Adaptive Set Intersections, Unions, and Differences

Erik D. Demaine*

Abstract

Motivated by boolean queries in text database systems,
we consider the problems of finding the intersection,
union, or difference of a collection of sorted sets. While
the worst-case complexity of these problems is straight-
forward, we consider a notion of complexity that de-
pends on the particular instance. We develop the idea
of a proof that a given set is indeed the correct answer.
Proofs, and in particular shortest proofs, are charac-
terized. We present adaptive algorithms that make no
a priori assumptions about the problem instance, and
show that their running times are within a constant fac-
tor of optimal with respect to a natural measure of the
difficulty of an instance. In the process, we develop a
framework for designing and evaluating adaptive algo-
rithms in the comparison model.

1 Introduction and Overview

Our work can be seen in the general context of perform-
ing searches quickly in a database or data warehousing
environment. The broad issue is that of characterizing
what type of join operations can be performed without
scanning the relations involved or actually materializing
intermediate relations. The specific problem addressed
here can be seen in that context or in the context of
performing a web search, or a search in another large
text database, for documents containing some or all of a
set of keywords. For each keyword we are given the set
of references to documents in which it occurs [2, 6, 9].
These sets are stored in some natural order, such as
document date.

In practice, the sets are large. For example, the av-
erage word from user query logs matches approximately
amillion documents on the AltaVista web search engine.
Of course, one would hope that the answer to the query
is small, particularly if the query is an intersection. It
may also be expected that the elements of such an in-
tersection are not spread uniformly through the initial

*Department of Computer Science, University of Water-
loo, Waterloo, Ontario N2L 3G1, Canada, email: {eddemaine,
imunro}Quwaterloo.ca

tFaculty of Computer Science, University of New Brunswick,
P. O. Box 4400, Fredericton, N. B. E3B 5A3, Canada, email:
alopez-oQunb.ca

Alejandro Lépez-Ortiz'

J. Tan Munro*

sets. In dealing with news articles in particular, one will
find a large number of references to one term over a few
relatively short periods, and little outside these periods.

We would like algorithms to take advantage of such
features of the data, and indeed develop a model of
complexity for classes of instances that take it into
account. An extreme example that makes this notion
more precise is that of computing the intersection of
two sorted sets of size n. On the one hand, if the sets
interleave perfectly Q(n) comparisons are required. On
the other hand, if all elements of one set are known to
fall between a pair of consecutive elements in the other
set, the problem simply reduces to a search in a sorted
array and so log, n+0(1) upper and lower bounds apply.

Similar motivation and examples apply to a more
general class of queries, including set union and set
difference. While the answer to a union query is at
least as large as the largest input set, one may be able to
construct the answer using the input sets without even
examining much of the input, let alone copying it over.
For example, if we are to produce the union of two sets
(each represented by a B-tree) and all elements in one
set fall between a pair in the other set, the answer is a
B-tree consisting of O(logn) new nodes with references
to portions of the two input trees.!

This leads to the idea of an adaptive algorithm [4,
5, 11]. Such an algorithm should make no a priori
assumptions, but determine the kind of instance it
faces as the computation proceeds. The running time
should be reasonable for the particular instance not
the overall worst-case.

Based largely on the development of a proof in a
canonical form and its specification, we develop algo-
rithms whose running times are within constant factors
of our worst-case lower bounds. Our methods, while
phrased in terms of a pure comparison model, are im-
mediately applicable to any balanced tree (e.g., B-tree)
model.

The general outline of our approach, which we apply
to each of the three problems, is as follows. First, in
Section 2, we characterize “proofs” that an algorithm
has obtained the correct answer. Then, in Section 3, we
see how to best encode proofs in binary, the idea being

T Aspects of this idea are explored for the case of two sets in [10].

that “easy” instances have succinctly encodable proofs.
In Section 4, we extend lower bounds beyond the most
basic information theoretic argument. In Section 5, we
develop an algorithm to find a proof in time matching
our lower bound. Finally, in Section 6, we extend these
algorithms to produce the desired answer by reusing
portions of the input in the output.

2 Proof Structure

We are interested in three problems concerning sets. In
all cases, an instance of the problem is a collection of k
sets Ay, ..., Ay, each presented in sorted order. Hence

As = {A 1], As[ns]}

implies that A [i] < A4[j] for all s and 4 < j. Some basic
terminology that we will use throughout this paper is
as follows. An element is one of the Ag[i]’'s; a wvalue
is a member of the universe, which may occur as an
element in several sets. An element A [i] precedes
[weakly precedes] Ag[j] if © < j [# < j]. Successors and
weak successors are defined similarly; note that they
only involve elements in the same set.
Consider the following set problems:

1. Intersection: Compute A; N---N Ag.
2. Union: Compute A; U---U Ay.
3. Difference: Compute A; — (A3 N---N Ag).2

Our work explores each of these three problems in the
comparison model. That is, the only way in which an
algorithm can use the elements of the sets is to test
whether A,[i] is less than, equal to, or greater than
A[j], for given s,t,i,j. An algorithm also knows the
signature of the instance, that is, the size ng of each set
As.

