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(n log2 n= log log n) lower bound forAlgorithm W in a synchronous fail-stop (norestart) PRAMAlejandro L�opez-Ortiz �Faculty of Computer ScienceUniversity of New BrunswickFredericton, New Brunswick E3B 4A3Canadae-mail: alopezo@unb.caAbstractIn [1] Buss et al. propose an algorithm for the Write-All problemfor a general fail-stop PRAM. In the same paper it is conjecturedthat the algorithm performs work 
(N logN log logN) for the fail-stop with no restart model. In this work it is shown that, using theadversary proposed by Kanellakis and Shvartsman, the amount ofwork performed by such algorithm is 
(n log2 n= log logn).1 On the Model of ComputationThis model assumes a fail-stop without restart synchronous PRAM. Since anasynchronous PRAM has as a particular behaviour synchronicity, the lowerbound in the amount of work performed by this particular algorithm appliesas well to an asynchronous model.�Work done while at Department of Computer Science, University of Waterloo, Water-loo, Ontario, Canada. 1



2 Sketch of the AlgorithmThe algorithm treats cells 1 : : : n as arranged in a heap. Processors are as-signed to the leaves of the heap which write a 1 and proceed further up thetree. An internal node in the tree may only be written when both childrenhave been initialized to 1. A processor present in an internal node where notboth of the children have been initialized descends down the to the uninitial-ized child or to the one corresponding to its PID if both are uninitialized.3 Description of the AdversaryThe adversary being considered fail-stops 1= logn-th processors reaching theuninitialized leaves.For the purposes of clarity of the argument, we assume that the adversaryfails processors in the leftmost leaves of the tree, but this is irrelevant to thecorrectness of the algorithm.That is to say, in the �rst round n= logn processes are made to fail, inthe second round out of the n(1 � 1= logn) surviving processors 1= logn ofthem are made to fail, namely those in the n= log2 n leftmost leaves of thesubtree of undone leaves. (The de�nition of a round is made formal in thenext section)The adversary withdraws when the number of processors to be failed isbelow one.4 Work PerformedTo compute the amount of work performed we look at steps within eachround namely,1. Processors are at the leaves, those not failed by the adversary write 1.2. Functional processors move up the tree, writing ones until they reacha node for which not both children are initialized.3. Processors go down the tree until they reach a leaf. at which point weare back in step 1. 2



Let us compute the amount of work performed in step 3 �rst.De�nition 1 A k-round no-failures subtree is a perfect subtree of the heap,such that the leaves of the subtree are leaves of the heap and no processassigned to the subtree in round k was killed.De�nition 2 A maximal k-round no-failures subtree is the a k-round no-failures subtree which is not contained in any other k-round no-failures sub-tree.It follows from the de�nition of AlgorithmW and the fact that the PRAMis synchronous that all processors belonging to a (maximal) 1st-round no-failures subtree reach the end of step 2 at the same time-step.Furthermore, the time-step at which they �nish step 2 is a constant timesthe height of the subtree. Which means that shallower subtrees near thefailed region �nish earlier than bigger subtrees at the rightmost part of theheap.As an example, after the �rst round of failures there is exactly one subtreefor each of the heights logn�1; log n�2; : : : ; logn�log logn. After the secondround the tree heights are logn� log logn�1; logn� log logn�2; : : : ; logn�2 log logn.At the end of step 2 processors start trickling down the un�nished failedsubtree as indicated in step 3. Those processors which �nished earlier (fromshallow subtrees) will reach the leaves of the un�nished subtree before pro-cessors assigned to deeper trees. Processors which reach a leaf in step 3 andare not failed in step one will proceed upwards the tree in step two beforeother processors �nish step three of the previous round. These late proces-sors will not reach the leaves since they will encounter memory cells alreadyinitialized by the earlier processors. At this point late processors considerstep 3 to be �nished, skip step 1 of the next round and "catch up" withearlier processors in step 2.Notice that in each round all processors spend the same amount of time(logn � k log logn, for the k-th round) in step 3, although they may be atdi�erent times in such step.This is due to the fact that processors take the same time (within aconstant factor) to go downwards in step 3 as it takes to go upwards in step2. (This may not be true for some variants of the algorithm, in which case3



the argument is modi�ed to be: Processors spend as much time in step 2 andstep 3 as the leftmost, earlier processors, do in step 2 alone).Notice that the maximum delay is O(log logn). Furthermore the earlierprocessors spend time O(logn� k log logn) in step 3. Implying that all lateprocessors will catch up with the earlier processors before the end of step 2in any given round.The �nal point that needs to be made is: How many processors arefunctional at round k?Since at each step the adversary fails 1= logn of them we have the recur-rence FP (1) = n (1)FP (k) = FP (k � 1)� (1= logn)FP (k � 1) (2)= logn� 1logn FP (k � 1): (3)With solution FP (k) = n logn� 1logn !k :Therefore the amount of work performed is, at least,log nlog log nXk=1 n logn� 1logn !k| {z }number of processors in round k (logn� k log logn)| {z }work in step 2 by leftmost processorsThe closed form of this summation is not particularly enlightening. In-stead we show that such summation is �(n log2 n= log logn)The key point is to notice that � log n�1log n � log nlog log n converges to 1 as n goes toin�nity.From this is an exercise of arithmetic to show that1=2 �  logn� 1logn !k � 1for n > 4 and 1 � k � log nlog log n . Which implies,4



n=2(logn�k log logn) � n logn� 1logn !k (logn�k log logn) � n(logn�k log logn)Therefore it follows that,lognlog log nXk=1 n logn� 1logn !k (logn� k log logn) 2 �(n=2 log2 nlog logn + n lognlog logn)As required.Theorem 1 Algorithm W performs 
(n log2 n= log logn) work.Proof. Follows trivially. 2It is worth mentioning that the failure factor 1= logn is apparently opti-mal.
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