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Given a set D of m unit disks and a set P of n points in the plane, the discrete unit disk
cover problem is to select a minimum cardinality subset D′ ⊆ D to cover P. This problem
is NP-hard [14] and the best previous practical solution is a 38-approximation algorithm
by Carmi et al. [5]. We first consider the line-separable discrete unit disk cover problem
(the set of disk centers can be separated from the set of points by a line) for which we
present an O(n(log n + m))-time algorithm that finds an exact solution. Combining our
line-separable algorithm with techniques from the algorithm of Carmi et al. [5] results
in an O(m2n4) time 22-approximate solution to the discrete unit disk cover problem.
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1. Introduction

Recent interest in specific geometric set cover problems is partly motivated by
applications in wireless networking. In particular, when wireless clients and servers
are modeled as points in the plane and the range of wireless transmission is assumed
to be constant (say one unit), the resulting region of wireless communication is a
disk of unit radius centered on the point representing the corresponding wireless
transmitting device. Under this model, sender a successfully transmits a wireless
message to receiver b if and only if point b is covered by the unit disk centered at
point a. This model applies more generally to a variety of facility location problems
for which the Euclidean distance between clients and facilities cannot exceed a given
radius, and clients and candidate facility locations are represented by discrete sets
of points. Examples include:

• selecting locations for wireless servers (e.g., gateways) from a set of candi-
date locations to cover a set of wireless clients,

• positioning a fleet of water bombers at airports such that every active forest
fire is within a given maximum distance of a water bomber,

• selecting a set of weather radar antennae to cover a set of cities, and
• selecting locations for anti-ballistic defenses from a set of candidate loca-

tions to cover strategic sites.

These problems can be modeled by the discrete unit disk cover problem (DUDC).

Definition 1.1. Given a set P of n points and a set O of m points in the plane
(candidate clients and facilities, respectively), the discrete unit disk cover problem is
to find a set O′ ⊆ O (facilities) of minimum cardinality such that Disk(O′) covers
P, where Disk(A) denotes the set of unit disks centered on points in set A.
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In this work, we consider the line-separable discrete unit disk cover (LSDUDC),
where P and O are separated by a line l. We may arbitrarily set l to be horizontal,
and further have the set O lie in the region above the line l. For clarification, we
relabel O as U in the LSDUDC setting, denoting that the points of U are restricted
to the upper half-plane defined by l.

• Input: A set P of n points in the plane (clients), and a set U of m points
in the plane (candidate facilities), where P and U may be separated by a
line.

• Output: Find a set U ′ ⊆ U (facilities) of minimum cardinality such that
Disk(U ′) covers P.

The DUDC problem is NP-hard [14], and the general set cover problem (i.e. the
covering shapes are unrestricted) is not approximable within a factor c log n, for any
constant c [20]. In a recent result, Carmi et al. [5] describe a polynomial-time 38-
approximate solution, improving on earlier 108-approximate [4] and 72-approximate
solutions [19].

1.1. Our Results

We present an O(n(log n+m))-time algorithm that returns an exact solution to the
LSDUDC problem, as well as a thorough proof of correctness of the technique. By
combining the LSDUDC algorithm with techniques from the algorithm of Carmi et
al. [5], we present a 22-approximation algorithm to the DUDC problem, improving
on the best previous practical polynomial-time approximation factor of 38.

1.2. Related Work

Line-Separable Discrete Unit Disk Cover. A solution to the LSDUDC problem
was independently discovered and published by Ambühl et al. [3, Lemma 1], where
they propose a dynamic programming algorithm with a time bound of O(m2n)
but whose correctness is not straightforward nor is it formally argued. This paper
presents a faster algorithm together with a proof of correctness. We then observe
that our new algorithm can be combined with a suitably modified version of the
algorithm of Carmi et al. [5] to achieve an improved approximation factor for the
general DUDC problem.