Any algorithm for a set problem must also be able
to construct a proof that its answer is correct. Hence,
we focus on algorithms for computing such proofs.
This is particularly helpful in the context of unions
and differences, where enumerating the elemnts of the
answer can take more time than computing the proof.
On the other hand, we will show that this explicit
enumeration can be avoided. Concentrating initially on
proofs allows us to ignore this problem until we have
the tools to solve it.

Formally, an argument is a finite set of symbolic
equalities and inequalities, or comparisons, of the form

(As[l] < At[]]) or (As[l] = At[]]) for Svtvi-,j Z 1. An

2The difference operation is somewhat unnatural for more than
two sets. We choose this generalization because difference is most
like intersection.

instance satisfies an argument if all the comparisons in
the argument hold for that instance.

The most interesting classes of arguments are those
that prove that the answer to one of the three problems
is a particular set. Formally, an argument P is called a
proof for a particular set problem if all of the instances
satisfying P have the same solution to that problem. If
the answer is always the set A of elements, we call P an
A-proof.

We cannot say much about the structure of proofs
until we fix the problem to solve. This is done in each
of the following subsections, in which we analyze what
arguments are proofs. We also study the structure
of ordered arguments and proofs, i.e., arguments and
proofs with an associated order on the comparisons.

2.1 Intersection Proofs. An intersection proof must
show precisely which elements are contained in all sets:

LEMMA 2.1. An argument P is a B-proof for the inter-
section problem precisely if there are elements by, ..., by

for each b € B, where b; is an element of A; and has
the same value as b, such that

1. for each b € B, there is a tree on k vertices, every
edge (i,7) of which satisfies (b; = b;) € P; and

2. for consecutive values b,c € B U {+00,—c0}, the
subargument involving the following elements is a
@-proof for that subinstance: from each A;, take
the elements strictly between b; and c;.

Thus, we turn our attention to @-proofs, that is,
how to prove that a collection of sets is disjoint. The
basic structure in a (-proof is to “eliminate” elements.
Intuitively, if we make the comparison (a < b) where b
is the first element in its set (called “minimal”), then
a and all its predecessors cannot be in the intersection
of all of the sets, because in particular they are not in
b’s set. Thus, we say that a and its predecessors are
“eliminated.” Furthermore, the element immediately
succeeding a is a new “minimal” element that can be
used for further elimination.

More formally, recursively define an element e to be
eliminated (in an argument P) if either

1. (a < b) € P where e is a weak predecessor of a, and
b has no uneliminated predecessors;

2. (a < b) € P where e is a weak successor of b, and
a has no uneliminated successors.

If b has no uneliminated predecessors [successors|, we
call it minimal [mazimal]. Note that a minimal or

maximal element may be eliminated.

LEMMA 2.2. An argument is a O-proof precisely if an
entire set is eliminated.

An important concept about ordered (-proofs is the
notion of “low-to-high orderings.” First, we need to
introduce some additional terminology. In an ordered
argument, we say that the ith comparison eliminates an
element if the subargument with the first ¢ comparisons
has this element eliminated; the ith comparison newly
eliminates an element if in addition just the first 1 — 1
comparisons do not have this element eliminated. A
low-to-high ordering of an argument is an ordering with
the property that each comparison (A,[i] < Ailj])
newly eliminates elements just in A, unless it entirely
eliminates As (in which case it may newly eliminate
elements in all sets).

THEOREM 2.1. Every O-proof has a low-to-high order-
mg.

Although not directly related to our study of finding
proofs in the minimum amount of time, we mention a
simple greedy method?® to exhibit proofs with the fewest
possible number of comparisons. Note this does not
mean that the algorithm makes the fewest comparisons
possible to actually discover a (-proof, and indeed our
algorithms in Section 5 will search for easier-to-find
proofs.

Define the immediate successor of an element A,[i]
to be A4[i + 1] if it exists, and infinity otherwise.

Method Fewest-Comparisons
1. Initialize the eliminator e to the maximum element
Ag[1] over all 1 < s < k.
2. Until e becomes infinity:

(a) Add the comparison (@ < e) to the proof,
where the element a is chosen so that its
immediate successor e’ is maximized, subject
to the constraint that a < e.

(b) If e # €', set e to €.

(c) Otherwise, e is present in all sets:

i. Remove the just-added comparison (a <
e) from the proof.

ii. Add the comparisons (es = es11) to the
proof, where e, is the occurrence of e in
A, for each 1 < s < k.

iii. Reinitialize e to the maximum immediate
successor of e; over all 1 < s < k.

THEOREM 2.2. For any given instance, Method Fewest-
Comparisons generates a proof for the intersection prob-
lem with the fewest comparisons possible.

3We sidestep the technical details of an “algorithm” and
nondeterministic choices with the term “method.”

2.2 Difference Proofs. The difference problem A; —
(A2N---NA,) is much like the corresponding intersec-
tion problem A; N Ay N--- A, with a twist in how the
answer is reported. Specifically, whenever we find an
element common to all the sets, this element is with-
held from the answer; and all other elements of A; are
reported in the answer. This is essentially the opposite
of the intersection problem, though in the context of
proofs the situation is basically the same:

LEMMA 2.3. An argument P is a B-proof for the dif-
ference problem precisely if it is an (A1 —B)-proof for
the intersection problem.

