
Adaptive Set Intersections, Unions, and Di�erencesErik D. Demaine� Alejandro L�opez-Ortizy J. Ian Munro�AbstractMotivated by boolean queries in text database systems,we consider the problems of �nding the intersection,union, or di�erence of a collection of sorted sets. Whilethe worst-case complexity of these problems is straight-forward, we consider a notion of complexity that de-pends on the particular instance. We develop the ideaof a proof that a given set is indeed the correct answer.Proofs, and in particular shortest proofs, are charac-terized. We present adaptive algorithms that make noa priori assumptions about the problem instance, andshow that their running times are within a constant fac-tor of optimal with respect to a natural measure of thedi�culty of an instance. In the process, we develop aframework for designing and evaluating adaptive algo-rithms in the comparison model.1 Introduction and OverviewOur work can be seen in the general context of perform-ing searches quickly in a database or data warehousingenvironment. The broad issue is that of characterizingwhat type of join operations can be performed withoutscanning the relations involved or actually materializingintermediate relations. The speci�c problem addressedhere can be seen in that context or in the context ofperforming a web search, or a search in another largetext database, for documents containing some or all of aset of keywords. For each keyword we are given the setof references to documents in which it occurs [2, 6, 9].These sets are stored in some natural order, such asdocument date.In practice, the sets are large. For example, the av-erage word from user query logs matches approximatelya million documents on the AltaVista web search engine.Of course, one would hope that the answer to the queryis small, particularly if the query is an intersection. Itmay also be expected that the elements of such an in-tersection are not spread uniformly through the initial�Department of Computer Science, University of Water-loo, Waterloo, Ontario N2L 3G1, Canada, email: feddemaine,imunrog@uwaterloo.cayFaculty of Computer Science, University of New Brunswick,P. O. Box 4400, Fredericton, N. B. E3B 5A3, Canada, email:alopez-o@unb.ca

sets. In dealing with news articles in particular, one will�nd a large number of references to one term over a fewrelatively short periods, and little outside these periods.We would like algorithms to take advantage of suchfeatures of the data, and indeed develop a model ofcomplexity for classes of instances that take it intoaccount. An extreme example that makes this notionmore precise is that of computing the intersection oftwo sorted sets of size n. On the one hand, if the setsinterleave perfectly
(n) comparisons are required. Onthe other hand, if all elements of one set are known tofall between a pair of consecutive elements in the otherset, the problem simply reduces to a search in a sortedarray and so log2 n+O(1) upper and lower bounds apply.Similar motivation and examples apply to a moregeneral class of queries, including set union and setdi�erence. While the answer to a union query is atleast as large as the largest input set, one may be able toconstruct the answer using the input sets without evenexamining much of the input, let alone copying it over.For example, if we are to produce the union of two sets(each represented by a B-tree) and all elements in oneset fall between a pair in the other set, the answer is aB-tree consisting of O(logn) new nodes with referencesto portions of the two input trees.1This leads to the idea of an adaptive algorithm [4,5, 11]. Such an algorithm should make no a prioriassumptions, but determine the kind of instance itfaces as the computation proceeds. The running timeshould be reasonable for the particular instance|notthe overall worst-case.Based largely on the development of a proof in acanonical form and its speci�cation, we develop algo-rithms whose running times are within constant factorsof our worst-case lower bounds. Our methods, whilephrased in terms of a pure comparison model, are im-mediately applicable to any balanced tree (e.g., B-tree)model.The general outline of our approach, which we applyto each of the three problems, is as follows. First, inSection 2, we characterize \proofs" that an algorithmhas obtained the correct answer. Then, in Section 3, wesee how to best encode proofs in binary, the idea being1Aspects of this idea are explored for the case of two sets in [10].

that \easy" instances have succinctly encodable proofs.In Section 4, we extend lower bounds beyond the mostbasic information theoretic argument. In Section 5, wedevelop an algorithm to �nd a proof in time matchingour lower bound. Finally, in Section 6, we extend thesealgorithms to produce the desired answer by reusingportions of the input in the output.2 Proof StructureWe are interested in three problems concerning sets. Inall cases, an instance of the problem is a collection of ksets A1; : : : ; Ak, each presented in sorted order. HenceAs = fAs[1]; : : : ; As[ns]gimplies that As[i] < As[j] for all s and i < j. Some basicterminology that we will use throughout this paper isas follows. An element is one of the As[i]'s; a valueis a member of the universe, which may occur as anelement in several sets. An element As[i] precedes[weakly precedes] As[j] if i < j [i � j]. Successors andweak successors are de�ned similarly; note that theyonly involve elements in the same set.Consider the following set problems :1. Intersection: Compute A1 \ � � � \ Ak.2. Union: Compute A1 [� � � [Ak.3. Di�erence: Compute A1 � (A2 \ � � � \Ak).2Our work explores each of these three problems in thecomparison model. That is, the only way in which analgorithm can use the elements of the sets is to testwhether As[i] is less than, equal to, or greater thanAt[j], for given s; t; i; j. An algorithm also knows thesignature of the instance, that is, the size ns of each setAs. Any algorithm for a set problem must also be ableto construct a proof that its answer is correct. Hence,we focus on algorithms for computing such proofs.This is particularly helpful in the context of unionsand di�erences, where enumerating the elemnts of theanswer can take more time than computing the proof.On the other hand, we will show that this explicitenumeration can be avoided. Concentrating initially onproofs allows us to ignore this problem until we havethe tools to solve it.Formally, an argument is a �nite set of symbolicequalities and inequalities, or comparisons, of the form(As[i] < At[j]) or (As[i] = At[j]) for s; t; i; j � 1. An2The di�erence operation is somewhat unnatural for more thantwo sets. We choose this generalization because di�erence is mostlike intersection.