A similar problem to LSDUDC is studied in [4,8], but their setting has the
centers of the disks within a specified unit disk and the points to be covered are
outside that disk.
ε-nets for Geometric Hitting Problems. Using ε-nets, Mustafa and Ray [17,18]
have recently presented a (1 + ε)-approximation to the DUDC problem for any
ε ∈ (0, 1]. Their algorithm runs in O(m2(c/ε)2+1n) time, where c ≤ 4γ [18]. The
value of γ can be bounded from above by 2

√
2 [10,15]. The fastest operation of this

algorithm is obtained when ε = 1 for a 2-approximation, resulting in a running
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time of O(m2·(8√2)2+1n) = O(m257n) in the worst case. The corresponding running
time increases for any ε < 1. Clearly, this algorithm is not practical for large values
of m. It is possible that a lower running time may be obtained through better
bounding of the constant factors or improvements to their algorithm, but a practical
implementation appears unlikely.
Minimum Geometric Disk Cover. In the minimum geometric disk cover prob-
lem, the input consists of a set of points in the plane, and the problem is to find a
set of unit disks of minimum cardinality whose union covers the points. Unlike our
problem, disk centers are not constrained to be selected from a given discrete set,
but rather may be centered at arbitrary points in the plane. Again, this problem
is NP-hard [9,21] and has a PTAS solution [11,12]. Of course the problem can be
generalized further: see [6] for a discussion of geometric set cover problems.
Discrete k-Center. Also related is the discrete Euclidean k-center problem: given
a set O of m points in the plane, a set P of n points in the plane, and an integer
k, find a set of k disks centered on points in O whose union covers P such that the
radius of the largest disk is minimized. Observe that set P has a discrete unit disk
cover consisting of k disks centered on points in O if and only if P has a discrete
k-center centered on points in O with radius at most one. This problem is NP-hard
if k is an input variable [2]. When k is fixed, Hwang et al. [13] give a mO(

√
k)-time

algorithm, and Agarwal and Procopiuc [1] give an mO(k1−1/d)-time algorithm for
points in Rd.

2. Line Separated Discrete Unit Disk Cover

We begin by introducing notation and terminology for our discussion of the line-
separable unit disk cover problem (LSDUDC). Here, two sets of points U =
{u1, u2, . . . , um} and P = {p1, p2, . . . , pn} are given. A horizontal line l is given
such that each point in U is above l and each member of P is below l. Further,
for each pi ∈ P, there exists at least one uj ∈ U which maintains the condition
δ(pi, uj) ≤ 1, where δ(pi, uj) is the Euclidean distance between points pi and uj .

If a point uj ∈ U (resp. pi ∈ P) is within a unit disk centered at a point pi ∈ P
(resp. uj ∈ U), then we use the term uj is covered by pi (resp. pi is covered by uj).
Let di be the circle of unit radius centered at the point pi ∈ P (i.e. di = Disk(pi)).
Also, let left(i) be the left and right(i) be the right intersection points of di with the
horizontal line l. Without loss of generality, rename the points in P based on the
intersection points {left(i) : pi ∈ P} from left to right order. Let l+ be the region
above the line l and l− be the region below the line l. Let C(di) ⊆ U be the set of
points covered by the circle di centered at point pi ∈ P.

This formulation allows us to address the problem in the dual setting. Rather
than seeking a subset of disks Disk(U ′) ⊆ Disk(U) which covers all of the points in
P, we are seeking a minimum cardinality subset of points U ′ ⊆ U such that each
disk in Disk(P) is stabbed by at least one point in U ′, as shown in Figure 1.

In Algorithm 1, we present an algorithm for covering all the points in P using
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Fig. 1. Demonstration of the arrangement of circles centered at points indicated by triangles.

a minimum number of unit radius circles centered at points in U . We show that
this algorithm produces the optimum result. Note that covering all the points in P
by the minimum number of unit circles centered at points in U implies each of the
circles di corresponding to pi ∈ P contains at least one point in U .

Algorithm 1 LSDUDC(P,U)
Input: Set U of points in l+, and set P of points in l−.
Output: Set U ′ of points covering all the points in P.
j ← 1, U ′ ← ∅
Sort P according to left(i).
Compute the sets C(di) of points for each i = 1, 2, . . . , n.
while (j 6= n + 1) do

Find the maximum index k such that ∩k
i=jC(di) 6= ∅, but ∩k+1

i=j C(di) = ∅.
Let s be the rightmost point in ∩k

i=jC(di).
j ← k + 1, U ′ = U ′ ∪ {s}.

end while
return U ′

Lemma 2.1. In the arrangement of the circles centered at points in P, if the circles
di and dj intersect, then at least one intersection point is in l−. In other words, at
most one intersection point of di and dj is in l+.

