
An Application of Self-Organizing Data
Structures to Compression

Reza Dorrigiv, Alejandro López-Ortiz, and J. Ian Munro

Cheriton School of Computer Science, University of Waterloo, Canada
{rdorrigiv,alopez-o,imunro}@uwaterloo.ca

Abstract. List update algorithms have been widely used as subroutines
in compression schemas, most notably as part of Burrows-Wheeler com-
pression. The Burrows-Wheeler transform (BWT), which is the basis of
many state-of-the-art general purpose compressors applies a compres-
sion algorithm to a permuted version of the original text. List update
algorithms are a common choice for this second stage of BWT-based
compression. In this paper we perform an experimental comparison of
various list update algorithms both as stand alone compression mecha-
nisms and as a second stage of the BWT-based compression. Our exper-
iments show MTF outperforms other list update algorithms in practice
after BWT. This is consistent with the intuition that BWT increases lo-
cality of reference and the predicted result from the locality of reference
model of Angelopoulos et al. [1]. Lastly, we observe that due to an often
neglected difference in the cost models, good list update algorithms may
be far from optimal for BWT compression and construct an explicit ex-
ample of this phenomena. This is a fact that had yet to be supported
theoretically in the literature.

1 Introduction

It has long been observed that list update algorithms can be used in compression.
In 1986, Bentley et al. [2] proposed a compression scheme that uses move-to-front
as a subroutine. They proved that their compression scheme, based on move-
to-front (MTF) is guaranteed to be within twice the compression ratio of the
best static Huffman code. Experimentally their algorithm performs even better
achieving compression ratios equal or better than Huffman’s. In principle MTF
can be replaced with any other online list update algorithm, which may or may
not improve the compression rate. Albers and Mitzenmacher [3] studied the use of
timestamp and showed theoretical and experimental evidence for its efficiency in
data compression. Several online list update algorithms were compared according
to their efficiency in compression by Bachrach et al. [4]. Surprisingly, their results
show that some algorithms with bad competitive ratios outperform those that
are optimal according to competitive analysis in terms of compression ratio.

A second application of list update is to Burrows and Wheeler compression.
The Burrows-Wheeler transform (BWT) rearranges a string of symbols to one
of its permutations and in doing so brings the issue of higher order entropy into



play. Then MTF is used to encode this transform in a way similar to the scheme
proposed by Bentley et al. [2]. The resulting scheme is shown to be very effective
in theory and practice and many improvements and several variants have been
proposed [5–12]. The well known compression program bzip2 [13] is based on the
BWT.

Our study was motivated by recent theoretical results on the impact of lo-
cality of reference assumptions for online algorithms [1]. Compression via list
update hinges on an implicit assumption that the text (raw or after the BWT
transform) exhibits locality of reference which can then be used advantageously
by list update algorithms. In this paper we systematically study different sensible
choices for the list update algorithm as well as for the basic compressor.

Our Results. We perform an experimental comparison of the latest list update
algorithms for compression, both in stand alone form and as part of BWT based
compression. We show that in most cases MTF is the best choice. Additionally we
observe that list update algorithms optimize for a similar but different objective
than a compressor and give an example of an algorithm which is a good choice
for list update but not for compression, a fact that had yet to be reported in the
literature.

2 Preliminaries

The List Update Problem. Consider an unsorted list of l items stored using a
linked list. The input is a series of n requests to be served in an online manner.
To serve a request to an item x, the algorithm should linearly search the list until
it finds x at position i, for some i between 1 and l. The cost of such an access is
i units. Immediately after accessing x, x can be moved to any position closer to
the front of the list at no extra cost. An efficient algorithm should re-arrange the
items after each access so as to minimize the overall cost of serving a sequence.

Standard List Update Algorithms. Three standard deterministic online algo-
rithms are move-to-front (MTF), transpose (TR), and frequency-count (FC).
MTF moves the requested item to the front of the list whereas TR exchanges
the requested item with the item that immediately precedes it. FC maintains a
frequency count for each item, updates this count after each access, and updates
the list so that it always contains items in non-increasing order of frequency
count. Sleator and Tarjan showed that MTF is 2-competitive, while TR and FC
do not have constant competitive ratios [14]. Since then, several other deter-
ministic and randomized online algorithms have been studied using competitive
analysis. We only consider deterministic algorithms because randomized list up-
date algorithms cannot be used in the compression scheme in a straightforward
way. Albers introduced the algorithm timestamp (TS) and showed that it is 2-
competitive [15]. After accessing an item a, TS inserts a in front of the first item
b that appears before a in the list and was requested at most once since the last



request for a. If there is no such item b, or if this is the first access to a, TS does
not reorder the list.