instance satis�es an argument if all the comparisons inthe argument hold for that instance.The most interesting classes of arguments are thosethat prove that the answer to one of the three problemsis a particular set. Formally, an argument P is called aproof for a particular set problem if all of the instancessatisfying P have the same solution to that problem. Ifthe answer is always the set A of elements, we call P anA-proof.We cannot say much about the structure of proofsuntil we �x the problem to solve. This is done in eachof the following subsections, in which we analyze whatarguments are proofs. We also study the structureof ordered arguments and proofs, i.e., arguments andproofs with an associated order on the comparisons.2.1 Intersection Proofs. An intersection proof mustshow precisely which elements are contained in all sets:Lemma 2.1. An argument P is a B-proof for the inter-section problem precisely if there are elements b1; : : : ; bkfor each b 2 B, where bi is an element of Ai and hasthe same value as b, such that1. for each b 2 B, there is a tree on k vertices, everyedge (i; j) of which satis�es (bi = bj) 2 P ; and2. for consecutive values b; c 2 B [f+1;�1g, thesubargument involving the following elements is a;-proof for that subinstance: from each Ai, takethe elements strictly between bi and ci.Thus, we turn our attention to ;-proofs, that is,how to prove that a collection of sets is disjoint. Thebasic structure in a ;-proof is to \eliminate" elements.Intuitively, if we make the comparison (a < b) where bis the �rst element in its set (called \minimal"), thena and all its predecessors cannot be in the intersectionof all of the sets, because in particular they are not inb's set. Thus, we say that a and its predecessors are\eliminated." Furthermore, the element immediatelysucceeding a is a new \minimal" element that can beused for further elimination.More formally, recursively de�ne an element e to beeliminated (in an argument P) if either1. (a < b) 2 P where e is a weak predecessor of a, andb has no uneliminated predecessors;2. (a < b) 2 P where e is a weak successor of b, anda has no uneliminated successors.If b has no uneliminated predecessors [successors], wecall it minimal [maximal]. Note that a minimal ormaximal element may be eliminated.

Lemma 2.2. An argument is a ;-proof precisely if anentire set is eliminated.An important concept about ordered ;-proofs is thenotion of \low-to-high orderings." First, we need tointroduce some additional terminology. In an orderedargument, we say that the ith comparison eliminates anelement if the subargument with the �rst i comparisonshas this element eliminated; the ith comparison newlyeliminates an element if in addition just the �rst i� 1comparisons do not have this element eliminated. Alow-to-high ordering of an argument is an ordering withthe property that each comparison (As[i] < At[j])newly eliminates elements just in As, unless it entirelyeliminates As (in which case it may newly eliminateelements in all sets).Theorem 2.1. Every ;-proof has a low-to-high order-ing.Although not directly related to our study of �ndingproofs in the minimum amount of time, we mention asimple greedy method3 to exhibit proofs with the fewestpossible number of comparisons. Note this does notmean that the algorithm makes the fewest comparisonspossible to actually discover a ;-proof, and indeed ouralgorithms in Section 5 will search for easier-to-�ndproofs.De�ne the immediate successor of an element As[i]to be As[i+ 1] if it exists, and in�nity otherwise.Method Fewest-Comparisons1. Initialize the eliminator e to the maximum elementAs[1] over all 1 � s � k.2. Until e becomes in�nity:(a) Add the comparison (a < e) to the proof,where the element a is chosen so that itsimmediate successor e0 is maximized, subjectto the constraint that a < e.(b) If e 6= e0, set e to e0.(c) Otherwise, e is present in all sets:i. Remove the just-added comparison (a <e) from the proof.ii. Add the comparisons (es = es+1) to theproof, where es is the occurrence of e inAs, for each 1 � s < k.iii. Reinitialize e to the maximum immediatesuccessor of ei over all 1 � s � k.Theorem 2.2. For any given instance, Method Fewest-Comparisons generates a proof for the intersection prob-lem with the fewest comparisons possible.3We sidestep the technical details of an \algorithm" andnondeterministic choices with the term \method."

