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Cheriton School of Computer Science
University of Waterloo

Abstract. We propose an indexing data structure based on a novel vari-
ation of Bloom filters. Signature files have been proposed in the past as
a method to index large text databases though they suffer from a high
false positive error problem. In this paper we introduce COCA Filters,
a new type of Bloom filters which exploits the co-occurrence probability
of words in documents to reduce the false positive error. We show exper-
imentally that by using this technique we can reduce the false positive
error by up to 21 times for the same index size. Furthermore Bloom fil-
ters can be replaced by COCA filters wherever the co-occurrence of any
two members of the universe is identifiable.
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1 Introduction

Inverted indices and variants thereof are the preferred data structure currently
in use in search engines. However in environments that are very sensitive to
index size this method becomes impractical since they require approximately
50% of the size of the corpus for the index file. By compressing the index file
and pruning of the less frequent query terms we can reduce the size of inverted
indexes down to 10% of the corpus size [30]. In areas where false positive errors
are acceptable a more space efficient method called signature files is applicable.
With this method it is possible to reduce the size of index file significantly at
the cost of precision. Another key advantage of this method is that it can be
used in optimizing intersection queries in distributed inverted indices[20, 26].
Parallelizability and the simplicity of the insertion are two other benefits of this
method that make it a suitable choice for certain environments.

When using signature files a signature is maintained for each document. A
signature is basically a sequence of bits. There are several different methods for
computing the signature of a document. One of the most common methods is
to use a randomized data structure called Bloom filter. In Bloom filter-based
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signature files it is implicitly assumed that every pair of words is equally likely
to appear in the same document while in practice this assumption is not true.

In this paper we introduce a new variant of Bloom filters named co-occurrence
aware Bloom filters or COCA Filters for short. COCA Filters utilize the prob-
ability of the co-occurrences of the words in documents to improve the false
positive error. We show through experiments that COCA Filters can reduce the
space by up to 75% for the same false positive error or equivalently reduce the
false positive error by up to 21 times for the same index size.

Reducing the size of the signature file index or equivalently its false positive
error makes COCA Filters ideally suited for applications which are extremely
sensitive to the size of the storage.

The rest of the paper is organized as follows: Section 2 reviews related work
and background. Section 3 describes the details of our approach and our proposed
methods. Section 4 presents the evaluation and analysis of our proposed methods
and finally we conclude our work in section 5.

2 Previous Work and Background

Inverted file indices and signature files are two well established indexing methods
which have been proposed for large text databases [11, 15, 30]. Although using
the inverted files is more favourable because of its wide range of useful properties
in comparison to signature files, Carterette and Can in [11] showed that signature
file indexes can be as good as inverted file indexes in special environments where
memory is scarce and a given false positive rate is acceptable. Library catalogues,
multimedia files with many attributes, medical cross references, and a large
lexicon or lists of streets for a GPS system are examples of text databases in
which signature file can work faster with less storage. However, the high false
positive error rate is one of the critical problems of the signature file method
which makes it impractical for many applications.

Signature files are a forward index method which stores a signature for every
document. Hashing every single term of a document and concatenating the hash
values of the terms can be considered as a simple signature for that document.
Alternatively, superimposed coding can be used to create a signature of a docu-
ment. In this method, hashing every word of the document yields a bit pattern
of size m, with k bits set to 1, in which m and k are design parameters. The
bit patterns are superimposed (OR-ed) together to form the document signa-
ture. Searching for a set of words is handled by creating the signature of each
word and OR-ing them together to build the query signature and returning all
documents with a matching pattern.

To avoid having document signatures that are flooded with 1s, long doc-
uments are divided into smaller blocks, that is, pieces of text that contain a
constant number of unique words. Each block of a document gives a block sig-
nature and block signatures are concatenated to form the document signature.