2.3 Union Proofs. Proofs for the union problem
have a much simpler structure than intersections and
differences.

LEMMA 2.4. An argument P is a proof for an instance
I for the union problem precisely if

1. for any value v, if Ag [ki],...,As, [km] are ex-
actly the occurrences of v, then there is a tree
on m vertices, every edge (i,7) of which satisfies

(Ag, [ki] = Ag,[K;]) € P;and

2. for any value v occurring in I, if v and its immedi-
ate predecessor [successor] v' in the union of I do
not occupy a common set in I, then for some occur-
rences e and e' of v and v' respectively, (' < e) € P

[(e <€) e P

Note that we can discard any comparisons that
follow transitively from others, i.e., comparisons that do
not come from Lemma 2.4. We call such comparisons
useless, and call others useful.

3 Encoding Proofs

The next few sections are concerned with how to find
proofs by using as few comparisons as possible. First we
must be precise about the phrase “as few as possible”
for an adaptive algorithm. It is too much to hope for
an adaptive algorithm to use the smallest amount of
time possible for each particular instance. The class
of instances mentioned in the Introduction, in which
all elements of one set fall between two consecutive
elements in another, is a clear illustration. Only two
comparisons are needed for a proof, yet log, n has been
noted as a lower bound for any algorithm required to
run on all of those instances.

Thus we require a notion of the worst-case perfor-
mance of an adaptive algorithm. Of course, we cannot
use the worst-case running time as our metric, because
that will only reflect the case in which the instance is

difficult to solve. While apparently unstated in the lit-
erature, a natural metric is the worst-case value of the
ratio of running time to difficulty, where “difficulty” is
an information theoretic measure of the difficulty of the
instance. We can think of this ratio as a scaled run-
ning time, which allows the running time to be large for
difficult instances, but enforces it to be small for easy
instances. An algorithm that minimizes the worst-case
scaled running time is a natural definition of an optimal
adaptive algorithm. Scaled running time is similar to a
“competitive ratio,” which measures the effectiveness of
the output of an algorithm (instead of its running time)
relative to the optimal.

Next we require a definition of the difficulty of
an instance. A natural definition is the information
theoretic lower bound on the running time of any
comparison-based algorithm. In the context of this
paper, this lower bound is the length of the shortest
binary encoding of some proof. As the name suggests,
this is a lower bound on the running time of any correct
algorithm in the comparison model, for the following
reason. An algorithm can only be sure that it knows
the correct answer if it knows a proof, or equivalently an
encoding of a proof. Because each comparison (over the
operators <, =, and >) only reveals a bit of information,
the number of comparisons must be at least the length
of the shortest binary encoding of a proof. (In fact, the
situation is somewhat more complex than this; see the
proof of Corollary 3.1.)

The rest of this section analyzes the information
theoretic lower bound (that is, optimal encodings of
proofs) for each of the three problems. Sections 4
and 5 will use this analysis to prove results about scaled
running time.

3.1 Encoding Intersection and Difference
Proofs. Let us begin with the basic idea for encoding
proofs for the intersection and difference problems
(which are identical by Lemma 2.3). We will concen-
trate on the most important case of (-proofs, which
prove that the intersection is empty. Call an element
compared if it occurs in one of the proof’s comparisons.
Because compared elements can be arbitrarily spaced
out in each set, it is natural to encode the size of the
gaps (i.e., the differences in index) between compared
elements, which costs roughly lg g bits for each gap of
size g, where lg g = log,(1 + g).

We must also handle two further details. First, by
appropriately switching between specifying gaps from
the low and high sides, we can avoid encoding the largest
gap in each set. Second, we must specify the pairing
between compared elements that forms the proof.

The following encoding fills in both of these details.

Take a low-to-high ordering of the proof P by Theo-
rem 2.1. Let ¢ = (A,[i] < A:[j]) be the first compar-
ison. First encode s and ¢ using roughly log, k& bits
and log, (k — 1) bits, respectively (because s # t). En-
code i [j] by specifying the smallest gap g [h] to an
already compared element in A, [A;], using essentially
lg g [lg h] bits. The total cost of encoding ¢ in this way
is logy k + logy(k — 1) +1g g + Ig h.

Encoding all comparisons in this way, we obtain a
formula for the length of encoding an entire proof P.
We call this length the cost of P and denote it by ¢(P).
We break ¢(P) into two components: set cost s(P) and
gap cost g(P).

Let |P| denote the number of comparisons in P.
The set cost is the cost of encoding the sets A and Ay
involved in each comparison:

(3.1) s(P) = |P| (logy k + log,(k — 1)) .

The gap cost is the cost of encoding all the gaps except
for the largest gap in each set. More formally, let
9s[0], ..., gs[ps] denote the gaps in A, for P, including
the “end gaps” before the first compared element and
after the last compared element in A;. Then

(3.2) g(P)=)_ (Z Ig gs[i] — max lggs[i]) :

s=1 \i=0

Finally, the cost of P is ¢(P) = s(P) + g(P).*

Now we claim that the described encoding is opti-
mal: if we fix a language for encoding all -proofs, then
on average, a (-proof P requires at least ¢(P) bits to be
encoded in this language.

