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Abstract. In this paper we study the performance of list update algo-
rithms under arbitrary distributions that exhibit strict locality of refer-
ence and prove that MTF is the best list update algorithm under any
such distribution. Furthermore, we study the working set property of
online list update algorithms. The working set property indicates the
good performance of an online algorithm on sequences with locality of
reference. We show that no list update algorithm has the working set
property. Nevertheless, we can distinguish among list update algorithms
by comparing their performance in terms of the working set bound. We
prove bounds for several well known list update algorithms and conclude
that MTF attains the best performance in this context as well.

1 Introduction

The list update problem is one of the most studied online problems. It was first
studied by McCabe [26] more than 45 years ago in the context of maintaining
a sequential file. Since then, various list update algorithms have been proposed
(e.g., [14,30,20,9, 32,23, 34,29, 5,2]) and different aspects of the problem have
studied (e.g., [21, 28,25, 6,3, 18]). Despite this, there still are various interesting
aspects of the problem not yet explored. In this paper we aim to provide new
insights for the list update problem by studying the performance of list update
algorithms under probabilistic and deterministic inputs with locality of reference.

Consider an unsorted list L of ¢ items. An online list update algorithm A
is a strategy for reordering the elements of L after each access. The input to
the algorithm is an access sequence X = (x1, T2, ..., ;) that must be served in
an online manner. To serve a request to an item z;, A linearly searches the list
until it finds x;. If =; is the i-th item in the list, A incurs a cost 4 to access ;.
Immediately after this access, A can move z; to any position closer to the front
of the list at no extra cost. This is called a free exchange. Also A can exchange
any two consecutive items at a cost of 1. These are called paid exchanges. An
efficient algorithm can thus use free and paid exchanges to minimize the overall
cost of serving a sequence.

Three well-known deterministic online algorithms for list update are Move-
To-Front (MTF), Transpose, and Frequency-Count (FC). MTF moves the re-
quested item to the front of the list whereas Transpose exchanges the requested



item with the item that immediately precedes it. FC maintains an access count
for each item ensuring that the list always contains items in non-increasing or-
der of frequency of access. Timestamp (TS) is an efficient list update algorithm
introduced by Albers [2]. After accessing an item a, T'S inserts a in front of the
first item b that is before a in the list and was requested at most once since the
last request for a. If there is no such item b, or if this is the first access to a, TS
does not reorganize the list.

In the early stages, list update algorithms were analyzed using the distribu-
tional or average-case model (e.g. [26,14,30,9,20]). In this model, the request
sequences are generated according to a probability distribution and the efficiency
of an algorithm is related to the expected cost it incurs. According to this model,
FC is the best online list update algorithm, followed by Transpose and TS, and
finally MTF. In contrast, in some real-life applications of list update, e.g., data
compression [10,13,17], MTF has the best performance among these algorithms,
and Transpose and FC have much worse performance than MTF and TS. This
inconsistency can be explained by the fact that sequences for list update usually
exhibit locality of reference [21,11] and online list update algorithms try to take
advantage of this property [21,29]. A sequence has high locality of reference if a
recently accessed item is more likely to be accessed in the near future. Summa-
rizing experimental results on list update, Albers and Lauer [3] conclude that
the performance and ranking of list update algorithms depend on the amount of
locality in the input. In addition, it has been commonly assumed, based on intu-
ition and experimental evidence, that MTF is the best algorithm on sequences
with high locality of reference, e.g., Hester and Hirschberg [21] claim: “move-
to-front performs best when the list has a high degree of locality” (see also [4],
page 327). Although this was observed more than twenty years ago [21], only
recently some theoretical models for list update with locality of reference have
been proposed [6,3,16]. These models show the superiority of MTF to other
online list update algorithms on sequences with high locality of reference.