2.2 Di�erence Proofs. The di�erence problem A1�(A2 \ � � � \An) is much like the corresponding intersec-tion problem A1 \ A2 \ � � �An with a twist in how theanswer is reported. Speci�cally, whenever we �nd anelement common to all the sets, this element is with-held from the answer; and all other elements of A1 arereported in the answer. This is essentially the oppositeof the intersection problem, though in the context ofproofs the situation is basically the same:Lemma 2.3. An argument P is a B-proof for the dif-ference problem precisely if it is an (A1�B)-proof forthe intersection problem.2.3 Union Proofs. Proofs for the union problemhave a much simpler structure than intersections anddi�erences.Lemma 2.4. An argument P is a proof for an instanceI for the union problem precisely if1. for any value v, if As1 [k1]; : : : ; Asm [km] are ex-actly the occurrences of v, then there is a treeon m vertices, every edge (i; j) of which satis�es(Asi [ki] = Asj [kj]) 2 P ; and2. for any value v occurring in I, if v and its immedi-ate predecessor [successor] v0 in the union of I donot occupy a common set in I, then for some occur-rences e and e0 of v and v0 respectively, (e0 < e) 2 P[(e < e0) 2 P].Note that we can discard any comparisons thatfollow transitively from others, i.e., comparisons that donot come from Lemma 2.4. We call such comparisonsuseless, and call others useful.3 Encoding ProofsThe next few sections are concerned with how to �ndproofs by using as few comparisons as possible. First wemust be precise about the phrase \as few as possible"for an adaptive algorithm. It is too much to hope foran adaptive algorithm to use the smallest amount oftime possible for each particular instance. The classof instances mentioned in the Introduction, in whichall elements of one set fall between two consecutiveelements in another, is a clear illustration. Only twocomparisons are needed for a proof, yet log2 n has beennoted as a lower bound for any algorithm required torun on all of those instances.Thus we require a notion of the worst-case perfor-mance of an adaptive algorithm. Of course, we cannotuse the worst-case running time as our metric, becausethat will only re
ect the case in which the instance is

di�cult to solve. While apparently unstated in the lit-erature, a natural metric is the worst-case value of theratio of running time to di�culty, where \di�culty" isan information theoretic measure of the di�culty of theinstance. We can think of this ratio as a scaled run-ning time, which allows the running time to be large fordi�cult instances, but enforces it to be small for easyinstances. An algorithm that minimizes the worst-casescaled running time is a natural de�nition of an optimaladaptive algorithm. Scaled running time is similar to a\competitive ratio," which measures the e�ectiveness ofthe output of an algorithm (instead of its running time)relative to the optimal.Next we require a de�nition of the di�culty ofan instance. A natural de�nition is the informationtheoretic lower bound on the running time of anycomparison-based algorithm. In the context of thispaper, this lower bound is the length of the shortestbinary encoding of some proof. As the name suggests,this is a lower bound on the running time of any correctalgorithm in the comparison model, for the followingreason. An algorithm can only be sure that it knowsthe correct answer if it knows a proof, or equivalently anencoding of a proof. Because each comparison (over theoperators<, =, and>) only reveals a bit of information,the number of comparisons must be at least the lengthof the shortest binary encoding of a proof. (In fact, thesituation is somewhat more complex than this; see theproof of Corollary 3.1.)The rest of this section analyzes the informationtheoretic lower bound (that is, optimal encodings ofproofs) for each of the three problems. Sections 4and 5 will use this analysis to prove results about scaledrunning time.3.1 Encoding Intersection and Di�erenceProofs. Let us begin with the basic idea for encodingproofs for the intersection and di�erence problems(which are identical by Lemma 2.3). We will concen-trate on the most important case of ;-proofs, whichprove that the intersection is empty. Call an elementcompared if it occurs in one of the proof's comparisons.Because compared elements can be arbitrarily spacedout in each set, it is natural to encode the size of thegaps (i.e., the di�erences in index) between comparedelements, which costs roughly lg g bits for each gap ofsize g, where lg g = log2(1 + g).We must also handle two further details. First, byappropriately switching between specifying gaps fromthe low and high sides, we can avoid encoding the largestgap in each set. Second, we must specify the pairingbetween compared elements that forms the proof.The following encoding �lls in both of these details.

Take a low-to-high ordering of the proof P by Theo-rem 2.1. Let c = (As[i] < At[j]) be the �rst compar-ison. First encode s and t using roughly log2 k bitsand log2(k � 1) bits, respectively (because s 6= t). En-code i [j] by specifying the smallest gap g [h] to analready compared element in As [At], using essentiallylg g [lgh] bits. The total cost of encoding c in this wayis log2 k + log2(k � 1) + lg g + lg h.Encoding all comparisons in this way, we obtain aformula for the length of encoding an entire proof P .We call this length the cost of P and denote it by c(P).We break c(P) into two components: set cost s(P) andgap cost g(P).Let jP j denote the number of comparisons in P .The set cost is the cost of encoding the sets As and Atinvolved in each comparison:s(P) = jP j (log2 k + log2(k � 1)) :(3.1)The gap cost is the cost of encoding all the gaps exceptfor the largest gap in each set. More formally, letgs[0]; : : : ; gs[ps] denote the gaps in As for P , includingthe \end gaps" before the �rst compared element andafter the last compared element in As. Theng(P) = kXs=1 psXi=0 lg gs[i]� max0�i�ps lg gs[i]! :(3.2)Finally, the cost of P is c(P) = s(P) + g(P).4Now we claim that the described encoding is opti-mal: if we �x a language for encoding all ;-proofs, thenon average, a ;-proof P requires at least c(P) bits to beencoded in this language.Theorem 3.1. Given any ;-proof P for an instanceI, there are 2c(P) ;-proofs (one of which is P) forinstances with the same signature (i.e., set sizes) as I.Furthermore, each of the ;-proofs has jP j comparisonsand cost at most c(P), and no two of the ;-proofs applyto a common instance.Proof. First let us give a construction of
 �2g(P)�di�erent ;-proofs based on a proof P . Let gs[i] bede�ned as in the de�nition of g(P). We decrease everygap, except the largest gap in each set, to any amountless than or equal to the original gap in P . Thepairing between elements stays the same; we simplymove the compared elements. To compensate for theseshrinking gaps and to keep the signature the same, the4We ignore the cost of specifying relative to which side each gapis taken, that is, the location of the largest gap in each set. Thiscan be encoded in Pks=1 lg ps bits, which is a negligible lower-order term: more bits are necessary just to encode the instancesignature.