THEOREM 3.1. Given any @-proof P for an instance
I, there are 2°P) (-proofs (ome of which is P) for
instances with the same signature (i.e., set sizes) as I.
Furthermore, each of the B-proofs has |P| comparisons
and cost at most ¢(P), and no two of the B-proofs apply
to a common instance.

Proof. First let us give a construction of (ZQ(P))
different @-proofs based on a proof P. Let g,[i] be
defined as in the definition of g(P). We decrease every
gap, except the largest gap in each set, to any amount
less than or equal to the original gap in P. The
pairing between elements stays the same; we simply
move the compared elements. To compensate for these
shrinking gaps and to keep the signature the same, the

4We ignore the cost of specifying relative to which side each gap
is taken, that is, the location of the largest gap in each set. This
can be encoded in Z’:zllg ps bits, which is a negligible lower-
order term: more bits are necessary just to encode the instance
signature.

largest gap in each set grows, and hence remains largest.
These modified gap sizes induce moved positions of the
compared elements.

Because we only decrease gap sizes, except for the
largest gap in each set which does not affect g(P), the
gap cost of any constructed proof is at most the gap
cost of P. Furthermore, the number of comparisons
in the proof and the number of sets does not change,
so s(P) does not change. Hence, the total cost of any
constructed proof is at most ¢(P).

Now for each g;[i], except the largest in each set,
we have g;[i] choices for a new gap size. Therefore, the
number of proofs constructed using this technique is

k ps
IT I+ gl / jmax (14 g,[i]),

i<
s=1 i=0 StSPe

which is 29(P) | i.e., the exponentiation of Equation (3.2).

Next, we make some independent choices to improve
the bound by a factor of 25(P) for a total of 2¢(P).
Fixing the gap structure, that is, the collection of
compared elements, the comparisons of a (-proof can be
chosen as follows. Pick a set A, such that the smallest
so-far uneliminated element Ag[i] is compared in P (in
particular, A, cannot be entirely eliminated yet). Pick
another set A; that is not yet entirely eliminated, and
let A:[j] be the smallest so-far uncompared element
in A; that is compared in P. Then choose the next
comparison to be (A:[j] < A[i]).

The number of choices for the comparisons is some-
what less than 25(P) because of the constraints on the
sets A, and A;. However, this reflects the sloppiness
in our definition of s(P): indeed, as indicated above,
not all sets can be involved in a comparison at a given
point, given the gap structure. Hence, the encoding and
definition of s(P) can be optimized so that the number
of proofs generated is precisely 2°(P). For simplicity of
exposition, we leave s(P) as the overapproximation in
Equation (3.1). |

It now makes sense to talk about optimal proofs,
that is, proofs with minimum cost. This minimum
cost is called the difficulty, D, of the instance. This
terminology is motivated by the following superficially
trivial result:

COROLLARY 3.1. Any algorithm for the intersection or
difference problem requires at least D comparisons in the
average case.

Proof. Certainly any correct algorithm must under-
stand what the intersection is, and hence the compar-
isons it makes must form a proof P for the intersection
problem. This only proves a lower bound of |PJ, or the

smallest possible number of comparisons in a proof for
the intersection problem. It is not necessary that the al-
gorithm discover an encoding of P, one bit per compar-
ison. Instead, an algorithm may discover a collection of
proofs for the instance. Potentially, this collection could
be encoded in fewer bits than any individual proof (such
as P). So the only lower bound we could prove from en-
coding optimality is ¢(P) minus the logarithm of the
number of proofs for the instance.

However, the last part of Theorem 3.1 gives us what
we need: any two of the 2°”) (-proofs do not apply to
a common instance. So only one of these proofs can
be in the discovered collection. Hence, the algorithm
must truly distinguish between the 2¢(F) proofs. In
the best case, each comparison halves the search space.
Therefore, at least ¢(P) comparisons are needed. O

It turns out that another important measure on
proofs is the gap cost g(P). The minimum gap cost,
denoted by G, will show up in the scaled running time
of an optimal adaptive algorithm for the intersection
and difference problems. Note that it is possible for the
optimal gap cost G to only be realized by nonoptimal
proofs, that is, proofs with total cost higher than D.

3.2 Encoding Union Proofs. Recall from
Lemma 2.4 that all proofs for the union problem
are roughly the same: they can only differ in what
trees are formed by the equality comparisons, and by
adding extra (useless) comparisons. Thus, instead of
encoding a particular proof, we can consider encoding
all proofs for the given instance. These two encoding
problems are equivalent for the union problem, because
given all proofs for an instance we can certainly find
a canonical one, and furthermore from a single proof
we could construct all other proofs for the instance.
Hence, in this context we can define the cost of an
instance instead of a proof.

The basic idea of encoding the gaps between com-
pared elements is the same, although now the compared
elements (from useful comparisons) are in fixed loca-
tions as defined by Lemma 2.4. Indeed, we will use
exactly the same method to encode inequality compar-
isons. What differs is the way in which we encode equal-
ity comparisons. For each value v that occurs in multi-
ple sets As,,..., As, , we must encode the set numbers
$1,...,8m. The locations of v within the sets is already
specified by the gap lengths. The only cost unique to
the union problem is that of specifying the m out of &
sets in which v occurs, namely log, (T’:l) bits.

