider only the traffic
matrices where each node sends and receives at its maximum
rate, i.e., for a traffic matrixD, we have

∑

j∈V,j 6=i Dij = ri

and
∑

j∈V,j 6=i Dji = ri, and we say that such a traffic matrix
is avalid traffic matrix(VTM). We are interested in being able
to serve any VTM, so we do not require that the traffic matrix
of a network is static, only that it always remains valid.

B. Modeling VLB at the physical layer

Valiant load balancing (VLB) is also known as two-stage
routing, because packet routing is done in two stages. Stage1
is a load balancing step which sends packets to an intermediate
nodes, and stage 2 forwards packets to their final destination.
In detail, the two stages behave as follows.

• Stage 1 Each node forwards a predetermined fraction
of its ingress traffic to each node in the network; this
forwarding is done without regard for each packet’s final
destination. The fraction of each node’s traffic nodej
receives during stage 1 is specified byαj .

• Stage 2Packets received during stage 1 are forwarded
on to their final destination.

We call α1, . . . , αn the load balancing parametersof the
network, and we require

∑n

i=1 αi = 1. We also consider a
VLB variant where we requireα1 = · · · = αn, which we
call strict Valiant load balancing(SVLB). In practice it only
makes sense to use SVLB on a homogeneous network with a
full-mesh topology—we use it here for theoretical analysis.

In order to define the two variants of VLB we consider, we
need some terminology. For a pair of nodess, t, an s-t flow
with rate |f | assigns a valuef(P ) to each path froms to t in
G such that

∑

P f(P ) = |f |. We denote the amount of traffic
flow f places on a linke by f(e).

The following are the VLB routing variants we consider.
• A solution to thesingle-path VLB routing problemcon-

sists of the set of traffic split ratiosα1, . . . , αn together
with a simple pathPij for all i, j ∈ V that indicates the
path traffic forwarded fromi to j follows.

• In themulti-path VLB routing problem, a solution consists
of a set of traffic split ratiosα1, . . . , αn along with a flow
fij for each pairi, j ∈ V such that|fij | = αjri + αirj ,
where ri is the rate of nodei; the set of all flows is
denoted byP = {fij : i, j ∈ V }.

We say that a solution to either VLB routing problem is a
feasible solutionif no link carries more traffic than its capacity.

C. Definitions and Notation

Let G = (V, E) be a network with node setV and links
E. We denote a link bye or by specifying its endpoints, so
a link from i to j is denoted(i, j). We assume that links are
bidirected, i.e., whenever(i, j) ∈ E we also have(j, i) ∈ E.
We usen to denote the number of nodes in a network, i.e.,
let n = |V |. The nodes connected toi by a link are called

i’s neighbors. We assume that all links inE have a capacity,
which indicates the maximum number of bits they can carry at
once. We denote the capacity of an linke by c(e). We say that
the utilization of a link is the amount of traffic it is carrying
divided by its capacity. When studying link failures in this
paper, we assume that no failure disconnects the network, that
is, we assume there is always at least 1 path between all node
pairs.

III. D OES A NETWORK HAVE ENOUGH CAPACITY?

In this section, we give a combinatorial algorithm to find a
feasible solution to the multi-path VLB routing problem. Our
algorithm relies on a characterization of the capacity links
crossing each of a network’s cuts require, which we describe
in Section III-A. This theorem is easily used to determine
if a feasible multi-path VLB routing solution exists when
up to k arbitrary links fail, which we describe in Section
III-B. Before presenting either of these results, however,we
describe the VLB routing problem as a multicommodity flow
problem, which we use throughout the rest of this paper.