However, to the best of our knowledge, no probabilistic model for list up-
date with locality of reference has been proposed so far. We introduce such a
model by refining the distributional analysis using the diffuse adversary model
of Koutsoupias and Papadimitriou [24]. More specifically, we restrict the “ac-
ceptable” probability distributions to those with high locality of reference. So
far, the diffuse adversary model has only been applied to paging algorithms [24,
8]. Under this model we prove the superiority of MTF and the non-optimality
of static list update algorithms. Furthermore we show that the performance of
MTF improves as the amount of locality increases.

We also study the working set property [33] of list update algorithms. The
working set property is based on the idea that an operation on a recently accessed
item should take less time. The working set property of most other self-organizing
data structures has been studied before [33,12,22]. We show that although no
list update algorithm has the working set property, their performance can be
expressed in terms of the working set bound. Our analysis shows that MTF
is the best list update algorithm in this setting. Considering the connection



between the working set property and locality, this result confirms (yet again)
that M'TF is the best online list update algorithm on sequences with high locality
of reference.

2 List Update with Locality of Reference

In this section we refine the distributional model for analysis of list update
algorithms by incorporating locality. First we provide more details about the
distributional model and review the known results in this model. Let L =
(a1, as,...,ap) be the list of items and p = (p1,pa, ..., pe) be a vector of positive
probabilities with >, p; = 1. At each step, item q; is requested with probabil-
ity p;. For a list update algorithm A, let E4(p) be the asymptotic expected cost
of A in serving a single request in a request sequence generated by p. Tradition-
ally, the performance of online list update algorithms was compared to that of
the optimal static ordering, SOPT. SOPT knows the probability distribution and
initially rearranges the items in non-increasing order of their probabilities and
does not change their order afterwards. By the strong law of large numbers we
have Erc(p) = Esopr(p) for any p [30]. For MTF, Chung et al. [15] showed that
for any probability distribution p, Exrr(p) < (7/2)Esopr(p) and Gonnet et al.
[19] showed that this bound is tight. Transpose outperforms MTF in this model:
Rivest [30] proved that for any distribution p, we have Erranspose(p) < Enitr(p).
For TS, we have Eyrr(p) < (7/2)Esopr(p) for any probability distribution p
[4].

Therefore, FC is the best online list update algorithm in this model, followed
by Transpose and TS, and finally MTF. As stated before, this is not consistent
with experimental results and one apparent reason for this is the fact that the
model does not incorporate locality of reference assumptions. In this section we
analyze list update algorithms under probability distributions with locality of
reference and show that MTF outperforms other algorithms under this model.
Our model is based on the diffuse adversary model, in which we restrict the set
of “acceptable” probability distributions.

Definition 1. [24] Let A be an online algorithm for a minimization problem and
let A be a class of distributions over the input sequences. Then A is c-competitive
against A, if there exists a constant b, such that

E,ecplA(0)] < ¢ E;ep|OPT(0)] + b,

for every distribution D € A, where A(c) denotes the cost of A on the input
sequence o and E[] denotes the expectation under D.

We model locality of reference by considering a class A of sequences that
exhibit locality of reference. Let L = (a1, aq,...,as) be the list of items and
o be a sequence of requests to the items. We define p(a;, o), the probability of
accessing item a; after the sequence o, in a way that reflects locality of reference.
The idea is to favour recently accessed items. Let the age of an item a; in a



sequence o, denoted by age(a;, o), be j if a; is the j-th most recently accessed
item in o. To handle the case that an item is not requested in o, we assume that
all sequences are prepended by the sequence ay, ap_1, ..., a;. For example, for the
empty sequence £ we have age(a;, ) = i. Observe that the items have unique ages
between 1 and ¢, i.e., the set of ages at each time is exactly {1,2,...,¢}. Now we
define probability of accessing a; after o in terms of the age of a; in o: p(a;, o) =
f(p(a;, o)), where the non-increasing function f is a probability distribution on
{1,2,...,¢}. Observe that in contrast to the traditional probabilistic models
for list update, we consider a dynamic probability distribution on items. By
requiring f to be non-increasing we ensure that more recently accessed items are
more probable, thus reflecting the locality of reference assumption. Furthermore,
we can measure the amount of locality of such probability distributions. Define a
random variable X ; such that Xy = = with probability f(x). The expected value
of Xy, E[Xy] = Zle i- f(7) can be considered as a measure for the amount of
non-locality of reference. if E[X] is small then we know that the probability of
requesting most recently accessed items is much higher than accessing the rest
of items. We also require f(i) > 0 for 1 < ¢ < £ to ensure that all items can be
accessed. The following examples show different possible amounts of locality.