Encoding all comparisons as described, we obtain a
formula for the length of encoding an entire proof P, or
equivalently an instance I. We call this length the cost
of I and denote it by ¢(I). Again, we break ¢(I) into

two components, set cost s(I) and gap cost g(I), the
latter of which is defined exactly as for intersections.
Let #(I) denote the number of distinct values in
the union of I, and let #;(i) denote the number of
occurrences of the ith smallest value in the union of
I. The set cost is the cost of encoding the sets A
and A; involved in each inequality comparison, and the
collection of sets involved in each equality comparison.

o= g})k’gz (#ﬁi))'

Again we claim that the described encoding is
optimal: if we fix a language for encoding all instances,
then on average, an instance I requires at least ¢(I) bits
to be encoded in this language.

(3.3)

THEOREM 3.2. Given any instance I, there are 2¢(0)
pairwise distinct instances (one of which is I) with the
same signature as I. Furthermore, each of the instances
has cost at most c(I).

The cost of an instance is also called the difficulty,
D, of the instance. Unlike intersections, there are
no possible tricks with encoding a collection of proofs
instead of a single one in order to save bits, so the
information theoretic lower bound is immediate:

COROLLARY 3.2. Any algorithm for the union problem
requires at least D comparisons in the average case.

4 Further Lower Bounds on Finding Proofs

Corollaries 3.1 and 3.2 give an information theoretic
lower bound, denoted D, on the running time of any
adaptive algorithm. The scaled running time (running
time divided by D) must therefore be Q(1). For the
union problem, we will in fact be able to find an
algorithm with scaled running time ©(1). For the
intersection and difference problems, however, we are
not so fortunate. A stronger worst-case lower bound
of Q(kG/D) holds for the scaled running time of any
adaptive algorithm. (Recall that & denotes the number
of sets in the instance.) In other words, if we optimize
scaled running time, then the running time is Q(kG) in
the worst case.
Stated differently, this section proves

THEOREM 4.1. Given positive integers k, p, and g (p <
g), and given an algorithm for finding O-proofs for the
intersection problem, there is a collection of k sets
having a p-comparison B-proof with cost O(plogs k+ g),
such that every B-proof has gap cost Qg), and the
algorithm takes Q(kg) time on this input. In particular,
D =O(plog, k+g) and G = Q(g), so the scaled running
time is Q(kG/D) for this instance.

The basic idea is to construct a parameterized class
of instances, and have an adversary pick a bad instance
for the algorithm. Let ¢;,...,¢, be positive integers
summing to g, such that each is either |g/p| or [g/p].
An /¢; will represent the ceiling of the lg of a gap in the
(-proof.

First let us describe the parameters for an instance.
Pick p + 1 “magic” values m[0] < --- < m[p]. Pick a
sequence Sp, ..., S, of set numbers such that s;_; # s;
for all 1 < i < p. Furthermore, each s € {1,...,k} must
occur at least every 2k elements in the sequence. One
way to do this is to concatenate several permutations of
{1,...,k}, chosen randomly such that the first value
of one permutation is different from the last value
of the previous permutation. Finally, pick integers
Js[1],- .-, Js[p] such that [lgjs[i]] = ¢; for all i and s,
except for js, ,[i] which is defined to be zero for all 3.

Then we construct an instance as follows (see Fig-
ure 1). Each magic value m[i] occurs in every set except
A,,; we will denote the occurrence of m[i] in Ag by my[i].
In every set A, there are precisely js[i] elements strictly
between m[i — 1] and m[i]. In particular, A, , has no
elements strictly between m[i — 1] and m[i]; indeed, it
also has no elements equal to m[i — 1].

m[0] m[1] m[2] m[3]
ﬁl X — gﬁ O
O O
40— [0——0 .
Ay O o2 O

Figure 1: Illustration of lower-bound construction: Circles
show magic elements, and crossed-out circles indicate miss-
ing magic values. Arrows indicate comparisons that form a
(}-proof.

Next let us describe the (-proof. Note that there
are no elements before mg,[1], and hence it is minimal.
Suppose in general that mg, ,[i] is minimal. Then we
can use it to eliminate all elements less than m[i] in
As,;. But there are no elements between mJi] (inclusive)
and m[i+1] (exclusive) in A, so this elimination makes
ms, [1+ 1] minimal. This continues by induction until we
find that “mp[p + 1]” is minimal, that is, A, is entirely
eliminated.

LEMMA 4.1. The described proof has cost O(plogs k +
9)-

It turns out that this is the only @-proof for this
instance, except for two types of possible modifications,
each of which increases the gap cost. As a consequence,
we have the following result:

LEMMA 4.2. Every 0-proof for the described instance
has gap cost Q(g).

Finally, we can show a lower bound on the running
time of the algorithm. The algorithm is allowed to know
the magic values m[1],...,m[p], as well as ¢1,...,4,,
that is, the approximate gap sizes. The algorithm
does not know the exact gap sizes (the js[i]’s), nor the
numbers s; of the sets missing the magic values.

LEMMA 4.3. The algorithm must determine the s;’s
and js, [t — 1]’s, independently of each other.

Hence, the algorithm’s job reduces to p independent
subjobs, each of the following form: given k sorted sets,
each of unknown size whose [lg] is ¢;, find the unique set
whose last element is not magic. We need the following
observation, which to our knowledge has not appeared
before.