Schulz [16] introduced an infinite (uncountable) family of list update algo-
rithms called sort-by-rank (SBR). All algorithms in this family achieve the op-
timal competitive ratio 2 and they mediate between MTF and TS. Consider a
sequence σ = σ1σ2 · · ·σm of length m. For an item a and a time 1 ≤ t ≤ m, de-
note by w1(a, t) and w2(a, t) the time of the last and the second last access to a
in σ1σ2 · · ·σt, respectively. If a has not been accessed so far, set w1(a, t) = 0
and if a has been accessed at most once, set w2(a, t) = 0. Then we define
s1(a, t) = t − w1(a, t) and s2(a, t) = t − w2(a, t). Note that after each access,
MTF and TS reorganize their lists so that the items are in increasing order of
their s1 and s2, respectively1. For a parameter 0 ≤ α ≤ 1, SBR(α) reorganizes
its list after the tth access so that items are sorted by their α-rank function de-
fined as rα(a, t) = (1−α)×s1(a, t)+α×s2(a, t).2 More formally, upon a request
for an item a in time t, SBR(α) inserts a just after the last item b in front of
a with rα(b, t) < rα(a, t). Furthermore, if there is no such item b or this is the
first access to a, SBR(α) inserts a at the front of the list. Therefore SBR(0) is
equivalent to MTF and SBR(1) is equivalent to TS except for the handling of
the first accesses, i.e., they were equivalent if TS moves an item that has been
accessed only once so far to the front of the list.

Compression Schemas. Bentley et al. [2] proposed using list update algorithms as
subroutines in compression. The idea is simple enough: both the encoder and the
decoder maintain a list L of all symbols in the file and agree on some online list
update algorithm A as well as an initial arrangement for L. The encoder encodes
every symbol by its current position in L and then rearranges L according to A.
It uses some variable length prefix-free binary code to transmit these integers
(positions). Since the decoder knows the initial arrangement of L and the list
update algorithm, it can maintain the same list as the encoder and recover all
the symbols. Several variable length prefix-free binary codes can be used in this
scheme, e.g., Elias encoding, δ-encoding, and ω-encoding. We refer the reader to
[4] for a full description.

Burrows-Wheeler Transform. Burrows and Wheeler [5] introduced the idea of a
preprocessing phase based on the BWT which is combined with a compression
scheme on the transformed text. Informally, the BWT rearranges a string of
symbols to one of its permutations in a reversible way so that the resulting string
is “more compressible” or has more “locality of reference”. The permutation is
such that high order entropy is in line with locality of reference. Recall that a
string has high locality of reference if when a symbol occurs in some position
of the string, it is more likely to occur in a nearby position. For a detailed
explanation of the BWT we refer the reader to [5, 6].

1 For TS, strictly speaking, this applies only to items that have been accessed at list
twice.

2 Schulz [16] denoted this by rt(a, α).



3 Competitiveness of List Update Algorithms for
Compression

A list update algorithm A incurs cost i to access the ith item of the list. How-
ever, when we use A as a subroutine for compression we need Θ(log i) bits to
represent that the symbol is at the ith position of the list. Other papers that
have studied the use of list update algorithms in compression are silent on this
issue and apparently simply assumed that competitive list update algorithms
are also competitive for compression. We show via an example that this is not
necessarily the case, i.e. there exist algorithms which are competitive under one
model but not the other. Consider the move-fraction (MF) family of determin-
istic list update algorithms as introduced by Sleator and Tarjan [14]. Upon a
request to an item in the ith position, MF(k) moves that item di/ke-1 positions
towards the front. MF(k) is known to be 2k-competitive [14], therefore algo-
rithm MF(2) is 4-competitive for list update. We show that under the Θ(log i)
cost model, MF(2) does not have constant competitive ratio. Let the cost of
compressing for an item in the ith position be cblog ic+ b for some constants c
and b. For simplicity assume that we have l = 2p symbols for some integer p.
Suppose that symbols are initially ordered as a1a2 · · · al in the list. Now con-
sider the sequence σ1 = apl . On the ith request to al, MF(2) incurs cost at
least cblog 2p