Although not explicitly stated in the literature, superimposed coding is a
variation of Bloom filters, a well-known randomized data structure first suggested
in [5]. A Bloom filter is a probabilistic data structure used to check whether an
element belongs to a set with possible false positive error but zero false negative
error. It consists of a bit vector of size m and k independent hash functions



h1, h2, ..., hk with ranges of 1, ...,m. All the bits are initially set to zero. These
hash functions can be interpreted as uniform random number generators over the
range of 1, ...,m. For every element of the set, say x, the bits hi(x) for (1 ≤ i ≤ k)
are set to 1. Some bits of the array might be turned on more than once, but this
will not affect the status of the array. To check if an item, say y, is a member of
S, the k positions of hi(y) for 1 ≤ i ≤ k in the array should be checked and if
one or more of the k positions are set to 0, it can be assured that y has not been
inserted to this array and consequently is not a member of S. If all k positions
are set to 1, it is assumed that y is in S. However, there is some probability that
this assumption is wrong. Therefore, a Bloom filter may result in a false positive
error, also known as false drop error.

Bloom filters have been used in a wide variety of applications in recent years.
They are used as spell-checkers [23], as a means of succinctly storing a dictionary
of unsuitable passwords for security purposes [28], to speed up semi-join opera-
tions [22], for Web cache sharing [16] and in many other areas. In order to support
multi-sets, Cohen and Matias introduced spectral Bloom filters [14]. Chazelle et
al. in [13] introduce a similar data structure which is called a Bloomier filter in
order to approximate functions.

Bloom [5] proved that the false positive probability of the Bloom filter is

about f = (1 − e−kn

m )k. Recently Bose et al. in [6] showed that the Bloom’s
formula for false positive is not accurate and gave a proper formula. They also
demonstrated that for large enough values of m (size of Bloom filter) with small
values of k (number of hash functions), the difference between Bloom’s formula
and the actual false positive rate is negligible.

To obtain an estimate of the efficiency of Bloom filters, it is good to know
the information theoretic lower bound of the size of any data structure that can
represent all sets of n elements from a universe with false positive for at most a
fraction t of the universe but allows no false negative. Broder et al. [7] showed
that to achieve a false positive rate less than t, we must have m > n lg( 1

t )
bits. Furthermore, they showed that this lower bound in Bloom filters is m >
n lg(e) · lg( 1

t ) and consequently argued that space-wise Bloom filters need more
than a lg(e) ' 1.44 factor of the information theoretic lower bound. In [25] Pagh
et al. introduced a more complicated data structure that achieved this lower
bound.

One of the key observations in both of the aforementioned proofs is the
assumption that there is no correlation between any two members of the universe,
and any subset of the universe with cardinality of n is equally likely. Now assume
that some members of the universe are strongly correlated (i.e. given that one of
them belongs to a subset, the probability that the other is also a member of that
set is very likely). Intuitively this property of possible subsets can be exploited
by using special hash functions which produce more “similar” bit patterns (i.e.
with smaller hamming distances) for more correlated members of our set and
vice versa. For doing so, we use locality sensitive hash (LSH) functions which are
customized to hash similar items to the same hash value with high probability
[12]. The LSH algorithm has been used in numerous applied settings from bio-
sequence similarity search [10] to audio similarity identification [29] and many
other areas [17, 19, 24]. Min-wise independent permutations is a locality sensitive
hashing scheme for a collection of subsets with the similarity function defined as



follows:

Prh∈F [h(A) = h(B)] = sim(A,B) =
|A ∩B|
|A ∪B|

In this setting, hash of a set A is defined as h(A) = mina∈Aπ(a) where π is a
permutation which was chosen randomly from a min-wise independent permu-
tation family F. A permutation family F (subset of all n factorial permutations)
is min-wise independent if for any subset X of [1...n], and any x ∈ X, when π is
chosen randomly from F we have Pr(min{π(X)} = π(x)) = 1

|X| [9].

One of the applications of min-wise independent hash functions was suggested
by Broder in [8] to detect near duplicate documents over a large set of documents.
Broder suggested to consider a set of shingles (contiguous subsequences of words)
for each document and choose a set of t independent random permutations
π1, π2, π3, ..., πt. For each document D, calling its set of shingles SD, he defined
the sketch of Document D as (mina∈SDπ1(a);mina∈SDπ2(a); ...;mina∈SDπt(a)).
Then, he argued that the sketch of two documents can be used to estimate their
resemblance by computing how many corresponding elements in their sketches
are equal. In the next section a similar approach is taken in order to reduce the
false positive errors of signature files.