LEMMA 4.4. Given k sorted sets, each of size n, and
an element e, finding the unique set not containing e
requires Q(klgn) comparisons.

Therefore, the algorithm takes Q(kg) time, proving
Theorem 4.1.

Our example relies on (k—1)-way repetition of el-
ements. A similar argument shows that there exist
pairwise-disjoint instances in which the scaled running
time is Q(kG/D). This result holds provided k =
0(gi/log g;) for each of the gaps g;.

5 Finding Proofs

This section presents algorithms for finding proofs that
match the lower bounds presented in previous sections.
Specifically, for intersections and differences, we give
an algorithm running in O(kG) time; and for unions,
we give an algorithm running in O(D) time. For the
intersection problem, this will solve the whole problem:
it is easy to extract the intersection A from an A-proof.
But for unions and differences, there is an additional
problem of encoding the output. This will be addressed
in Section 6.

5.1 Finding Intersection and Difference
Proofs. We begin with an algorithm for finding
(-proofs for the intersection problem, and then gen-
eralize it to A-proofs for both problems. Essentially,
the algorithm “gallops” in parallel through all the sets,
from both the low and high sides. Galloping consists
of doubling the jump in position each iteration, until
it “overshoots” the current eliminator (which will
always be on the low side). Upon overshooting, the
other parallel processes pause while the overshooter

does a binary search to find the largest eliminatable
element, and chooses the next higher element as the
new eliminator.

In more detail, the algorithm works as follows.

Algorithm Empty-Intersect
e Initialize low-jump(s) and high-jump(s) to 1, and
done(s) to 0, for each s € {1,...,k}.
e Initialize elim-set to 1 and eliminator to A;[1].
e For s ranging through {1,...,k} cyclicly:
— Skip this step if s = elim-set.
— Low step:
1. Let p = done(s) + low-jump(s).
2. If A4[p] > eliminator (we overshot),
Binary search in the interval [done(s)
1,p] to find the smallest p' with A [p']
eliminator.
If pY —1 > done(s), add (4s[p' — 1] <
eliminator) to the proof.

Set done(s) to p' — 1, and low-jump(s) to 1.
(d) Set elim-set to s, and eliminator to A[p'].
3. Otherwise, double low-jump(s) and set done(s)

to p.
High step:
1. Let p = ny + 1 — high-jump(s).
2. If A4[p] < eliminator (we overshot),
Binary search in the interval [p,n,] to find
the largest p’ with A,[p'] < eliminator.
If p' > done(s), add (As[p'] < eliminator) to
the proof.
If p' = n,, stop.
Set done(s) to p’, and low-jump(s) to 1.
Set elim-set to s, and eliminator to A,[p'+1].
Reset high-jump(s) to one.
3. Otherwise, double high-jump(s).

vV +

Note that at any point in time, A,[i] is eliminated
exactly when i < done(s).

Now we claim that the algorithm matches the lower
bound from Section 4, that is, has scaled running time
O(kG/D).

THEOREM 5.1. Algorithm Empty-Intersect runs in
O(kG) time, and makes at most 8kG comparisons.

Proof. Suppose we binary search inclusively between
done(s) + 1 and p = done(s) + low-jump; the high
case is similar. This takes at most ¢ = lg low-jump
comparisons. But low-jump = 2¢ where 4 is the number
of iterations we have already executed on this side of A,
since the last overshooting. Hence, t =4 4+ 1, so we can
charge the binary-search time ¢ to these ¢ > 0 iterations,
and no other overshooting iterations will charge to the
same iterations (as we now reset the jump). This
amortization is the source of one factor of two in the
comparison bound.

Let P be a proof with gap cost G, and let it be
ordered low-to-high by Theorem 2.1. Let ¢ = (A4;[i] <
A¢[j]) be the first comparison in P. We want to
evaluate the number of iterations the algorithm spends
to eliminate Ag[i]. The low and high parts of the
algorithm run effectively in parallel; this causes the
second factor of two in the comparison bound.

There are two main cases. In the first, the gap below
Agli] (size g) is not the largest gap in A,. Ignoring
the binary-search cost as described above, galloping
effectively occurs in lock-step parallel over the sets.
Local to Ag, the number of comparisons for galloping
to Ag[i] or beyond is lgg. The other sets have had at
most the same number of iterations, thus adding a factor
of k.

In the second case the gap below A,[i] is the largest
in A,. If the sum of the other gaps’ sizes is at least g,
then we can charge the cost (lgg) of running through
the largest gap to the other gaps in As;. These gaps
will not be charged to again, because there is only one
largest gap in A, that the gap cost does not count (i.e.,
for which we must avoid paying directly). If, on the
other hand, the other gaps’ sizes sum up to some value
h less than ¢, then the high step finds A[i] from the
high side in lg h iterations. But lgh is at most the sum
of the lgs of the other gaps in Ay, so again we can charge
to these gaps. These amortizations add the last factor
of two to the comparison bound.

Therefore, eliminating A,[i] takes lgg amortized
comparisons, unless g is the largest gap in its set, in
which case it takes zero amortized comparisons. By
induction, this holds for all future comparisons in P. O

It may be possible to improve the factor 8 in
the comparison bound down to 4 (plus lower order
terms), using more sophisticated galloping techniques
(see e.g. [3]) that find an integer z in roughly log, = +
log, log, z+log, log, log, z+- - -+ 1+4logs x comparisons,
instead of the method presented which uses 2log, = +
O(1) comparisons.