1. Consider the probability distribution fi(i¢) = 1/¢ for 1 < i < {. Intuitively, fi
does not have much locality and we have E[X¢ ] =>",,.,(i/() = ({+1)/2,
which is a relatively large number. Actually, this is the largest F[Xf] for non-
increasing probability distributions on {1,2,...,¢}.

2. Consider the probability distribution fy for which fo(i + 1) = f2(4)/2, i.e.,
the probability of accessing an item is halved as its age is increased by one
unit. It can be proved that E[Xy,] < 2, so fy has constant expected value
and high amount of locality.

3. Let f3 be the Zipfian distribution f3(i) = a/i, i.e., probability of accessing
an item is inversely proportional to its age. We have

14

14
Y hi=1=> Y=1=aH,=1=a=1/H,,
=1 i t
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Thus the expected value of f3 is between the expected values of f; and fs.

We computed the empirical probability of accessing items in terms of their
ages in the files of Calgary Corpus [35] and Canterbury Corpus [1], which are
the standard benchmarks for data compression. As stated before list update
algorithms are widely used in data compression. These two corpora include
files of different types such as English text (technical writing, poetry, fiction
and non-fiction books), source code in various programming languages, picture
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Fig. 1. Prob. of accessing items in terms of their age in file bib before and after BWT.
The prob. of accessing the youngest age after BWT (0.67) is off-scale and thus not
shown.

files, object code, and spreadsheets. We computed the empirical probabilities for
files before and after Burrows- Wheeler Transform (BWT). The Burrows-Wheeler
transform (BWT) rearranges a string of symbols to one of its permutations that
is believed to have more locality of reference. Then list update algorithms are
used to encode this transform. The well known compression program bzip2 [31]
is based on the BWT. The results for file bib in Calgary Corpus are shown in
Figure 1. The results for other files are very similar and can be found in the
appendix. Observe from Figure 1 that after BWT the probability distribution f
is non-increasing and has a very low E[X/], i.e., high locality, while before BWT
the function is increasing at some intervals and has a much higher expected
value. This confirms our intuition that BWT increases the amount of locality.
Observe that the probability of accessing a particular item changes over time
in our model. Thus E 4(p) could be different at different times and we need to
incorporate time in the definition. We define E%(f) to be the expected cost of
A in serving the t-th request in a sequence generated under f. It is not obvious
whether E% (f) converges as t — co. We define E4(f) to be lim¢_,o E%(f) if the
corresponding limit exists. Observe that MTF maintains the items in decreasing
order of their ages. Thus the cost of MTF on an item is exactly the age of that
item and we have E} 1 (f) = E[X/] for every t. Therefore Enirr(f) = E[X/]. If
we have high locality of reference, then E[X[] is small and the expected cost of



MTF will be low. Hence, MTF has good performance on sequences with locality
of reference as expected. Good performance of MTF in this model is due to the
fact that MTF tries to take advantage of locality by moving younger items to
the front of its list. On the other hand, static strategies do not adapt to locality
and so we expect them not to be optimal in the new model even if they know
the distribution. This intuition is formalized in the following Lemma.

Lemma 1. Let A be a static list update algorithm. Then there exists a mon-
increasing function f such that EA(f) > Entr(f), even if A knows f.