3 COCA Filters

Considering the concept of signature files over human readable texts, some terms
(members of the universe) are more likely to exist in the same document (set).

In order to exploit this non randomness, it is preferable to modify the k
hash functions of the Bloom filter such that “similar” words (i.e. with high co-
occurrence ratio) have “similar” bit patterns (i.e. with less hamming distance).
For example if two words occur in almost the same set of documents their bit
patterns can be designed such that they differ in a few places. More importantly
by using these bit patterns, after inserting these two words there would be more
bit positions available for the rest of the words in the Bloom filter causing re-
duction in the average false positive error. This observation can be formalized
as the following optimization problem.

Consider two keywords of x and y from the universe of all the words W
with corresponding posting lists of X and Y . Furthermore assume that the k bit
positions of each of these two terms are stored in the sets of H(x) and H(y).
Rather than having k random numbers between 1 to m, the proposed objective
is to design hash functions such that:

∀x, y ∈W, |H(x) ∩H(y)|
|H(x) ∪H(y)|

=
|X ∩ Y |
|X ∪ Y |

Note that the right hand side is determined by the corpus and so is fixed.
So this problem can be characterized as given N2 rational numbers pij design a
bipartite graph with m vertices on one side and N vertices the other side such
that for every two vertices Vi and Vj where 0 < i, j 6 N the following constraints
hold:

|Neighbour(Vi) ∩Neighbour(Vj)|
|Neighbour(Vi) ∪Neighbour(Vj)|

= pij



We conjecture that this problem is NP-hard when we are given pij as a pair
Iij (intersection size) and Uij (union size). Here we propose the following ad-
hoc probabilistic approach. Define k co-occurrence-aware hash functions of x
to be k of the min-wise independent permutations over the set of X. So, the
probability that each hash of two distinct terms x and y be equal to each other

is |X∩Y |
|X∪Y | = sim(x, y). This new data structure is named co-occurrence-aware

Bloom filters or in short COCA filter.
Assuming that the probability that two different hash functions produce the

same bit position for two different words is negligible, the expected value of the
difference between the left and right hand side of the objective function for every
two term can be calculated as follows:

E

[∣∣∣∣ |H(x) ∩H(y)|
|H(x) ∪H(y)|

− |X ∩ Y |
|X ∪ Y |

∣∣∣∣] ' (1)∣∣∣∣ k × sim(x, y)

2k − k × sim(x, y)
− sim(x, y)

∣∣∣∣ = (2)∣∣∣∣sim(x, y)× (sim(x, y)− 1)

2− sim(x, y)

∣∣∣∣ (3)

The approximation from (1) to (2) is based on the assumption that pairs
of sets with large intersections on average have large unions but obviously this

is not true in general. Since sim(x, y) = |X∩Y |
|X∪Y | and is in [0, 1], with simple

algebraic calculations it can be shown that this value is less than 0.172 and
more importantly for the pairs of x and y such that sim(x, y) is close to 0 or 1
this value is close to 0. So over the sets that most of the members are strongly
co-related or are not related to each other at all this approach can perform very
well. Note that the reason this formula is not dependant on k, the number of
hash functions, is the implicit assumption that the bit vector is large enough
such that it is quite unlikely for two different hash functions to produce the
same bit position for two different words.

Note that by doing so, the reduction in the false positive probability for all
of the terms in documents happens at the cost of increasing the false positive
probability over random terms which do not exist in any of the documents. In the
next section we describe three experiments over three different English corpora
comparing COCA Filters to traditional Bloom Filters.

In order to implement COCA filters, k min-wise independent permutations
should be picked randomly from a min-wise independent family. Since min-wise
independent families are too big for practical applications (in fact it is known that
their size is at least lcm(1, 2, ..., n) [9]), variant notions of min-wise independence
have been introduced in the literature [21, 27].

In our experiments in order to keep the implementation relatively simple
two-universal hash functions has been employed to replicate the behaviour of k
independent permutations. For a large prime value of p, k random pairs of (ai, bi)
are generated where 1 6 i 6 k. The hash of each document ID, say x can be
calculated by (ai ∗ x+ bi)modp. Each hash of the document IDs corresponds to
one permutation over the set of all document IDs. This procedure is repeated for
all the k random pairs so that there are k different permutations. Consequently,



for each permutation the minimum value of each posting list is the hash of the
corresponding keyword.