2i−1 c + b = c(p − i + 1) + b and moves al to a position of index at
least 2p

2i . Therefore the cost of MF(2) on σ1 is at least
∑p
i=1 (c(p− i+ 1) + b) =

cp(p+1)
2 +bp = Θ(log2 l). On the other hand, MTF moves al to the front of the list

and incurs cost cblog lc+ b+ (p− 1)b = (b+ c) log l on σ1. Thus the cost of OPT
on this sequence is at most (b+ c) log l = Θ(log l). We can request the item that
is now in the lth position of MF(2)’s list p times. Therefore the competitive ratio
of MF(2) is at least c×log l(log l+1)/2+b log l

(b+c) log l = c(log l+1)
2(b+c) + b

b+c = Θ(log l), which is
not a constant. The same holds for MF(k) for k ≥ 3. This fact had been observed
empirically by Bachrach et al. [4], who reported on the poor performance of this
family for data compression purposes. It remains an open question to determine
the competitive ratios of the various list update algorithms under the cblog ic+b
cost of access model.

4 Experimental Results

We consider two experimental setups. The first one consists of a straightforward
compression scheme similar to that of Bentley et al. [2] or Albers et al. [3]. While
in practice these compression techniques are unlikely to be of use, the study of
their behaviour allows us to understand their differences and advantages. The
second setup consists of the realistic setting of BWT based compression. To be
more precise, given a text we compute its BWT and then compare the role of
various list update algorithms for compressing the transformed string.



4.1 Experimental Settings

We computed the compression ratios achieved by different list update algorithms
on files in the Calgary Corpus [17] and the Canterbury Corpus [18]. These are
standard benchmarks for data compression. Due to space constraints, we only
present the results for the Calgary Corpus; the results for the Canterbury Cor-
pus are similar. We considered the list update algorithms described in Section
2 as well as MTF′; this algorithm, on the ith access to an item a, moves a to
the front of the list if i is even and does not change a’s position if i is odd. We
considered two implementations for frequency-count depending on the order of
items with the same frequency count. In FC, an item that is less recently used
precedes an item that is more recently used and has equal frequency count. FC′

adopts the reverse of this ordering. We performed comprehensive experiments
on the compression ratios achieved by SBR(α) for different values of 0 ≤ α ≤ 1.
These experiments showed that as α goes from 0 to 1, the behaviour of SBR(α)
goes from MTF to TS. Thus we only report the results for SBR(0.5). Due to
space constraints these experimental results are not included in this paper. If not
explicitly mentioned otherwise, we use the standard prefix integer encoding of
Elias [19] that encodes an integer i using 1+2blog ic bits. Observe that nonethe-
less we propose and evaluate other alternative ways for encoding integers.

4.2 Comparing List Update Algorithms

We compare the effect of different list update algorithms on text files of the
Calgary Corpus before and after BWT. Table 1 shows their performance as stand
alone compression algorithms while Table 2 shows their performance as a second
stage of BWT compression. From Table 1 we can see that TR and FC usually
outperform MTF and TS. This is in contrast with competitive analysis in which
MTF and TS are superior to TS and FC. MTF has the worst performance on all
the files and TR is the best algorithm in most cases. MTF′ and FC′ always have
performance close to their variants, i.e., MTF and FC, respectively. Note that
the results for MTF and TS were also reported by Albers and Mitzenmacher [3],
who observed that TS outperforms MTF. SBR(0.5) always mediated between the
performance of MTF and TS. Thus our experimental results are not consistent
with theory. This has been observed by other researches as well [4].