largest gap in each set grows, and hence remains largest.These modi�ed gap sizes induce moved positions of thecompared elements.Because we only decrease gap sizes, except for thelargest gap in each set which does not a�ect g(P), thegap cost of any constructed proof is at most the gapcost of P . Furthermore, the number of comparisonsin the proof and the number of sets does not change,so s(P) does not change. Hence, the total cost of anyconstructed proof is at most c(P).Now for each gs[i], except the largest in each set,we have gs[i] choices for a new gap size. Therefore, thenumber of proofs constructed using this technique iskYs=1 psYi=0 (1 + gs[i]) = max0�i�ps (1 + gs[i]) ;which is 2g(P), i.e., the exponentiation of Equation (3.2).Next, we make some independent choices to improvethe bound by a factor of 2s(P), for a total of 2c(P).Fixing the gap structure, that is, the collection ofcompared elements, the comparisons of a ;-proof can bechosen as follows. Pick a set As such that the smallestso-far uneliminated element As[i] is compared in P (inparticular, As cannot be entirely eliminated yet). Pickanother set At that is not yet entirely eliminated, andlet At[j] be the smallest so-far uncompared elementin At that is compared in P . Then choose the nextcomparison to be (At[j] < As[i]).The number of choices for the comparisons is some-what less than 2s(P), because of the constraints on thesets As and At. However, this re
ects the sloppinessin our de�nition of s(P): indeed, as indicated above,not all sets can be involved in a comparison at a givenpoint, given the gap structure. Hence, the encoding andde�nition of s(P) can be optimized so that the numberof proofs generated is precisely 2s(P). For simplicity ofexposition, we leave s(P) as the overapproximation inEquation (3.1). 2It now makes sense to talk about optimal proofs,that is, proofs with minimum cost. This minimumcost is called the di�culty, D, of the instance. Thisterminology is motivated by the following super�ciallytrivial result:Corollary 3.1. Any algorithm for the intersection ordi�erence problem requires at least D comparisons in theaverage case.Proof. Certainly any correct algorithm must under-stand what the intersection is, and hence the compar-isons it makes must form a proof P for the intersectionproblem. This only proves a lower bound of jP j, or the

smallest possible number of comparisons in a proof forthe intersection problem. It is not necessary that the al-gorithm discover an encoding of P , one bit per compar-ison. Instead, an algorithm may discover a collection ofproofs for the instance. Potentially, this collection couldbe encoded in fewer bits than any individual proof (suchas P). So the only lower bound we could prove from en-coding optimality is c(P) minus the logarithm of thenumber of proofs for the instance.However, the last part of Theorem 3.1 gives us whatwe need: any two of the 2c(P) ;-proofs do not apply toa common instance. So only one of these proofs canbe in the discovered collection. Hence, the algorithmmust truly distinguish between the 2c(P) proofs. Inthe best case, each comparison halves the search space.Therefore, at least c(P) comparisons are needed. 2It turns out that another important measure onproofs is the gap cost g(P). The minimum gap cost,denoted by G, will show up in the scaled running timeof an optimal adaptive algorithm for the intersectionand di�erence problems. Note that it is possible for theoptimal gap cost G to only be realized by nonoptimalproofs, that is, proofs with total cost higher than D.3.2 Encoding Union Proofs. Recall fromLemma 2.4 that all proofs for the union problemare roughly the same: they can only di�er in whattrees are formed by the equality comparisons, and byadding extra (useless) comparisons. Thus, instead ofencoding a particular proof, we can consider encodingall proofs for the given instance. These two encodingproblems are equivalent for the union problem, becausegiven all proofs for an instance we can certainly �nda canonical one, and furthermore from a single proofwe could construct all other proofs for the instance.Hence, in this context we can de�ne the cost of aninstance instead of a proof.The basic idea of encoding the gaps between com-pared elements is the same, although now the comparedelements (from useful comparisons) are in �xed loca-tions as de�ned by Lemma 2.4. Indeed, we will useexactly the same method to encode inequality compar-isons. What di�ers is the way in which we encode equal-ity comparisons. For each value v that occurs in multi-ple sets As1 ; : : : ; Asm , we must encode the set numberss1; : : : ; sm. The locations of v within the sets is alreadyspeci�ed by the gap lengths. The only cost unique tothe union problem is that of specifying the m out of ksets in which v occurs, namely log2 � km� bits.Encoding all comparisons as described, we obtain aformula for the length of encoding an entire proof P , orequivalently an instance I . We call this length the costof I and denote it by c(I). Again, we break c(I) into