Proof. Let pi and pj be the centers of the circles di and dj respectively. We assume
that di and dj are circles of unit radius. If two circles of the same radius intersect,
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then both the intersection points lie on the line which is the perpendicular bisector
of the segment joining their centers pi and pj . If both the intersection points are in
l+, then at least one of either pi or pj must be in l+, which leads to a contradiction
as points P lie in l−.

Claim 1. In the arrangement of the circles centered at points in P, if the circles
di and dj intersect in l+ and left(i) < left(j) then right(i) < right(j). For example,
see the circles d1 and d2 in Figure 1.

Proof. The claim follows from Lemma 2.1.

Claim 2. In the arrangement of the circles centered at points in P, if the circles
di and dj intersect and if both the intersection points are in l− such that left(i) <

left(j) < right(i), then dj ∩ l+ ⊂ di ∩ l+.

Proof. The result follows from the fact that there are at most two points of inter-
section between two distinct circles, and left(i) < left(j) < right(i). For a demon-
stration, see the circles d2 and d3 in Figure 1.

Theorem 2.2. Algorithm 1 returns an optimal solution to the line-separable unit
disk cover problem.

Proof. Let U ′ = {u′1, u′2, . . . , u′m′} denote the set of points in the solution returned
by Algorithm 1. Therefore, d1 ∩ U ′ 6= ∅. Consider the value of k in Algorithm 1;
if k + 1 is the minimum index such that the region ∩k+1

i=1 di does not contain any
point from U , then the algorithm chooses a point s ∈ ∩k

i=1C(di) such that s is the
rightmost point in ∩k

i=1C(di). The same process is repeated from dk+1 onwards. We
show that there exists an optimal solution containing point s.

In the optimal solution, the covering of p1, p2, . . . , pk+1 requires two points from
U . Therefore, if there exists a point s′ ∈ l+ which can cover both p1 and pk+1, then
there exists at least one point pa ∈ {p2, p3, . . . , pk} such that pa is not covered by
s′. To cover the point pa, we need one more point, say s′′ ∈ U . Let us now analyze
the possible positions of s′′ by partitioning the region da ∩ l+ (recall that da is the
circle centered at point pa) into three disjoint subregions as follows (see Figure 2):

RG1: (da ∩ l+) \ (dk+1 ∩ l+) (dark-shaded region)
RG2: d1 ∩ da ∩ dk+1 ∩ l+ (dotted region)
RG3: (da ∩ l+) \ (d1 ∩ l+) (light-shaded region)

If s′′ ∈ RG1, then we may choose s instead of s′′ for covering da, which in
turn, covers d1, d2, . . . , dk. The circle dk+1 may be covered by some other point in
U (which may be different from s′), which in turn may cover some other circle dj ,
where j > k + 1. Thus, the choice of s ∈ U ′ is correct.

If s′′ ∈ RG2, then d1, da and dk+1 can be covered by a single point s′′ ∈ U .
This implies that the purpose of choosing s′ for covering d1 and dk+1 jointly can
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Fig. 2. Illustration in support of Theorem 2.2.

be served by s′′. But, since ∩k+1
i=1 C(di) is empty, there exists some other member

da′ , a′ ≤ k which is not covered by s′′. This situation happens for all choices of
s′′ ∈ RG2 to cover d1 and dk+1 jointly.

Algorithm 1 selects s ∈ U ′ for covering d1, d2, . . . , dk, and it also is free to choose
some other point in U (possibly different from s′′) which can cover dk+1 and some
other circle dj , where j > k + 1.

Finally, if s′′ ∈ RG3, then s′′ ∈ dk+1 since s′ ∈ (d1 ∩ dk+1 ∩ l+) \ (da ∩ l+) (see
Figure 2). As in the earlier case, the choice of s ∈ U ′ (instead of s′) for covering
d1, d2, . . . , dk is fine. dk+1, along with some other circles dj , j > k + 1, possibly
covered by some other point (may be s′′) in l+.

2.1. Analysis of the LSDUDC Algorithm

Theorem 2.3. Algorithm 1 has a worst-case running time of O(n(log n + m)).