However, for the BWT of the files, the situation is different. Table 2 shows
that in this case MTF has the best performance for most of the files. In general,
MTF and TS (and thus MTF′ and SBR(0.5)) have comparable performance
and always outperform FC and TR. The compression ratio they achieve after
the BWT is much better than without the BWT, as one would expect given
that the BWT increases the amount of locality in the string. The superiority of
MTF to other algorithms is consistent with the recent result of Angelopoulos
et al. proving that MTF outperforms all other online list update algorithm on
sequences with high locality of reference [1]. Hence, this provides evidence that
the locality of reference model proposed accurately reflects reality. We emphasize
that our focus here is comparing the effect of different list update algorithms



File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 95.69 89.55 89.08 81.42 81.64 94.16 81.42

book1 768771 83.82 76.64 75.67 81.34 69.62 81.27 81.34

book2 610856 84.35 78.36 77.55 75.74 72.44 82.35 75.74

news 377109 88.50 82.68 82.20 88.10 77.87 87.08 87.99

paper1 53161 86.79 80.96 80.35 79.48 74.87 85.19 79.45

paper2 82199 84.47 78.34 77.43 79.27 71.02 82.26 80.45

progc 39611 88.74 84.02 83.62 81.59 77.67 88.16 81.54

progl 71646 77.01 73.62 73.25 82.61 69.02 76.50 82.40

progp 49379 81.09 76.15 75.45 82.41 71.64 80.00 81.68

trans 93695 87.58 84.96 84.59 91.21 83.02 87.36 91.18

Table 1. Compression of the Calgary Corpus without BWT

and therefore we have not applied any post-optimizations to the compression
scheme, in the presumption that these optimizations are orthogonal and hence
would generally benefit all schemes equally.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 30.49 31.66 32.32 93.42 39.81 31.99 93.33

book1 768771 35.74 34.42 34.71 76.63 36.31 36.04 76.50

book2 610856 31.14 31.03 31.48 80.44 35.31 31.96 80.11

news 377109 36.21 37.75 38.67 85.27 44.90 38.26 85.53

paper1 53161 34.70 36.62 37.70 83.42 47.73 36.87 83.34

paper2 82199 34.86 35.35 36.04 79.00 41.28 36.17 76.46

progc 39611 35.04 37.32 38.54 79.03 51.09 37.54 78.91

progl 71646 26.31 28.52 29.43 81.23 36.18 28.33 79.77

progp 49379 26.00 29.08 30.22 89.11 41.13 28.57 86.08

trans 93695 24.12 27.64 28.71 96.08 41.52 26.76 90.22

Table 2. Compression of the Calgary Corpus after BWT

We also observe that FC and FC′ perform badly compared to other algo-
rithms. One explanation for this is the fact that FC considers the global rather
than local environment. For example if an item is frequently accessed near the
beginning and then it is not accessed at all, FC will maintain it close to the front
of the list.

4.3 Alternative Techniques for Encoding of Integers

We consider other possibilities for the last step of list update based compression
schemes, i.e., the prefix-free binary code for integers. As there is considerable
locality of reference in the BWTs of text files intuitively a competitive list update



algorithm leads to a sequence with many small integers. These algorithms assign
smaller codes to small integers.

RL(1)+Elias. This algorithm combines Elias encoding with run length encoding
for the value 1, i.e. when the encoded integer is 1, the following Elias-encoded
integer shows the number of consecutive 1’s starting from that 1. Otherwise, is
the next integer encoded in Elias encoding.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 27.87 28.92 29.55 93.42 37.06 29.28 93.42

book1 768771 35.78 34.50 34.77 76.78 36.46 36.02 78.68

book2 610856 29.72 29.56 30.00 80.52 33.98 30.48 80.53

news 377109 35.51 36.82 37.71 85.33 43.96 37.37 85.50

paper1 53161 34.60 36.32 37.38 83.36 47.56 36.64 84.96

paper2 82199 34.59 35.01 35.66 79.00 41.02 35.80 78.96

progc 39611 34.83 36.89 38.07 79.15 50.83 37.15 82.32

progl 71646 24.15 26.17 27.07 81.25 33.96 26.07 84.32

progp 49379 23.87 26.68 27.80 89.14 38.92 26.29 91.77

trans 93695 20.92 24.26 25.31 95.58 38.32 23.46 102.71

Table 3. Compression of the Calgary Corpus using RL(1)+Elias after BWT

RL(1)+1-2. This algorithm encodes 1 with a single bit 0, and encodes all other
numbers with their binary representations prepended by 1. We need dlog2 le bits
for this binary representation. For most of the cases, this gives a code of length
8 for each integer greater than 1, as 64 ≤ l < 128. Also it uses run length on
“1”s.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 36.36 37.77 38.18 87.44 43.09 37.44 87.44