two components, set cost s(I) and gap cost g(I), thelatter of which is de�ned exactly as for intersections.Let #(I) denote the number of distinct values inthe union of I , and let #I(i) denote the number ofoccurrences of the ith smallest value in the union ofI . The set cost is the cost of encoding the sets Asand At involved in each inequality comparison, and thecollection of sets involved in each equality comparison.s(I) = #(I)Xi=1 log2� k#I(i)�:(3.3)Again we claim that the described encoding isoptimal: if we �x a language for encoding all instances,then on average, an instance I requires at least c(I) bitsto be encoded in this language.Theorem 3.2. Given any instance I, there are 2c(I)pairwise distinct instances (one of which is I) with thesame signature as I. Furthermore, each of the instanceshas cost at most c(I).The cost of an instance is also called the di�culty,D, of the instance. Unlike intersections, there areno possible tricks with encoding a collection of proofsinstead of a single one in order to save bits, so theinformation theoretic lower bound is immediate:Corollary 3.2. Any algorithm for the union problemrequires at least D comparisons in the average case.4 Further Lower Bounds on Finding ProofsCorollaries 3.1 and 3.2 give an information theoreticlower bound, denoted D, on the running time of anyadaptive algorithm. The scaled running time (runningtime divided by D) must therefore be
(1). For theunion problem, we will in fact be able to �nd analgorithm with scaled running time �(1). For theintersection and di�erence problems, however, we arenot so fortunate. A stronger worst-case lower boundof
(kG=D) holds for the scaled running time of anyadaptive algorithm. (Recall that k denotes the numberof sets in the instance.) In other words, if we optimizescaled running time, then the running time is
(kG) inthe worst case.Stated di�erently, this section provesTheorem 4.1. Given positive integers k, p, and g (p �g), and given an algorithm for �nding ;-proofs for theintersection problem, there is a collection of k setshaving a p-comparison ;-proof with cost O(p log2 k+g),such that every ;-proof has gap cost
(g), and thealgorithm takes
(kg) time on this input. In particular,D = O(p log2 k+g) and G =
(g), so the scaled runningtime is
(kG=D) for this instance.

The basic idea is to construct a parameterized classof instances, and have an adversary pick a bad instancefor the algorithm. Let `1; : : : ; `p be positive integerssumming to g, such that each is either bg=pc or dg=pe.An `i will represent the ceiling of the lg of a gap in the;-proof.First let us describe the parameters for an instance.Pick p + 1 \magic" values m[0] < � � � < m[p]. Pick asequence s0; : : : ; sp of set numbers such that si�1 6= sifor all 1 � i � p. Furthermore, each s 2 f1; : : : ; kg mustoccur at least every 2k elements in the sequence. Oneway to do this is to concatenate several permutations off1; : : : ; kg, chosen randomly such that the �rst valueof one permutation is di�erent from the last valueof the previous permutation. Finally, pick integersjs[1]; : : : ; js[p] such that dlg js[i]e = `i for all i and s,except for jsi�1 [i] which is de�ned to be zero for all i.Then we construct an instance as follows (see Fig-ure 1). Each magic value m[i] occurs in every set exceptAsi ; we will denote the occurrence ofm[i] in As byms[i].In every set As, there are precisely js[i] elements strictlybetween m[i� 1] and m[i]. In particular, Asi�1 has noelements strictly between m[i � 1] and m[i]; indeed, italso has no elements equal to m[i� 1].
A4A3A2A1 � 2`1 � 2`2 � 2`3

m[1] m[2] m[3]m[0]
Figure 1: Illustration of lower-bound construction: Circlesshow magic elements, and crossed-out circles indicate miss-ing magic values. Arrows indicate comparisons that form a;-proof.Next let us describe the ;-proof. Note that thereare no elements before ms0 [1], and hence it is minimal.Suppose in general that msi�1 [i] is minimal. Then wecan use it to eliminate all elements less than m[i] inAsi . But there are no elements between m[i] (inclusive)andm[i+1] (exclusive) in Asi , so this elimination makesmsi [i+1] minimal. This continues by induction until we�nd that \mp[p+ 1]" is minimal, that is, Ap is entirelyeliminated.Lemma 4.1. The described proof has cost O(p log2 k +g). It turns out that this is the only ;-proof for thisinstance, except for two types of possible modi�cations,each of which increases the gap cost. As a consequence,we have the following result:

Lemma 4.2. Every ;-proof for the described instancehas gap cost
(g).Finally, we can show a lower bound on the runningtime of the algorithm. The algorithm is allowed to knowthe magic values m[1]; : : : ;m[p], as well as `1; : : : ; `p,that is, the approximate gap sizes. The algorithmdoes not know the exact gap sizes (the js[i]'s), nor thenumbers si of the sets missing the magic values.Lemma 4.3. The algorithm must determine the si'sand jsi [i� 1]'s, independently of each other.Hence, the algorithm's job reduces to p independentsubjobs, each of the following form: given k sorted sets,each of unknown size whose dlge is `i, �nd the unique setwhose last element is not magic. We need the followingobservation, which to our knowledge has not appearedbefore.Lemma 4.4. Given k sorted sets, each of size n, andan element e, �nding the unique set not containing erequires
(k lgn) comparisons.Therefore, the algorithm takes
(kg) time, provingTheorem 4.1.Our example relies on (k�1)-way repetition of el-ements. A similar argument shows that there existpairwise-disjoint instances in which the scaled runningtime is
(kG=D). This result holds provided k =o(gi= log gi) for each of the gaps gi.5 Finding ProofsThis section presents algorithms for �nding proofs thatmatch the lower bounds presented in previous sections.Speci�cally, for intersections and di�erences, we givean algorithm running in O(kG) time; and for unions,we give an algorithm running in O(D) time. For theintersection problem, this will solve the whole problem:it is easy to extract the intersection A from an A-proof.But for unions and di�erences, there is an additionalproblem of encoding the output. This will be addressedin Section 6.5.1 Finding Intersection and Di�erenceProofs. We begin with an algorithm for �nding;-proofs for the intersection problem, and then gen-eralize it to A-proofs for both problems. Essentially,the algorithm \gallops" in parallel through all the sets,from both the low and high sides. Galloping consistsof doubling the jump in position each iteration, untilit \overshoots" the current eliminator (which willalways be on the low side). Upon overshooting, theother parallel processes pause while the overshooter

does a binary search to �nd the largest eliminatableelement, and chooses the next higher element as thenew eliminator.In more detail, the algorithm works as follows.Algorithm Empty-Intersect� Initialize low-jump(s) and high-jump(s) to 1, anddone(s) to 0, for each s 2 f1; : : : ; kg.� Initialize elim-set to 1 and eliminator to A1[1].� For s ranging through f1; : : : ; kg cyclicly:{ Skip this step if s = elim-set.{ Low step:1. Let p = done(s) + low-jump(s).2. If As[p] � eliminator (we overshot),(a) Binary search in the interval [done(s) +1; p] to �nd the smallest p0 with As[p0] �eliminator.(b) If p0 � 1 > done(s), add (As[p0 � 1] <eliminator) to the proof.(c) Set done(s) to p0 � 1, and low-jump(s) to 1.(d) Set elim-set to s, and eliminator to As[p0].3. Otherwise, double low-jump(s) and set done(s)to p.{ High step:1. Let p = ns + 1� high-jump(s).2. If As[p] < eliminator (we overshot),(a) Binary search in the interval [p; ns] to �ndthe largest p0 with As[p0] < eliminator.(b) If p0 > done(s), add (As[p0] < eliminator) tothe proof.(c) If p0 = ns, stop.(d) Set done(s) to p0, and low-jump(s) to 1.(e) Set elim-set to s, and eliminator to As[p0+1].(f) Reset high-jump(s) to one.3. Otherwise, double high-jump(s).Note that at any point in time, As[i] is eliminatedexactly when i � done(s).Now we claim that the algorithm matches the lowerbound from Section 4, that is, has scaled running timeO(kG=D).Theorem 5.1. Algorithm Empty-Intersect runs inO(kG) time, and makes at most 8kG comparisons.Proof. Suppose we binary search inclusively betweendone(s) + 1 and p = done(s) + low-jump; the highcase is similar. This takes at most t = lg low-jumpcomparisons. But low-jump = 2i where i is the numberof iterations we have already executed on this side of Assince the last overshooting. Hence, t = i+ 1, so we cancharge the binary-search time t to these i > 0 iterations,and no other overshooting iterations will charge to thesame iterations (as we now reset the jump). Thisamortization is the source of one factor of two in thecomparison bound.

Let P be a proof with gap cost G, and let it beordered low-to-high by Theorem 2.1. Let c = (As[i] <At[j]) be the �rst comparison in P . We want toevaluate the number of iterations the algorithm spendsto eliminate As[i]. The low and high parts of thealgorithm run e�ectively in parallel; this causes thesecond factor of two in the comparison bound.There are two main cases. In the �rst, the gap belowAs[i] (size g) is not the largest gap in As. Ignoringthe binary-search cost as described above, gallopinge�ectively occurs in lock-step parallel over the sets.Local to As, the number of comparisons for gallopingto As[i] or beyond is lg g. The other sets have had atmost the same number of iterations, thus adding a factorof k.In the second case the gap below As[i] is the largestin As. If the sum of the other gaps' sizes is at least g,then we can charge the cost (lg g) of running throughthe largest gap to the other gaps in As. These gapswill not be charged to again, because there is only onelargest gap in As that the gap cost does not count (i.e.,for which we must avoid paying directly). If, on theother hand, the other gaps' sizes sum up to some valueh less than g, then the high step �nds As[i] from thehigh side in lg h iterations. But lg h is at most the sumof the lgs of the other gaps in As, so again we can chargeto these gaps. These amortizations add the last factorof two to the comparison bound.Therefore, eliminating As[i] takes lg g amortizedcomparisons, unless g is the largest gap in its set, inwhich case it takes zero amortized comparisons. Byinduction, this holds for all future comparisons in P . 2It may be possible to improve the factor 8 inthe comparison bound down to 4 (plus lower orderterms), using more sophisticated galloping techniques(see e.g. [3]) that �nd an integer x in roughly log2 x +log2 log2 x+log2 log2 log2 x+� � �+1+log�2 x comparisons,instead of the method presented which uses 2 log2 x +O(1) comparisons.Finally, let us turn to the case where the intersectionis not necessarily empty. Recall that a proof for eitherthe intersection or di�erence problem must demonstratethe intersection elements (by making k � 1 equalitycomparisons each), and forms a ;-proof on each of theremaining subinstances between the partition points ofthe intersection elements.Corollary 5.1. A proof for the intersection or di�er-ence problem for k sorted sets can be computed in O(kG)time and at most 8kG comparisons.Proof. This follows from a simple modi�cation to Algo-rithm Empty-Intersect above, namely whenever a com-