Proof. Define the function f as follows: f(1) = 0.9 and f(i) = 0.1/(I — 1) for
2 <4 < /. We have

A can rearrange the list (a1, as, ..., a¢) at the beginning and then cannot change
the order of the items. Since a; is the youngest item at the beginning it seems
reasonable for A to leave a; at the front of the list. So assume that this is the
case. We have EY(f) = £/20 + 1 and so A has the same expected cost as MTF
on the first request. In order to compute the asymptotic performance of A, we
define a two-state Markov chain as follows. We are in state A if we have a request
to a1 and we are in state B otherwise. If we are at state A, the probability of
staying at A is 0.9 and the probability of going to B is 0.1. If we are at B, the
probability of going to A is 0.1/(¢ — 1) and the probability of staying at B is
1—-0.1/(¢ —1). Let [g1 g2] be the stationary distribution of the Markov chain.

‘We have
q2

0.1

-1 -1

Furthermore, ¢ + ¢ = 1 and so ¢; = 1/¢ and g2 = 1 — 1/¢. Therefore asymp-
totically we have

q1 X (—01) + g2 X

:0:>q1:

2434 +0 (41

Ba(f) = (1/0) x 1+ (1= 1/0) x ——— .

Thus the asymptotic expected cost of A is 10 times more than that of MTF.

Thus MTF outperforms any static strategy. Actually, we can show that the
performance of a static list update algorithm is the same for any function f.

Theorem 1. Let A be a static list update algorithm and f be an arbitrary prob-
ability distribution on {1,2,...,£}. We have E4(f) = 134-?1

Proof. We define a Markov chain based on f. We sort items by their age and
consider a single state for any permutation of (a1, as, ..., ag). So originally we are
at state (a1, ag, ..., ar). From this state we move to state (az,a1,as,...,ar) with
probability f(2), to state (a3, a1, as,aq,...,ap) with probability f(3),...,and to
state (ag,a1,...,a¢—1) with probability f(¢). The Markov chain has ! states
and we remain in the same state with probability f(1). Let M be the transition



matrix of the Markov chain and [g; ¢2 ... gp] be its stationary distribution.
Since we have f(i) > 0 for 1 < i < £, this Markov chain is irreducible and aperi-
odic. Consider an arbitrary state (a;,, as,,-..,a;,). We move to this state from
(Giy, @iy, - - -, a4,) with probability f(2), from (as,, @iy, @iy, - - - ,a;,) With proba-
bility f(3),..., and from (as,,ai,...,ai,,a;,) with probability f(I). Thus the
column corresponding to this state in M sums to f(1) + f(2) +--- + f(¢) =
Therefore M is doubly stochastic. It is known (e.g., [27], page 157) that the
stationary distribution of doubly stochastic matrices is the uniform distribution.
Therefore we have ¢; = & for 1 < j < {!. Let (aj,,a;,,...,a;,) be the static
list maintained by A. aj, appears as the i-th item in exactly (¢ — 1)! states
of the Markov chain, for 1 < i < /. If we are in such a state, the probabil-
ity of accessing a;, is f(i). Thus the asymptotic probability of accessing a;, is
Ele(ﬁ— - % @) = %(f(l) + f(2)+---+ f(¢)) = 1/¢. The cost of A on a;,
is k and the asymptotic expected cost of A is Zf;:l kjt=(L+1)/2.

This theorem shows that the performance of static strategies does not im-
prove by increasing the amount of locality. For instance, for the probability
distribution fo defined above we have E4(f2) = (¢ + 1)/2 while Enrr(f2) is a
constant smaller than 2. Next we prove that MTF has the best possible perfor-
mance and cannot be beaten by any other strategy.

Lemma 2. Let A be a list update algorithm, t > 0, and f be a non-increasing
probability distribution. We have Elirp(f) < EY(f).