book1 768771 59.33 57.89 57.92 98.47 59.05 59.25 96.34

book2 610856 47.94 47.89 48.10 97.96 50.78 48.47 97.96

news 377109 51.60 53.52 54.16 97.87 58.28 53.09 97.87

paper1 53161 52.15 54.29 54.93 88.66 62.02 53.56 88.66

paper2 82199 54.25 54.92 55.35 99.97 59.67 55.24 99.97

progc 39611 50.31 53.00 53.93 85.96 61.76 52.06 99.40

progl 71646 36.93 40.08 41.04 99.76 47.21 38.94 99.76

progp 49379 36.20 39.70 40.80 99.72 48.68 37.97 99.72

trans 93695 30.01 34.98 35.70 90.49 45.81 31.78 99.99

Table 4. Compression of the Calgary Corpus using RL(1)+1-2 after BWT



RL(1)+2-2-3: This algorithm encodes 1 and 2 with “00” and “01”, respectively,
and encodes all other numbers with their binary representations prepended by
1. It also uses run length on “1”s.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 31.74 32.83 33.32 86.54 38.76 32.78 86.54

book1 768771 48.54 47.29 47.51 93.96 48.94 48.67 94.98

book2 610856 39.16 39.05 39.47 97.93 42.77 39.75 97.93

news 377109 44.63 45.94 46.66 97.89 51.72 45.98 97.89

paper1 53161 44.31 46.15 47.03 88.68 55.53 45.97 88.68

paper2 82199 45.67 46.42 47.02 88.92 52.06 46.78 88.92

progc 39611 42.64 44.85 45.73 83.80 55.28 44.27 86.35

progl 71646 31.09 33.16 33.94 86.96 41.10 32.55 86.96

progp 49379 29.87 32.87 33.80 97.04 43.30 31.53 99.70

trans 93695 26.40 29.71 30.64 88.14 41.64 27.90 92.06

Table 5. Compression of the Calgary Corpus using Algorithm RL(1)+2-2-3 after BWT

RL(1)+1-5-6-17: This algorithm encodes 1 by “0”, 2 to 9 by “10000”, “10001”,
. . . , “10111”, 10 to 17 by “110000”, “110001”, . . . , “110111”, and integers greater
than 17 by their binary representation prepended by “111”. Note that there are
l− 17 such numbers, and so we can use a fixed code of length dlog2 (l − 17)e for
their binary representations. It also uses run length on “1”s, i.e., when it encodes
a “1” the following integer, encoded using the same scheme, denotes the number
of consecutive ones started from that “1”.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 29.54 30.61 31.10 82.72 37.22 30.53 82.25

book1 768771 40.43 39.41 39.50 74.74 40.77 40.41 73.34

book2 610856 33.50 33.49 33.76 77.62 36.98 33.98 77.64

news 377109 38.36 39.68 40.44 82.37 45.62 39.69 82.68

paper1 53161 37.80 39.51 40.33 76.96 48.98 39.20 78.38

paper2 82199 38.10 38.54 39.04 77.75 43.43 38.92 77.72

progc 39611 37.90 39.92 40.94 75.69 51.50 39.53 84.28

progl 71646 26.93 29.02 29.89 80.58 35.73 28.37 83.62

progp 49379 26.73 29.40 30.52 85.70 40.28 28.29 86.80

trans 93695 22.53 26.10 27.01 90.77 38.38 24.03 96.63

Table 6. Compression of the Calgary Corpus using 1-5-6-17+RL(1) after BWT

Tables 4-7 show the performance of these algorithms on text files of the
Calgary Corpus after BWT. According to these results, RL(1)+Elias leads to the



best compression among these algorithms, then RL(1)+5-6-17, then RL(1)+2-2-
3, and finally RL(1)+1-2. Comparing Table 3 to Table 2 shows that using RL(1)
improves the compression factor for most list update algorithms. This can be
explained by the fact that BWTs of text files have many repetitions. Each such
repetition leads to a 1 in the sequence of integers. Therefore we will have many
1’s and RL(1) should be effective. Also according to Tables 4-7, replacing Elias
with other proposed integer encodings does not give better compression ratios.