VLB as a multicommodity flow The VLB routing problem
can be described as amulticommodity flow, which generalizes
the well-known maximum flow problem to have multiple
source and destination pairs. Acommodity is an s-t flow
where nodes sends traffic to nodet at a specified rater,
and is denoted by(s, t, r). The multicommodity flow problem
takes as input a set of commoditiesW = {(si, ti, ri)}, and
a solution to the multicommodity flow problem is a set of
flows P = {fsiti

: (si, ti, ri) ∈ W and |fsi,ti
| = ri}; finally,

a solution to multicommodity flow problemW on network
G = (V, E) is feasibleif for all e ∈ E,

∑

k∈W fk(e) ≤ c(e),
wherefk(e) is the amount of traffic sent one by commodity
k.

Viewed as a multicommodity flow problem, the VLB rout-
ing problem is a set of2

(

n
2

)

= n(n−1) commodities, specified
as follows.

WVLB = {((s, i), αirs)} ∀s, i ∈ V Stage 1

∪ {((i, t), αirt)} ∀i, t ∈ V Stage 2

Since we have captured all flows between nodes, it’s clear
that the VLB routing problem with load balancing parameters
α1, . . . , αn admits a solution if and only if the multicommod-
ity flow WVLB has a feasible solution.

Thus far, we have not precisely described the commodities
in WVLB since we have not specified values forα1, . . . , αn.
There are many ways could find values for these load balanc-
ing parameters, for instance, values for eachαi that maximizes
the network’s throughput using multi-path VLB, can be found
in polynomial-time using an LP [9]. It’s NP-hard to find a
feasible single-path VLB routing; however, there is a fully
polynomial-time approximation algorithm for the problem [7].
Given optimal values forα1, . . . , αn, G can serve all VTMs
with VLB if and only if the multicommodity flowWVLB has
a solution.
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A. Characterizing the cuts of a VLB network

Finding a solution to the multicommodity flow problem
WVLB ensures that a network can use VLB to serve all VTMs;
however, we do not gain any insight into the structure of
networks where a feasible solution toWVLB exists. We now
give a combinatorial algorithm to find a solution to the multi-
path VLB routing problem. It is based on a theorem we will
give next that describes the necessary and sufficient capacity
that each cut of a network must have in order to serve all
VTMs with VLB.

The theorem is stated in terms of cuts. Acut is a partition
of V into two disjoint sets,S andV − S, such that all pairs
of nodesi, j ∈ S have a path between them that contains only
nodes inS. We denote a cut by(S, V − S). We say that an
link (i, j) with i ∈ S andj ∈ V − S crossesthe cut, and we
denote the set of all links crossing the cut(S, V −S) by δ(S).
The capacity of a cut(S, V − S) is the sum of capacities of
link in δ(S), and we denote the capacity of(S, V − S) by
c(S) =

∑

e∈δ(S) c(e).
The following theorem gives a necessary and sufficient

condition for routing all VTMs regardless of the network’s
topology.

Theorem 1 (Necessary and sufficient capacity of a cut). A
heterogeneous networkG with node ratesr1, . . . , rn and load
balancing parametersα1, . . . , αn can serve all valid traffic
matrices using multi-path VLB routing if and only if, for all
cuts (S, V − S) of G,

c(S) ≥ AV −SRS + ASRV −S = g(S)

whereRS =
∑

i∈S ri is the sum of node rates inS ⊆ V and
AS =

∑

i∈S αi.

Proof: All proofs have been omitted due to space con-
straints. See the full version of this paper [3] for details.

In the proof of Theorem 1, we give a polynomial-time
algorithm to find the max multicommodity flow for VLB
networks with a fixedα1, . . . , αn. As it cannot find optimal
values forα1, . . . , αn, this algorithm is still dependent on the
LP of [9] to find optimal settings for these load balancing
parameters. We note that if one solves the LP of [9], it returns
a solution to the multi-path VLB routing problem, so solving
the VLB routing problem with the algorithm given in the proof
of Theorem 1 is redundant.

B. Serving all valid traffic matrices with link failures

We now show how Theorem 1 can be used to determine if
a network can withstand link failures. We say that a network
is k link resilient if it can serve all VTMs afterk arbitrary
links are removed.