In algorithm 1, the pseudocode as explained in the last paragraph shows how
to calculate the k hash functions of the COCA filter and store them in k hash
tables h1, h2, ..., hk.

Algorithm 1 Hash Calculator For COCA Filter

input: Assume documents are numbered from 1 to N and m is the size of the bit
vector. The posting list of each term t can be accessed as a set by posting-list(t). k
random pairs of (ai, bi) where 1 6 i 6 k are generated.
Output: k hash tables h1, h2, ..., hk

1: for i = 1 to N do
2: for j = 1 to k do
3: perm[i][j]← (aji + bj)modP
4: end for
5: end for
6: for every term t in the corpus do
7: for x = 1 to k do
8: hx[t] = [minnum∈posting−list(t)(perm[num][x])]mod(m)
9: end for

10: end for

4 Experimental Results

In order to evaluate the effectiveness of COCA Filters in reducing the false
positive error, we test them experimentally on three collections. The first corpus
is a collection of Wikipedia articles [2]. This collection consists of 2000 high
quality pages selected by a team of volunteers. For indexing purposes we stripped
all HTML tags, Java scripts, comments and other non-related elements from the
html files and removed all numbers and words shorter than 3 characters. The
total size of the html files is 244 Megabytes and after cleaning the files and
removing the duplicates of the words in each file the total size is reduced to 20.4
Megabytes. According to the statistics provided in [4], in Wikipedia, the average
number of words per document is about 400. Based on this assumption, each
document of the test collection is divided into partitions of size 400 words. After
partitioning each document, the size of its last partition will be less than or equal
to 400 words. To address this problem, the number of words in all fragments of
each document has been balanced. For example, after partitioning a 700 word
document, there will be 2 partitions of size 350 words. The output of this step
is 7, 500 partitions with the average size of 350 words per document and 212568
unique terms in total.

The goal of the experiment is to compare the average false positive error of the
proposed hash function with that of the theoretic formula and the conventional
Bloom filters. Let W be the set of all words. FP (d) is defined as the number
of words in W which are not in document d but its corresponding Bloom filter
falsely claims that they are. For each document, the false positive error of its



0.32(1) 0.64(2) 0.96(3) 1.28(4) 1.59(5) 1.91(6) 2.23(7) 2.55(8) 2.87(9) 3.19(10)

Theory 0.6326 0.3937 0.2369 0.1470 0.0919 0.0561 0.0347 0.0216 0.0133 0.0082

Bloom Filter 0.6366 0.3971 0.2395 0.1506 0.0951 0.0589 0.0370 0.0234 0.0146 0.0095

COCA Filter 0.1887 0.0435 0.0142 0.0070 0.0044 0.0033 0.0027 0.0023 0.0020 0.0019
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Fig. 1. The comparison of the average false positive error of the COCA filter method
with the conventional Bloom filter and the theoretic formula for the sampled Wikipedia
corpus. The x-axis shows the index size in Megabyte and the value in the parentheses
indicates the m

n
ratio.

corresponding Bloom filter is defined as FPE(d) = FP (d)
|W | . Thus, the average

false positive error of a signature file method is
∑

d∈D FPE(d)

|D| .

In figure 1, the x-axis shows the result of this experiment for different m
n

ratios and y-axis shows the corresponding average false positive error. In each
method, for each m

n ratio, only the result for the k value which minimizes the
false positive error is shown. The total size of the signature file along with the
average false positive error is also included in the table below the figure.

From this experiment the following key observations can be derived:

– For all values of m
n , the false positive error of conventional Bloom filters is just

slightly more than that of the theoretic formula. It confirms the argument
of Bose in [6] that Bloom’s formula provides only a lower bound for false
positive probability. The closeness of the average false positive error of the
conventional Bloom filter and the theoretic formula justifies the validity of
our implementation of the conventional Bloom filters as well.

– For all values of m
n , the false positive error of our proposed methods is

significantly better than the false positive ratio predicted by the conventional
Bloom filter and the theoretic formula.