Modified Huffman. Inspired by the fact that there are many blocks of “1”s in the
integer sequence we treat them as symbols of our alphabet. Thus our alphabet is
{1, 2, · · · , l, 11, 111, · · · , 1n}, where 1n means n consecutive “1”s. Then Huffman
encode the elements of this alphabet. The results are shown in Table 7. Note
that we should also encode the Huffman tree. This cost becomes negligible for
large files, especially if one considers implicit representations of the portions of
the Huffman code corresponding to 1k. Indeed the Huffman tree has an impact
of in the order of 0.3% uniformly across the different variants for these rather
modest file sizes.

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 26.25 27.01 27.53 65.70 33.29 27.34 65.70

book1 768771 32.54 31.66 31.89 56.91 33.49 32.71 56.86

book2 610856 27.70 27.61 27.99 59.93 31.58 28.30 59.94

news 377109 33.44 34.25 34.91 64.55 39.64 34.75 64.63

paper1 53161 32.96 34.17 35.06 59.46 42.78 34.51 59.48

paper2 82199 32.39 32.75 33.30 58.72 37.65 33.33 58.67

progc 39611 33.21 34.76 35.64 62.38 44.96 34.99 64.78

progl 71646 23.43 24.82 25.53 60.39 31.22 24.91 61.83

progp 49379 23.22 25.40 26.26 62.51 34.74 25.24 62.56

trans 93695 20.42 22.99 23.84 65.59 33.45 22.51 71.19

Table 7. Compression of the Calgary Corpus using Modified Huffman after BWT

According to these results, this schema outperforms all other algorithms in
our study. Figure 1 reports the mean, median and variance of the comparison of
other compression algorithms to the modified Huffman algorithm.

4.4 Splay Trees

List update algorithms belong to the area of self-organizing data structures.
Another well known self-organizing data structure is the splay tree [22]. The
splay tree is a binary search tree which applies a splay operation after each
access to an item. This operation reorganizes the tree such that the most recently
accessed item is moved to the root of the tree. Splay trees are believed to have
good performance on sequences with high locality of reference. The working



1.8

1.6

1.4

1−2 2−2−31−5−6−17Elias

1.2

Fig. 1. Relative compression ratio versus modified Huffman. For each file, Modified
Huffman equals 1

set theorem of [22] shows that splay trees have the working set property. The
working property is based on the idea that an operation on a recently accessed
item should take less time. Informally, a structure has the working set property
if it performs well on sequences with high locality of reference. As stated before
there is usually high locality of reference in texts (especially after applying BWT)
and thus splay trees are good candidates for text compression. Jones [23] and
Grinberg et al. [24] have already studies the application of splay trees to data
compression, but they did not consider the BWT.

We studied the effect of using splay trees instead of list update algorithms
in our compression schemas. We constructed a splay tree on the characters of
the text file. Each character corresponds to a node of the tree and has a binary
code that corresponds to the path from the root to its node, i.e., starting from
the root, append 0 for each left traversal and 1 for each right traversal. Note
that as we proceed with the compression process, the tree changes dynamically
and thus the codes for characters are changing as well. Since characters can
be in internal nodes, the corresponding codes are not prefix-free. To obtain a
prefix-free code, we first add a single 1 to the beginning of each code. Then we
consider the number that corresponds to this binary representation and encode
these integers using Elias encoding. Note that the code for the root character
would be 1.



File Size (bytes) Elias RL(1)+Elias Modified Huffman

bib 111261 37.76 35.14 31.43

book1 768771 44.91 44.94 40.40

book2 610856 38.53 37.12 33.75

news 377109 46.05 45.35 40.49

paper1 53161 43.63 43.53 38.94

paper2 82199 43.71 43.44 38.97

progc 39611 44.14 43.95 39.06

progl 71646 32.14 29.98 27.43

progp 49379 31.34 29.21 26.63

trans 93695 28.92 25.71 23.32

Table 8. Compression of the Calgary Corpus using splay trees after BWT

We can also apply alternative techniques for encoding integers proposed in
Subsection 4.3. We tested the RL(1)+Elias and the modified Huffman tech-
niques. The compression percentages obtained by applying these schemas to the
text files of the Calgary Corpus after BWT are shown in Table 8. According to
these results, the modified Huffman algorithm is again the best technique for en-
coding integers. Furthermore, the splay trees lead to less compression compared
to the good list update algorithms.