Proof. We examine each significant step of the algorithm in turn to determine the
running time.

(1) Sort the points in P = {p1, p2, . . . , pn} from left to right order.
(2) Compute the sets C(di) of points for each i = 1, 2, . . . , n.
(3) While(j 6= n + 1), find the maximum index k(≤ n) such that ∩k

i=jC(di) 6= ∅,
but ∩k+1

i=j C(di) = ∅ for k < n.

The first step may be completed in O(n log n) time using a standard sorting
technique, and the second step may be done brute force in O(mn) time. In the
while loop, there is at most one iteration for each point in P, and the algorithm runs
greedily and thus each point in P is used at most twice. Checking for membership
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in the intersection of all disks seen so far may be done in linear time in the number
of points in U , for a total worst case time of O(mn) for the while loop. Therefore,
the total running time of the Algorithm 1 is O(n(log n + m)).

3. Approximate Discrete Unit Disk Cover

We now show that Algorithm 1 for the line-separable discrete unit disk cover (LS-
DUDC) problem leads to a 22-approximation algorithm for the discrete unit disk
cover (DUDC) problem. The approximation algorithm is based on a suitable adap-
tation of the 38-approximation algorithm of Carmi et al. [5]. In that work, the
DUDC problem is supported by a variant of the LSDUDC problem: suppose we are
given a set of disks D = L ∪ U . The disks in U are centered above a line l, and the
set L = D\U are centered below l. We are also given a set of points P covered by
U . The goal is to obtain the set G ⊆ D of smallest cardinality such that every point
in P is covered by a disk in G.

Note that our line-separable algorithm does not immediately result in a straight-
forward improvement to the approximation factor of the algorithm of Carmi et al.
Their proof of correctness uses the fact that their 2-approximation to the LSDUDC
problem consists of disks forming the lower boundary of U , which is defined as the
semi-chain.

Definition 3.1 (Carmi et al. [5]). The semi-chain S is the ordered (from left to
right) set of all lower circular arcs below the line l of the disks in U . The set of
indices associated with S forms a consecutive set of indices i, i + 1, . . . , j for i ≤ j.
Carmi et al. call an interval from i to j an interval cell and denote it by icell(i, j).
Let B denote the region l− ∩ (∪m

i=1ui) (ui ∈ U), which corresponds to the region
below l contained by all of the circular arcs in S.

Our solution does not necessarily use disks that contribute to the semi-chain S.
Instead, we first solve the LSDUDC problem optimally using Algorithm 1 on the
set of disks U to obtain a disk set U ′. Let U ′ = {u′1, u′2, . . . , u′m′} be the ordered
set of unit disks from left to right based on the left intersection point of l with the
disks in U ′. We then use the greedy minimum assisted cover algorithm of Carmi et
al. [5] over the sets U ′ and L to obtain an improved solution E for covering points
in P.

Definition 3.2 (Carmi et al. [5]). Consider a unit disk L̂ ∈ L which intersects B.
Given an interval cell icell(i, j), if the set {di, dj , L̂} covers all the points covered
by the disks in the interval cell, then this new set is called an assisting set for the
interval [i, j]. In the special case where j = i + 1, {di, dj} forms the assisting set of
the interval [i, j]. The assisting set {di, dj , L̂} is said to contain a left assisting pair,
which is simply the set {di, L̂}. In special cases where an assisting set is composed
of only one or two disks, the leftmost individual disk is considered a left assisting
pair for these purposes. Finally, an assisted cover is simply the family of these left
assisting pairs which together form a cover of the points in P.
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Now we wish to compare the cardinality of E with that of the global minimum
disk cover G. Consider the upper and lower components of the solutions E and G,
i.e., EU = E ∩U , EL = E ∩L, GU = G ∩U , and GL = G ∩L. Note that |G| ≤ |E| since
G is the global minimum. Similarly, since E is the minimum assisted cover based on
U ′, it follows that |E| = |EU | + |EL| ≤ |ac(U ′,GL)| + |GL|, where ac(U ′,GL) is the
smallest subset of U ′ that forms an assisted cover with GL.