– In some cases there is up to a 21 factor improvement in the average false
positive error. For example, in m

n = 2, the average false positive error of the
COCA filter is about 21 times better than the Bloom filter.

– In some cases there is up to a 75% reduction in the size of the index for the
same average false positive error. For example if the objective is to achieve
an average false positive error less than 0.21 in conventional Bloom filters
the m

n ratio should be at least 4 while in COCA filter with the m
n ratio of

1 the average false positive error of 0.20 is achievable. In other words for
every bit that is used in the COCA filter, 3 extra bits are required in a



conventional Bloom filter. Note that when m
n = 1 the index size is only 1.6%

of the polished corpus.

0.33(1) 0.67(2) 1(3) 1.34(4) 1.68(5) 2.01(6) 2.35(7) 2.69(8) 3.02(9) 3.36(10)

Theory 0.6326 0.3937 0.2369 0.1470 0.0919 0.0561 0.0347 0.0216 0.0133 0.0082

Bloom Filter 0.6312 0.3929 0.2425 0.1568 0.0990 0.0634 0.0411 0.0266 0.0174 0.0113

COCA Filter 0.5333 0.2872 0.1548 0.0780 0.0473 0.0286 0.0144 0.0094 0.0055 0.0033
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Fig. 2. The comparison of the average false positive error of the COCA filter method
with the conventional Bloom filter and the theoretic formula for the sampled Google
corpus. The x-axis shows the index size in Megabyte and the value in the parentheses
indicates the m

n
ratio.

Our proposed approach is based on the co-occurrence of the words in doc-
uments and therefore is sensitive to the correlation of documents. In order to
investigate the relationship between the degree of correlation among documents
and the improvements in average false positive error, the previous experiment
was repeated over a collection of weakly-correlated web pages. This collection
is a random selection of 900, 000 web pages released by Google in 2002 for a
programming contest [1]. We chose about 13500 samples from this collection
randomly and performed the previous experiment on the resulting collection.
We used the same method as the first experiment for cleaning the documents
and fragmenting them. Due to the smaller average size of documents in this col-
lection, we divided the documents into partitions of size 100. After partitioning,
the collection had about 35200 documents with the average size of 80 terms and
228715 terms in total.

Figure 2 shows the result of this experiment. Although COCA Filter is still
better than conventional Bloom Filter, the improvement in this experiment is
not as good as the first experiment. The result of this experiments confirms the
sensitivity of our proposed method to the correlation among the terms of the
documents.

In the first experiment we chose a collection of high quality articles of Wikipedia
which are all coherent in writing and have a scientific theme. It is normal to en-
counter many synonyms of a word instead of a repetition and there is also a
somewhat predictable set of antonyms to follow. On the contrary, in the second
corpus documents are not coherent neither in meaning nor in the style which
results to have lots of random terms from street names and addresses to gene
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(a) Distribution of false positive error for
m
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= 2 for the Wikipedia collection
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(b) Distribution of false positive error for
m
n

= 4 for the Wikipedia collection
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(c) Distribution of false positive error for
m
n

= 6 for the Google collection
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(d) Distribution of false positive error for
m
n

= 6 for the Google collection

Fig. 3. Comparison of the distribution of the false positive error of the COCA Filter
and the conventional Bloom filter. In each graph the left curve corresponds to the
COCA filter and the right curve corresponds to the conventional Bloom filter.

sequences and peoples’ names in them. Moreover the diversity of the topics that
these terms are covering is higher than the first collection and this diversity
reduces the probability of the co-occurrence of the words in documents and
consequently reduces the effectiveness of our proposed method.