parison with the eliminator returns \equal," stop gal-loping in that set and increase the occurrence countof the eliminator. If the occurrence count reaches k,output the eliminator as part of the intersection, addk � 1 appropriate comparisons to the proof, and takethe eliminator's successor as the new eliminator. 2Corollary 5.2. The intersection of k sorted sets canbe computed in O(kG) time and at most 8kG compar-isons.Note that the described algorithms perform just aswell on B-trees or related structures. We only needto start with the leftmost and rightmost leaves, andthen gallop inwards from each side. This can be easilyperformed by traversing the parent and child pointersin a B-tree, with only a constant-factor overhead.5.2 Finding Union Proofs. Essentially, the algo-rithm maintains a priority queue over the sets, wherethe priority of a set is the value of its smallest (unused)element. In the case of an inequality comparison, thealgorithm takes the next-to-smallest element and �ndswhere it �ts in the set containing the smallest element,by galloping through the set. In the case of an equalitycomparison, Delete-All-Min matches and returns multi-ple elements. In both cases, the minimum elements areremoved from consideration and the priority queues areupdated.In more detail, the algorithm works as follows.Algorithm Union-Proof� Initialize the priority queue Q with the smallestelement of every set.� Until all elements have been (conceptually) removed:1. Let M = Delete-All-Min (Q).2. If jM j = 1, in particular M = fAs[i]g:(a) Let m0 = Find-A-Min (Q), that is, one ofthe minima.(b) Gallop in As to �nd where m0 �ts.(c) Add the smallest element As[j] greater thanor equal to m0 to Q.(d) If m0 < As[j], add (m0 < As[j]) to theproof.(e) Remove all elements in As less than m0.3. Otherwise (jM j > 1):(a) For each As[i] 2M :i. Remove As[i] from As.ii. Add As[i+ 1] to Q.(b) Add equality comparisons to form a span-ning tree of the elements of M .Now we claim that the algorithm matches the lowerbound from Section 3.2.

Theorem 5.2. Algorithm Union-Proof runs in O(D)time.6 Computing the AnswerFor both the union and di�erence problems, �nding aproof is not the whole story. The problem asks forthe actual answer, the union or di�erence of the sets,not just an understanding of the answer which is givenby a proof. This understanding does, however, specifythe ranges of elements in the answer. For example, aproof for the union problem encodes the total order ofthe answer. Thus, the output could be encoded in thefollowing form:take the �rst 12 elements from A2take the �rst 3 elements from A5take the next 11 elements from A2skip the �rst element in A3...However, this kind of output encoding is unsatis-factory, because it is not in the same form as the input.In particular, if we want to use the result of this unionoperation as the input to another operation, e.g., an in-tersection, then it must be in a usable form for the latteroperation. It is di�cult to gallop in a set described asabove.Thus we need a better output encoding, one thatmatches the input encoding. We cannot simply usearrays for both input and output, because then writingdown the answer beats the purpose of �nding proofsadaptively (as unions and di�erences are typically verylarge). We turn instead to the most natural alternative:a balanced search tree structure. Speci�cally, we focuson B-trees as a commonly used representative of thisclass. As mentioned in Section 5.1, it is easy to gallopin such structures, paying only a constant factor ofoverhead in time. Furthermore, in text databases, inputsets are often stored as B-trees to begin with.The goal, then, is to build another B-tree represent-ing the union or di�erence of a collection of sets. Weassume that the sets cannot be modi�ed; for example,in a database system, while the input sets for this opera-tion may be stored in memory and thus there are copiesstored on disk, the sets in memory often serve as a cache,whose modi�cation would require expensive reloadingfrom disk. The remaining freedom in encoding is sub-tle: we can use entire subtrees from existing B-treesfor building new B-trees. In other words, constructedB-trees can have child pointers to nodes in other exist-ing B-trees. This gives us a persistent mechanism foraugmenting old trees.This level of
exibility will be enough to allow us toconstruct B-trees representing the answer in the same