Proof. Let o be an arbitrary sequence of length ¢t — 1 and (aq,as,...,as) be the
list maintained by MTF after serving o. We know that Prla;|o] > Pr[a;4+1]0],
i.e., after requesting o the probability of requesting a; is at least the probability
of requesting a;y1, for 1 < ¢ < £ — 1. Therefore we have

¢ ¢
Z Prla;lo] x MTF (o - a;)) Z Prla;lo] x A (o0 ® a;)),
=1 i=1

where A'(0 @ a;) denotes the cost incurred by A in serving the ¢-th request
of ¢ ® a;, i.e., the sequence obtained by appending a; to o. Observe that we
have MTF!(0 ® a;) = i. Since this holds for any sequence o of length t — 1, we
conclude that Ffrp(f) < EY(f).

3 Working Set Property for List Update

In this section we study the performance of list update algorithms in terms
of the working set bound. Consider the access sequence X = (1,Z2,"* , Tm).
The working set number of an item z at time 4, ¢;(z), is the number of distinct
items that are requested since the last request to z (including z) or the number
of distinct items that are requested so far if this is the first access to z. The
working set bound of X is defined as WS(X) = > log (t;(z;) + 1).! If the

! In this paper all logarithms are base 2.



total cost of X in a data structure is O(W.S(X)) (or equivalently, the amortized
cost of x; is O(log (¢;(x;) + 1)) we say that data structure has the working set
property. Observe that we have ¢;(x;) = age(z122...x;—1,x;) and so there is a
close relationship between the working set bound and the probabilistic model
for locality in the previous section.

As stated before, list update algorithms are used in data compression. As
noted in [17], the cost model is different in this case: the cost of encoding an
item in position i is O(log). It is not hard to see that under this logarithmic
cost model MTF has the working set property as ¢;(x;) is the position of z; in
the list maintained by MTF at time ¢. In contrast, the following lemma shows
that no online list update algorithm in the standard cost model has the working
set property.

Lemma 3. Let A be an online list update algorithm. There is an access sequence

X such that A(X) > m -WS(X).

Proof. Consider an access sequence X of length m obtained by requesting the
item that is in the last position of list maintained by A at each time. We have
A(X) = m-£. Also we have t;(x;) < £ for 1 < i < m, because we do not have more

than /¢ distinct items. Therefore WS(X) < m-log (¢ + 1), and A(X) > %'E.

However we can still rank list update algorithms by comparing how far their
performance is from the working set bound. First we prove a general upper
bound.

Lemma 4. Let A be an online list update algorithm. For any access sequence
X we have A(X) < {-WS(X).

Proof. Consider an arbitrary sequence X of length m. Since the maximum cost
that A incurs on a request is ¢, we have A(X) < m - £. At the same time clearly
ti(z;) > 1 for any i. Thus we have WS(X) > m -log2 = m which implies
AX) < - WS(X).

The following lemma shows that MTF achieves the best possible performance
in terms of the working set bound.

Lemma 5. For any access sequence X we have MTF(X) < WS(X).

L.
Tog ((+1)

Proof. Consider an arbitrary access sequence X of length m. We have

MTF(X) iy i)

WS(X) Y7, log (ti(xi) + 1)
where 1 < t;(x;) < £. Since the terms in the numerator grow exponentially
compared to terms in the denominator, this expression takes its maximum when
we have t;(x;) = £ for 1 < ¢ < m. Therefore
MTF(X) < Sl m-{ l

WS(X) ~ S dog(f+1) m-log(f+1) log(f+1)’

which implies MTF(X) < 1y - WS(X).




Other list update algorithms do not behave optimally in terms of the working
set bound.

Theorem 2. In the worst case we have
a) Transpose(X) > ﬁ -WS(X).
b) FC(X) > &2 - WS(X).