5 Conclusions

We have considered a variety of list update algorithms in the context of data
compression with and without the Burrows-Wheeler transform. We observed
that list update algorithms optimize for a similar but different objective than a
compressor and give an example of an algorithm which is a good choice for list
update but not for compression. Our experiments showed that competitive list
update algorithms are not effective as compressors without BWT, while they
perform well after BWT. We also considered several schemas for encoding a
sequence of integers that is obtained after applying the list update algorithms.
Furthermore, we experimentally tested the efficacy of splay trees in data com-
pression and observed that they are not as effective as list update algorithms.

References

1. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of ref-
erence. In: Proceedings of the 8th Latin American Symposium on Theoretical
Informatics (LATIN ’08). (2008) 399–410

2. Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data
compression scheme. Communications of the ACM 29 (1986) 320–330

3. Albers, S., Mitzenmacher, M.: Average case analyses of list update algorithms,
with applications to data compression. Algorithmica 21(3) (1998) 312–329



4. Bachrach, R., El-Yaniv, R., Reinstadtler, M.: On the competitive theory and
practice of online list accessing algorithms. Algorithmica 32(2) (2002) 201–245

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, DEC SRC (1994)

6. Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of burrows-wheeler based
compression. In: Proc. 17th Annual Symp. on Comb. Pattern Matching (CPM
’06). Volume 4009 of LNCS. (2006) 282–293

7. Chapin, B.: Switching between two on-line list update algorithms for higher com-
pression of burrows-wheeler transformed data. In: Data Compression Conference.
(2000) 183–192

8. Nagy, D.A., Linder, T.: Experimental study of a binary block sorting compression
scheme. In: Data Compression Conference. (2003) 439–448

9. Deorowicz, S.: Improvements to burrows-wheeler compression algorithm. Software,
Practice, and Experience 30(13) (2000) 1465–1483

10. Fenwick, P.M.: The Burrows-Wheeler Transform for block sorting text compres-
sion: principles and improvements. The Computer Journal 39(9) (1996) 731–740

11. Balkenhol, B., Kurtz, S.: Universal data compression based on the burrows-wheeler
transformation: Theory and practice. IEEE Transactions on Computers 49(10)
(2000) 1043–1053

12. Balkenhol, B., Kurtz, S., Shtarkov, Y.M.: Modifications of the burrows and wheeler
data compression algorithm. In: Data Compression Conference. (1999) 188–197

13. Seward, J.: bzip2, a program and library for data compression.
http://www.bzip.org/.

14. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28 (1985) 202–208

15. Albers, S.: Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing 27(3) (June 1998) 682–693

16. Schulz, F.: Two new families of list update algorithms. In: Proceedings of the 9th
International Symposium on Algorithms and Computation (ISAAC ’98). Volume
1533 of LNCS. (1998) 99–108

17. Witten, I.H., Bell, T.: The Calgary text compression corpus. Anonymous ftp from
ftp.cpsc.ucalgary.ca /pub/text.compression/corpus/text.compression.corpus.tar.Z.

18. Arnold, R., Bell, T.C.: A corpus for the evaluation of lossless compression algo-
rithms. In: Data Compression Conference. (1997) 201–210

19. Elias, P.: Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory 21(2) (1975) 194–203

20. Vitter, J.S.: Design and analysis of dynamic Huffman codes. Journal of the ACM
34(4) (1987) 825–845

21. Vitter: ALGORITHM 673: Dynamic huffman coding. ACMTMS: ACM Transac-
tions on Mathematical Software 15 (1989)

22. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM
32(3) (1985) 652–686

23. Jones, D.W.: Application of splay trees to data compression. Communications of
the ACM 31(8) (1988) 996–1007

24. Grinberg, D., Rajagopalan, S., Venkatesan, R., Wei, V.K.: Splay trees for data
compression. In: Proceedings of the sixth annual ACM-SIAM symposium on Dis-
crete algorithms (SODA ’95). (1995) 522–530