We now give a simple algorithm, based on Theorem 1, to
check if a network isk link resilient. The observation behind
the algorithm is that Theorem 1 holds regardless of the number
of links crossing a cut, so it gives a necessary and sufficient
condition for a network to serve all VTMs under link failures:
if a set of links fail, the capacity of all cuts(S, V −S) of the
network must remain at leastg(S). Therefore, the following

algorithm can be used to determine whether or not a network is
k link resilient. The algorithm’s input is a networkG = (V, E)
with link capacities, ratesr1, . . . , rn for each node, and load
balancing parametersα1, . . . , αn.

1) For all cuts(S, V − S) of G, let e1, . . . , e|δ(S)| be the
links in δ(S) ordered such thate1 ≥ · · · ≥ e|δ(S)|.

2) If c(S)−
∑k

i=1 c(ei) < g(S) for any cut(S, V − S) of
V , thenG cannot serve all VTMs underk link failures.

The worst-case runtime of this algorithm is exponential since
a network can have exponentially many cuts. Even so, the
algorithm is practical for small networks. We enumerated the
cuts of random networks with sizen = 20 in less than a minute
with a naive Python script; more sophisticated techniques exist
for larger networks [1], [6], [10].

IV. WORST-CASE CAPACITY REQUIREMENTS OFVLB

In this section, we study the necessary and sufficient capacity
VLB needs to serve all VTMs on a topologyG; we denote this
capacity requirement byLSVLB(G). We begin by proving that
VLB requires the most capacity whenG is a path in Section
IV-A. We next give an example of howLSVLB(G) decreases
linearly as additional links are added toG in Section IV-B.
Finally, we conclude this section with a brief comparison of
SVLB and shortest path (SP) routing in Section IV-C.

For our analysis, we consider only homogeneous networks,
where each node has rater. We primarily use SVLB, where
α1 = · · · = αn, no matter the topology since it is easier
to analyze than VLB. Similar to the definition ofLSVLB(G),
given a networkG using SP routing to serve all VTMs, we
denote the minimum necessary and sufficient sum of its link
capacities byLSP(G).

A. Worst-case topology for SVLB is a path

We seek to find the topology which requires the most
capacity to serve all VTMs with SVLB. We begin by showing
that adding additional links to a network using VLB does not
ever increase the network’s necessary capacity.

Lemma 2. Let G = (V, E) be a network that can serve all
valid traffic matrices using single- or multi-path VLB and let
G′ = (V, E ∪ F ) be a network that is obtained by adding a
set of linksF to G. ThenLVLB(G

′) ≤ LVLB(G).

This lemma implies that the worst-case topology for VLB,
and consequently SVLB, must be a tree, a topology with
exactly one path between each pair of nodes. This result
contrasts a recent advance on direct routing, which shows that
a tree is the optimal topology for single-path direct routing
[5]. We will give an example of how adding additional links
to a network can decrease its necessary capacity momentarily
(Section IV-B); first, we show that a path is the worst-case
topology for SVLB.

A path is a tree, denoted byPn = (V, E) where V =
{0, 1, . . . , n− 1} and each nodei is neighbors withi− 1 and
i+1, except for wheni = 0, n−1, theni has one neighbor, 1
andn− 1 respectively. The following shows that a path is the
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worst-case topology in terms of necessary total link capacity
when using SVLB.

Theorem 3. For any homogeneous networkG, LSVLB(G) is
maximized whenG is a path.

We can now compute the worst-case capacity for SVLB,
which is:

LSVLB(Pn) = 2

n−1
∑

i=1

2r

n
i(n − i) =

2(n2 − 1)r

3

We now have that2(n2 − 1)r/3 is an upper bound on the
capacity required to serve all VTMs with SVLB; previous
work [11] has shown that2r(n − 1) is a lower bound on
the amount of capacity required by SVLB on a homogeneous
full-mesh. We will discuss how these bounds compare with SP
and optimal routing in Section IV-C. First, we give an example
of how increasing the number of links in an SVLB network
lowers its capacity requirements.