time as for computing a proof representing the answer.In the next two subsections, we consider each of thedi�erence and union problems in turn, and show how tobuild a B-tree assuming that we already know a proof.6.1 Computing Di�erences. The situation for thedi�erence problem is fairly simple. A proof gives us theintersection of the sets, and it remains to remove thoseelements from A1 to obtain the result. Thus, we want apersistent B-tree structure that supports deletions. Inother words, given a B-tree T and elements x1; : : : ; xm,we would like to be able to construct a new B-treewith contents T � fx1; : : : ; xmg, without modifying Tbut by reusing nodes of T . This can be done usinga standard persistence trick: perform the standard B-tree multidelete [10], but whenever a node is modi�ed,�rst make a copy of the node and then modify the copyinstead. This proves the following theorem:Theorem 6.1. The di�erence of k sorted sets stored inread-only B-trees can be computed as another B-tree inO(kG) time.6.2 Computing Unions. The situation for unionsis more di�cult. There are two steps. First, we carveeach tree according to the partition de�ned by the proof.Second, we merge the pieces in the appropriate orderto form the union. Both of these operations are donepersistently. As we do not have room for details, wesimply state the results.Lemma 6.1. Given a read-only B-tree T and a col-lection of values a1; : : : ; am at which to cut it, theresulting B-trees T0; T1; : : : ; Tm can be computed inO(Pmi=0 height(Ti)) time.The algorithm for this lemma is a generalization ofprocedure DIVIDE of Aho et al. [1, p. 157] to supportmultiple cut points. The main di�culty is in provingthe time bound.Lemma 6.2. Given a sequence T1; : : : ; Tm of read-onlyB-trees, their concatenation can be computed (as a B-tree) in O(Pmi=1 height(Ti)) time.Again, the algorithm is essentially a generalizationof procedure IMPLANT of Aho et al. [1, p. 153] tosupport more than two trees. This cannot be done byrepeatedly calling IMPLANT, because that may causethe heights of the trees being concatenated to growsigni�cantly. Instead, we use a priority queue to orderthe trees appropriately. This takes only constant extratime per merge as the universe of heights is small.Theorem 6.2. The union of k sets stored as read-onlyB-trees can be computed as another B-tree in O(kG)time.

We note that our adaptive algorithm for the unionproblem has been described for the special case of twosets [4, 10, 11]. Our new results are the generalizationto multiple sets (which can o�er a signi�cant improve-ment in adaptive performance) and the matching lowerbounds.7 ConclusionPerhaps the most interesting contribution of this workis our framework for designing and analyzing adaptivealgorithms under the comparison model. The essentialidea is to perform a worst-case analysis on the scaledrunning time instead of the usual running time. Wede�ned the scaled running time to be the ratio of therunning time to the di�culty of the instance. Thisdi�culty of course depends on the problem, but anatural metric is the information theoretic lower bound.Using this framework, we proved matching upperand lower bounds on �nding intersections, unions, anddi�erences of sorted sets. Speci�cally, for unions, thescaled running time is �(1). For intersections anddi�erences, the scaled running time is �(kG=D), wherek is the number of sets, G is the so-called \gap cost," andD is the di�culty of the problem. In other words, if wetake the worst-case performance relative to the scaledrunning time, then the best possible running time is�(kG).For the union problem, or when the number of setsis constant, this is a truly ideal situation: the runningtime is proportional to the information theoretic lowerbound. For asymptotically many sets, the running timefor intersections and di�erences is away from this boundby a reasonable factor that is somewhat less than k;and furthermore it is impossible to achieve better thanthis factor in the worst case. In general, we expectour algorithms to be practical for evaluating booleanqueries in text retrieval systems. Ongoing work onarbitrary query expressions, involving a mix of unions,intersections, and di�erences of sets, builds upon all theresults outlined here.The theme of this work is the exploitation of nonuni-formity in data. A situation in which we might notexpect an improvement is an instance with k sets eachcontaining n elements chosen uniformly at random from(0; 1). We can show that the expected number of com-parisons in the smallest ;-proof is about n= ln k. As aconsequence, our algorithm takes O(nk log log k= log k)expected comparisons, which is asymptotically better(in terms of k) than previous algorithms which look atall nk of the elements.Acknowledgments. We thank Ming Li for helpfuldiscussions. This work was supported by NSERC.

References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The De-sign and Analysis of Computer Algorithms. Addison-Wesley, 1974.[2] R. Baeza-Yates. E�cient Text Searching. PhD thesis,U. Waterloo, 1989.[3] J. L. Bentley and A. C.-C. Yao. An almost optimalalgorithm for unbounded searching. IPL, 5(3):82{87,Aug. 1976.[4] S. Carlsson, C. Levcopoulos, and O. Petersson. Sub-linear merging and natural mergesort. Algorithmica,9:629{648, 1993.[5] V. Estivill-Castro and D. Wood. A survey of adap-tive sorting algorithms. ACM Computing Surveys,24(4):441{476, Dec. 1992.[6] W. Frakes and R. Baeza-Yates. Information Retrieval.Prentice Hall, 1992.[7] F. K. Hwang and S. Lin. A simple algorithm formerging two linearly-ordered sets. SICOMP, 1(1):31{39, 1980.[8] D. E. Knuth. The Art of Computer Programming, vol.3. Addison-Wesley, 1968.[9] U. Manber and G. Myers. Su�x arrays: A new methodfor on-line string searchs. In Proc. 1st Symp. DiscreteAlgorithms, pp. 319{327, 1990.[10] K. Mehlhorn. Data Structures and Algorithms, vol. 1,pp. 240{241. Springer-Verlag, 1984.[11] A. Mo�at, O. Petersson, and N. C. Wormald. A tree-based Mergesort. Acta Informatica, 35(9):775{793,Aug. 1998.