Now we will show that 2|GU | ≥ |ac(U ′,GL)|. Given a disk d in GU , there are two
cases: either d lies above the lower boundary of ac(U ′,GL), i.e., d is contained in the
union of all the disks in ac(U ′,GL), or d contains one or more arc segments of the
lower boundary of ac(U ′,GL). In the first case, Carmi et al. show that at most two
disks in ac(U ′,GL) suffice to cover d and, hence, for every such disk in the global
optimum solution G there are at most two disks in ac(U ′,GL). In the second case, let
V denote the subset of disks that have lower boundary segments that are contained
in d. The set of arc segments of the disks in V consists, from left to right, of a
partially-covered arc segment of the lower boundary, zero or more fully-covered arc
segments, and a partially-covered arc segment. Let W denote the disks whose arcs
are partially covered together with d.W dominates V and hence there is at most one
arc of the lower boundary fully contained in d; otherwise replacing V with W results
in a cover of smaller cardinality, deriving a contradiction, since V ⊂ U ′, and U ′ is
the optimal LSDUDC solution. Recall that all disks in V and U are centered above
l, and all points in P are below l. Furthermore, observe that the partially-covered
arc disks must contain points not contained in the fully-covered disk; otherwise they
can also be eliminated while reducing the cardinality of the cover. As those disks
contain other points, each of the disks is partially covered by at least one other disk
in G. We arbitrarily associate each disk covered more than once to its leftmost disk
in G. Thus, of the (at most) three disks in V, at most two are associated to d. In
sum, in either case each disk in GU has at most two associated disks in ac(U ′,GL)
from which it follows that 2|GU | ≥ |ac(U ′,GL)|. Hence,

2|G| = 2(|GU |+ |GL|) ≥ 2|GU |+ |GL| ≥ |ac(U ′,GL)|+ |GL| ≥ |EU |+ |EL| = |E|,
which gives the approximation factor of two as desired. Carmi et al. [5] prove that
any disk can be used in up to eight applications of the assisted LSDUDC algo-
rithm, for which they have a 4-approximation. These operations, followed by a
6-approximation for any remaining disks results in an 8×4+6 = 38-approximation
for the general DUDC problem. As we have shown that our technique provides a
2-approximation for the assisted line separated discrete unit disk cover problem, we
now have an approximation ratio of 8 × 2 + 6 = 22 for general discrete unit disk
cover.

3.1. Algorithm Analysis

There are essentially two main components to the algorithm for solving DUDC by
Carmi et al. [5]. First, they apply a grid of size 3/2×3/2 to the input data. Algorithm
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1 supplemented by their assisting disk technique is run on all grid lines. Note that
the number of relevant grid lines is O(n). Our technique runs in O(n(log n + m)),
and the assisting disk operation is easily implementable in O(mn), so the running
time of the first component is dominated by our step.

The second major component to their technique is finding the 6-approximation
for the DUDC of all disk centers and points contained in each of the 3/2 × 3/2
squares of the grid. Their technique is based on the application of a subset of nine
properties depending on where the disk centers are located. First, they determine
whether a solution exists using one or two centers by brute force, which is easily
done in O(m2n) time. The determination of which properties may be applied can
be done in O(m) time, and there are only two expensive steps that may be used in
any of the procedures, each of which may only be used a constant number of times.
First is the assisted LSDUDC technique, whose running time is O(n(log n + m)),
see Theorem 2.3. The second technique that may be required is to determine the
optimal disk cover of a set of points using centers contained in one of the 1/2× 1/2
squares, which can be solved in O(m2n4) time using the technique presented in
[16]. The center of each disk can only be contained in one square, and so this
operation is never performed twice for any given disk. Therefore, the complete
DUDC algorithm achieves worst-case performance when all of the disk centers in
the plane are confined to a single 1/2× 1/2 square, so that the O(m2n4) operation
is performed over the entire data set.

4. Conclusions

This paper presents a polynomial-time algorithm that returns an exact solution
to the LSDUDC problem, as well as a proof of correctness of the approach. This
algorithm for the line-separable problem allows us to improve the approximation
algorithm of Carmi et al. [5], resulting in a 22-approximate solution to the general
DUDC problem, which runs in O(m2n4) time in the worst case.

Theorem 4.1. Given sets P of m points and D of n disks in the plane, we can
compute a 22-approximation of the DUDC problem in O(m2n4) time in the worst
case.
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