B. HowLSVLB(G) is affected by additional links

Lemma 2 implies that adding links to a network reduces the
capacity required by for the network to serve all VTMs with
VLB, but it does not specify how muchLSVLB(G) decreases
(if any) when a new link is added toG. To get an idea for how
additional links affect the necessary and sufficient capacity of
an SVLB network, we’ll show howLSVLB(G) changes as we
add additional links to a cycle. LetCn denote a network that
is a cycle or a ring.

We’d like to be able to add more links around this cycle,
so we defineCn,l be a network whereV = {0, . . . , n − 1}
and nodei has neighbors{j ± k mod n : k ∈ {1, . . . l}}
and l < n/2, so thereforeCn,l has2ln links. Computing the
required capacity forCn,l, we have

LSV LB(Cn,l) =
n2r

k + 1

when n is even andk < n/2, showing that VLB performs
very well as the number of links increases. While the full
n(n − 1)/2 links is necessary to obtain the optimality results
of VLB, we have shown that VLB does not require too much
additional capacity on networks with a moderate number of
links vs. nodes.

C. Comparison of SVLB, SP, and optimal routing

Finally, the following table summarizes our findings about
the capacity requirements of SVLB and SP routing.

Routing scheme Worst-case Best-case
SVLB 2(n2 − 1)r/3 2r(n − 1) [11]

topology path full-mesh
Shortest path ≥ rn(n − 1) 2r(n − 1) [12]

topology full-mesh star

In the table, we give the best- and worst-case values for
LSVLB(G) and LSP(G) on any topologyG. For each routing
scheme considered, we list the topology that brings about the
best- or worst-case behavior.

V. VLB N ETWORK DESIGN

In this section we show how the theoretical tools developed
thus far can be applied to the design of VLB networks. We
are interested in designing VLB networks at the physical
layer so as to find a minimum-cost network that can serve all
valid traffic matrices. Unlike previous work on provisioning a
VLB network, we use the fixed-charge cost model (described
below). After we present the fixed-charge cost model, we
describe the VLB network design problem in Section V-A,
and then go on to develop an integer program (IP) that designs
a minimum-cost VLB network. In Section V-B, we show
how this IP can be modified to find the min-cost expansion
of a network—via upgrading links, installing new links, or a
combination of both—so that the upgraded network can serve
all VTMs. Finally, we give an IP for constructing a VLB
network that can serve all VTMs with up tok arbitrary link
failures in Section V-C.

The fixed-charge network design cost modelIn the fixed-
charge cost model, we are given a set of cable types, each
with a maximum capacity, that can be used to connect nodes.
For each pair of nodesi andj, the network planner estimates
the cost of installing the link(i, j) with each cable type. This
estimate could be as simple as multiplying the cost per unit
length of a cable with the distance betweeni andj, or could
be more sophisticated, e.g., one’s cost estimate could takeinto
account the type of terrain the link will traverse (installing a
link across rugged mountains is more costly than across a flat
plain). Anytime we describe a network design problem using
the fixed-charge cost model, letF = V × V be the set of all
candidate links such that eache ∈ F has a cost of installation
cost(e) and a maximum capacityc(e).

A. Designing a new VLB network

We now show how to design a new VLB network under the
fixed-charge cost model, that is, we give an integer program
(IP) formulation of theVLB network design problem, which
takes as input a set of nodesV , each with a rateri, and a set
of candidate linksF where each link has a maximum capacity
c(e) and a fixed costcost(e). A solution to the VLB network
design problem is a networkG = (V, E) where

∑

e∈E cost(e)
is minimal among all possible networks whose link set is a
subset ofF that can serve all VTMs. The VLB network design
problem is easily seen to be NP-hard. It can be reduced to the
generalized Steiner tree problem and the knapsack problem.

Due to space constraints, we do not present the full VLB
network design IP here—see the full version for details [3].
The goal of the VLB network design IP is to minimize the
following objective function.