To ensure that the size of corpus does not have a negative effect on the quality
of COCA Filters we repeated the first experiment with a similar but larger
collection of Wikipedia documents [3]. This collection is a more comprehensive
version of the first collection and consists of 6500 high quality pages selected
by a team of volunteers for school students. The size of this collection is more
than 3 times the size of the first collection but it is very similar to the first
collection in terms of coherency and writing style. We used the same method
as the first experiment for cleaning the documents and fragmenting them. After
partitioning, the collection had 21543 documents with the average size of 350
words per document and 321500 unique terms in total. Table 1 compares the
result of this experiment with the result of the first experiment. It shows that
increasing the size of the collection does not increase the average false positive
error given that the coherency and style of the corpus remains the same. It
confirms that the higher average false positive error of COCA Filters on Google
collection is not because of the larger size of this collection and it is only due to
the non-coherent, random nature and diversity of that collection.
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Fig. 4. The Comparison of Information Theoretic lower bound with COCA filters over
two different corpora

Table 1. Comparison of the average false positive error of COCA filter over two
wikipedia corpora with different sizes

m/n 1 2 3 4 5 6 7 8 9 10

Wikipedia(6500) 0.20075 0.04450 0.01338 0.00509 0.00280 0.00203 0.00159 0.00131 0.00108 0.00096

Wikipedia(2000) 0.20001 0.04643 0.01497 0.00706 0.00448 0.00347 0.00278 0.00239 0.00211 0.00188

One area of concern is whether in COCA Filters the average false positive
error decreases at the cost of having many bloom filters with low false positive
error and many with high false positive error (i.e. having a bimodal distribution).
Figure 3 illustrates a comparison between the distribution of the false positive
error in the COCA Filter and the conventional Bloom filter for m

n = 2 , 4 over
the Wikipedia and Google corpora. In each graph the left curve corresponds
to the COCA filter and the right curve corresponds to the conventional Bloom
filter. In all graphs, in both curves, by increasing the distance from the average,
the frequency of documents decreases rapidly. It shows that there are only a
few documents with a false positive error significantly greater than (or smaller
than) the average false positive error. It can be seen that in the Wikipedia
corpus which has higher correlation even the worst false positive error of the
COCA filter method is significantly better than the best false positive error of
the conventional Bloom filter method while in the Google corpus this property
does not hold. Moreover, in the Wikipedia corpus the deviation of the COCA
filter curve from the average is much smaller than its corresponding Bloom filter
curve while in the other corpus this is not easily observable.

Another interesting comparison is between the COCA filter and the infor-
mation theoretic lower bound on the three corpora as suggested in [7]. In other
words we want to compare our method in terms of space efficiency with the best
possible randomized data structure which does not utilize the co-occurrence
probability of the words. Figure [4] illustrates this comparison. Note that the y-
axis is the average false positive error in logarithmic scale in order to demonstrate



the difference more clearly. While the COCA filter for the Google corpus never
beats the information theoretic lower bound, the COCA filter for the Wikipedia
corpus beats it in most of the cases by a significant margin. Note that as the
false positive error gets closer to zero the distance between the curves shows a
smaller difference. Interestingly as the correlation among the terms of the cor-
pus gets stronger the rate of the decrease in false positive error tends to be
hyper-exponential (as in Wikipedia corpus) rather than exponential (in Google
Corpus) but as the index size increases the improvement rate decreases until it
becomes very close to Bloom filter. This shows that for these applications where
the elements of the corpus are highly correlated, utilizing the extra information
about this correlation can be very valuable.

5 Conclusion and Future Work

In this paper the problem of false positive error of Bloom filters has been ad-
dressed and a novel technique to reduce the false positive error is proposed. The
effectiveness of this approach was evaluated by conducting two experiments and
our experimental results showed that up to 21 times improvement in false posi-
tive error or equivalently up to 75% reduction in space is achievable. Although
this improvement is surprisingly good it is important to note that this technique
is very sensitive to the correlation among the terms of the documents in the
corpus.

In the current definition of the similarity function the size of each posting
list can not affect the similarity of any two words as long as the ratio of the
intersection and the union of their corresponding posting list is the same. It
would be interesting to investigate similarity functions which are sensitive to the
size of the posting lists as well.

Finding the information theoretic lower bound for the minimum number of
bits required for a Bloom filter, given the extra information of the co-occurrence
probability of each pairs of the members of the universe is another avenue for
research.

More recently a particular type of memory called ternary content addressable
memory (TCAM) was used to replicate a set of Bloom filters in order to solve
the subset query problem for small sets [18]. Another potential opportunity is
to explore the possible positive effect of COCA filters in areas where TCAM is
used as a group of Bloom filters.
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