Finally, let us turn to the case where the intersection
is not necessarily empty. Recall that a proof for either
the intersection or difference problem must demonstrate
the intersection elements (by making k& — 1 equality
comparisons each), and forms a @-proof on each of the
remaining subinstances between the partition points of
the intersection elements.

COROLLARY 5.1. A proof for the intersection or differ-
ence problem for k sorted sets can be computed in O(kG)
time and at most 8kG comparisons.

Proof. This follows from a simple modification to Algo-
rithm Empty-Intersect above, namely whenever a com-

parison with the eliminator returns “equal,” stop gal-
loping in that set and increase the occurrence count
of the eliminator. If the occurrence count reaches k,
output the eliminator as part of the intersection, add
k — 1 appropriate comparisons to the proof, and take
the eliminator’s successor as the new eliminator. a

COROLLARY 5.2. The intersection of k sorted sets can
be computed in O(kG) time and at most 8kG compar-
150MS.

Note that the described algorithms perform just as
well on B-trees or related structures. We only need
to start with the leftmost and rightmost leaves, and
then gallop inwards from each side. This can be easily
performed by traversing the parent and child pointers
in a B-tree, with only a constant-factor overhead.

5.2 Finding Union Proofs. Essentially, the algo-
rithm maintains a priority queue over the sets, where
the priority of a set is the value of its smallest (unused)
element. In the case of an inequality comparison, the
algorithm takes the next-to-smallest element and finds
where it fits in the set containing the smallest element,
by galloping through the set. In the case of an equality
comparison, Delete-All-Min matches and returns multi-
ple elements. In both cases, the minimum elements are
removed from consideration and the priority queues are
updated.
In more detail, the algorithm works as follows.

Algorithm Union-Proof
e Initialize the priority queue @ with the smallest

element of every set.
e Until all elements have been (conceptually) removed:

1. Let M = Delete-All-Min (Q).
2. If [M| =1, in particular M = {A,[i]}:
(a) Let m' = Find-A-Min (Q), that is, one of

the minima.
Gallop in A, to find where m/’ fits.
Add the smallest element A,[j] greater than
or equal to m' to Q.
If m" < Agfj], add (m' < A;[j]) to the
proof.

(e) Remove all elements in A less than m/'.
3. Otherwise (|M| > 1):

(a) For each A,[i] € M:

i. Remove A,[i] from A,.
ii. Add Asi +1] to Q.
(b) Add equality comparisons to form a span-
ning tree of the elements of M.

Now we claim that the algorithm matches the lower
bound from Section 3.2.

THEOREM 5.2. Algorithm Union-Proof runs in O(D)
time.

6 Computing the Answer

For both the union and difference problems, finding a
proof is not the whole story. The problem asks for
the actual answer, the union or difference of the sets,
not just an understanding of the answer which is given
by a proof. This understanding does, however, specify
the ranges of elements in the answer. For example, a
proof for the union problem encodes the total order of
the answer. Thus, the output could be encoded in the
following form:

take the first 12 elements from A,
take the first 3 elements from As
take the next 11 elements from A,
skip the first element in As

However, this kind of output encoding is unsatis-
factory, because it is not in the same form as the input.
In particular, if we want to use the result of this union
operation as the input to another operation, e.g., an in-
tersection, then it must be in a usable form for the latter
operation. It is difficult to gallop in a set described as
above.

Thus we need a better output encoding, one that
matches the input encoding. We cannot simply use
arrays for both input and output, because then writing
down the answer beats the purpose of finding proofs
adaptively (as unions and differences are typically very
large). We turn instead to the most natural alternative:
a balanced search tree structure. Specifically, we focus
on B-trees as a commonly used representative of this
class. As mentioned in Section 5.1, it is easy to gallop
in such structures, paying only a constant factor of
overhead in time. Furthermore, in text databases, input
sets are often stored as B-trees to begin with.

The goal, then, is to build another B-tree represent-
ing the union or difference of a collection of sets. We
assume that the sets cannot be modified; for example,
in a database system, while the input sets for this opera-
tion may be stored in memory and thus there are copies
stored on disk, the sets in memory often serve as a cache,
whose modification would require expensive reloading
from disk. The remaining freedom in encoding is sub-
tle: we can use entire subtrees from existing B-trees
for building new B-trees. In other words, constructed
B-trees can have child pointers to nodes in other exist-
ing B-trees. This gives us a persistent mechanism for
augmenting old trees.

This level of flexibility will be enough to allow us to
construct B-trees representing the answer in the same

time as for computing a proof representing the answer.
In the next two subsections, we consider each of the
difference and union problems in turn, and show how to
build a B-tree assuming that we already know a proof.