Minimize
∑

e∈F

cost(e)x(e)

This objective function minimizes the cost of links that are
selected for use. The indicator variablex(e) for each link
indicates whether or note is selected for use, i.e., ifx(e) = 1,
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then e ∈ E and hencee is in the min-cost network that can
serve all VTMs with VLB.

As this is an IP, its runtime is exponential in the worst-case.
This is a particularly difficult IP—in the full version of this
paper, we discuss techniques to compute it.

B. Upgrading an existing network

We now show how to find a min-cost upgrade to an existing
network so that it can serve all VTMs with VLB—a problem
we call theVLB upgrade problem. The VLB upgrade problem
takes as input a networkG = (V, E) with link capacitiesc(e)
for all e ∈ E and rates for each noder1, . . . , rn and a setF
of candidate links, eache ∈ F with a max capacityc(e) and
cost cost(e) to install. PresumablyG is an existing network
that does not have enough capacity to serve all VTMs with
VLB. The output to the VLB upgrade problem

The VLB upgrade problem can be solved by reformulating
it as a VLB network design problem. The idea is to, for each
link e ∈ E, adde to the set of candidate linksF with c(e)
set toe’s existing capacity andcost(e) = 0 so thate is free
to use. This way, all existing link capacity is free to use.

C. Designing a fault-tolerant VLB network

We now show how to design ak link resilient VLB network.
Ideally, we would like to be able to specify the necessary
capacity of each link in the network so that the network
can serve all VTMs with up tok link failures; unfortunately,
Theorem 1 cannot be used to find such a bound for individual
links—only cuts, which typically contain many links. We can,
however, use it to find a sufficient capacity of each link.

Theorem 4 (Sufficient link capacity under link failures). Let
G = (V, E) be a heterogeneous network with node rates
r1, . . . , rn that uses VLB with multi-path routing and load
balancing parametersα1, . . . , αn. If each linke ∈ E has

c(e) ≥
g(S)

|δ(S)| − k

for all S ⊆ V where e ∈ δ(S) and g(S) = AV −SRS +
ASRV −S , thenG can serve all valid traffic matrices with up
to k link failures that do not disconnectG.

An immediate consequence of this lemma is that adding
following set of constraints to the VLB network design IP
ensures that the resulting network isk link resilient.

c(e) ≥
g(S)

|δ(S)| − k
for all (S, V − S) where e ∈ δ(S) (1)

While Theorem 4 implies that constraints (1) are enough to
guarantee that the network found by the VLB network design
IP with constraints (1) added isk link resilient; however, there
is no guarantee that the resulting network will be optimal in
terms of link capacity.

There is exponentially many constraints in (1), making the
IP with these constraints impractical to compute except on
very small problem instances. As an alternative approach, we
could find a minimum capacityk link resilient network by

adding additional constraints to the VLB network design IP
to ensure that the capacity of all cuts remains at leastg(S)
when any set ofk links are removed from the network. This
approach finds an optimal network in terms of link capacity;
however, it’s complexity grows exponentially ink, as the
number of subsets ofk links grows exponentially ink.

VI. CONCLUSIONS

The optimal load balancing scheme has yet to be found.
VLB doubles the round trip time of packets in the worst-
case and, as we’ve shown here, can require more capacity
than shortest path routing. VLB is especially ineffective on
sparse topologies; however, we’ve shown that as the density
of a topology increases, VLB’s worst-case required capacity
decreases linearly with the number of links beyond the first
n − 1 links required to connect all nodes. Theorem 1, which
characterizes the capacity of cuts in a VLB network, is the
power behind these VLB provisioning results. We view this
theorem as a step towards understanding the structure of VLB
networks.

We have also shown that the predictable nature of traffic in a
VLB network allows for VLB network design problems to be
accurately stated and computed. VLB is a powerful network
design framework, and we’ve shown it can facilitate network
design so that operators have rigorous tools, rather than best
practices, available for designing and extending their networks.
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