6.1 Computing Differences. The situation for the
difference problem is fairly simple. A proof gives us the
intersection of the sets, and it remains to remove those
elements from A; to obtain the result. Thus, we want a
persistent B-tree structure that supports deletions. In
other words, given a B-tree T' and elements z1,. .., Zm,
we would like to be able to construct a new B-tree
with contents T' — {z1,...,Z}, without modifying T'
but by reusing nodes of 7. This can be done using
a standard persistence trick: perform the standard B-
tree multidelete [10], but whenever a node is modified,
first make a copy of the node and then modify the copy
instead. This proves the following theorem:

THEOREM 6.1. The difference of k sorted sets stored in

read-only B-trees can be computed as another B-tree in
O(kG) time.

6.2 Computing Unions. The situation for unions
is more difficult. There are two steps. First, we carve
each tree according to the partition defined by the proof.
Second, we merge the pieces in the appropriate order
to form the union. Both of these operations are done
persistently. As we do not have room for details, we
simply state the results.

LEMMA 6.1. Given a read-only B-tree T and a col-
lection of wvalues ai,...,am ot which to cut it, the
resulting B-trees Ty, Ty,...,T,, can be computed in

O(X:" , height(T;)) time.
The algorithm for this lemma is a generalization of
procedure DIVIDE of Aho et al. [1, p. 157] to support

multiple cut points. The main difficulty is in proving
the time bound.

3

LEMMA 6.2. Given a sequence Ty, ...,T,, of read-only
B-trees, their concatenation can be computed (as a B-

tree) in O(> 1", height(T;)) time.

Again, the algorithm is essentially a generalization
of procedure IMPLANT of Aho et al. [1, p. 153] to
support more than two trees. This cannot be done by
repeatedly calling IMPLANT, because that may cause
the heights of the trees being concatenated to grow
significantly. Instead, we use a priority queue to order
the trees appropriately. This takes only constant extra
time per merge as the universe of heights is small.

THEOREM 6.2. The union of k sets stored as read-only
B-trees can be computed as another B-tree in O(kG)
time.

We note that our adaptive algorithm for the union
problem has been described for the special case of two
sets [4, 10, 11]. Our new results are the generalization
to multiple sets (which can offer a significant improve-
ment in adaptive performance) and the matching lower
bounds.

7 Conclusion

Perhaps the most interesting contribution of this work
is our framework for designing and analyzing adaptive
algorithms under the comparison model. The essential
idea is to perform a worst-case analysis on the scaled
running time instead of the usual running time. We
defined the scaled running time to be the ratio of the
running time to the difficulty of the instance. This
difficulty of course depends on the problem, but a
natural metric is the information theoretic lower bound.

Using this framework, we proved matching upper
and lower bounds on finding intersections, unions, and
differences of sorted sets. Specifically, for unions, the
scaled running time is ©(1). For intersections and
differences, the scaled running time is @ (kG /D), where
k is the number of sets, G is the so-called “gap cost,” and
D is the difficulty of the problem. In other words, if we
take the worst-case performance relative to the scaled
running time, then the best possible running time is
O(kG).

For the union problem, or when the number of sets
is constant, this is a truly ideal situation: the running
time is proportional to the information theoretic lower
bound. For asymptotically many sets, the running time
for intersections and differences is away from this bound
by a reasonable factor that is somewhat less than k;
and furthermore it is impossible to achieve better than
this factor in the worst case. In general, we expect
our algorithms to be practical for evaluating boolean
queries in text retrieval systems. Ongoing work on
arbitrary query expressions, involving a mix of unions,
intersections, and differences of sets, builds upon all the
results outlined here.

The theme of this work is the exploitation of nonuni-
formity in data. A situation in which we might not
expect an improvement is an instance with k sets each
containing n elements chosen uniformly at random from
(0,1). We can show that the expected number of com-
parisons in the smallest -proof is about n/Ink. As a
consequence, our algorithm takes O(nkloglogk/logk)
expected comparisons, which is asymptotically better
(in terms of k) than previous algorithms which look at
all nk of the elements.

Acknowledgments. We thank Ming Li for helpful
discussions. This work was supported by NSERC.

References

(1]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The De-
stgn and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

R. Baeza-Yates. Efficient Text Searching. PhD thesis,
U. Waterloo, 1989.

J. L. Bentley and A. C.-C. Yao. An almost optimal
algorithm for unbounded searching. IPL, 5(3):82 87,
Aug. 1976.

S. Carlsson, C. Levcopoulos, and O. Petersson. Sub-
linear merging and natural mergesort. Algorithmica,
9:629 648, 1993.

V. Estivill-Castro and D. Wood. A survey of adap-
tive sorting algorithms. ACM Computing Surveys,
24(4):441 476, Dec. 1992.

W. Frakes and R. Baeza-Yates. Information Retrieval.
Prentice Hall, 1992.

F. K. Hwang and S. Lin. A simple algorithm for
merging two linearly-ordered sets. SICOMP, 1(1):31-
39, 1980.

D. E. Knuth. The Art of Computer Programming, vol.
3. Addison-Wesley, 1968.

U. Manber and G. Myers. Suffix arrays: A new method
for on-line string searchs. In Proc. 1st Symp. Discrete
Algorithms, pp. 319-327, 1990.

K. Mehlhorn. Data Structures and Algorithms, vol. 1,
pp- 240 241. Springer-Verlag, 1984.

A. Moffat, O. Petersson, and N. C. Wormald. A tree-
based Mergesort. Acta Informatica, 35(9):775 793,
Aug. 1998.