¢) TS(X) > iy - WS(X)

Proof. Due to space constraints, we only provide the proof of part (c) here.
The proofs of the other two parts can be found in the appendix. Let £y =
(a1,as,...,ap) be the initial list and k be an arbitrary integer. Consider the
access sequence X obtained by repeating k times the block a%ail ...a%. Let B
be such a block in X. Each item a; is accessed twice in B. T'S does not move a;
after its first access in B, because all other items have been accessed twice since
the last access to a;. After the second access, TS moves the item to the front
of the list. Therefore each access is to the last item of the list and TS incurs a
cost of £ on each access. We have TS(X) = 2k - 2. Next we compute WS (X).
The first and second access to a; in block B contributes log (£ + 1) and log2
to WS(X), respectively. Considering the special case of the first block, we have

WS(X)=1(+ Zfizl logi+ (k—1)-¢(log (¢ + 1) + log 2). Therefore

TS(X) 2k - (2
WS(X) 143" logi+ (k—1)-L(log (£ +1) + 1)

which becomes arbitrarily close to m as k grows.

We can also analyze the performance of randomized list update algorithms
in terms of the working set bound by considering their expected cost. Algorithm
Bit, introduced by Reingold et al. [29], is a simple randomized algorithm that
achieves a competitive ratio 1.75, thus beating any deterministic algorithm [11].
Bit allocates a bit b(a;) for each item a; and initializes these bits uniformly and
independently at random. Upon an access to a;, it first complements b(a;), then
if b(a;) = 0 it moves a; to the front, otherwise it does nothing. The following
lemma shows that although randomization (for Bit) can improve the competitive
ratio it cannot lead to the working set property. In fact the performance of Bit
in terms of the working set bound is worse than MTF. This is inconsistent with
competitive analysis but consistent with experimental results [7].

Lemma 6. In the worst case E(Bit(X)) > WS(X).

3041 .
2(log (€+1)+1)
Proof. Let Lo = (a1, a2, ...,as) be the initial list and k& be an arbitrary integer.
Consider the access sequence X = {a2a? ,...a?}*. Let z; and ;41 be two
consecutive accesses to a;. After two consecutive accesses to each item, a; will
have been moved to the front of the list with probability 1. Therefore a; is in
the last position of the list maintained by Bit at the time of request x; and Bit
incurs cost £ on this request. After this request, Bit moves a; to the front of the



list if and only if b(a;) is initialized to 1. Since b(a;) is initialized uniformly and
independently at random, this will happen with probability 1/2. Therefore the
expected cost of Bit on x;41 is %(ﬂ + 1) and the expected cost of Bit on X is

k- 0(¢+ 21L). We have WS(X) = ¢+ Ef;l logi+ (k—1) - £(og (£ +1) + 1).
Therefore
E(Bit(X)) k- 00+ 42
WS(X) ¢+ logi+ (k—1)-(log (£ +1)+ 1)

which becomes arbitrary close to % as k grows.

Table 1. Working set bounds of files in Canterbury Corpus (normalized by their sizes) before and
after Burrows-Wheeler Transform

File Category Size(bytes)[l |[WS/n|WS/n (BWT)
alice29.txt |English text 152089 74 3.9 2.0
asyoulik.txt [Shakespeare play [125179 68 (3.6 1.8
cp.html HTML source 24603 86 (3.8 1.8
fields.c C source 11150 90 (3.5 1.6
grammar.lsp|LISP source 3721 76 (3.3 1.7

kennedy.xlIs |Excel Spreadsheet |[1029744 256(2.6 1.5
Icet10.txt Technical writing |426754 84 |3.4 1.6

plrabn12.txt|Poetry 481861 81 (3.5 1.8
ptt5 CCITT test set 513216 159(1.4 1.1
sum SPARC Executable|38240 255(3.1 1.7
xargs.1 GNU manual page (4227 74 3.6 1.9

4 Experimental Results

In this section we compute the working set bound for some real life inputs for
list update and study the performance of well known list update algorithms in
terms of the working set bound. We computed the working set of files of Calgary
and Canterbury corpora before and after BWT. Table 1 shows the results for
the Canterbury Corpus. The results for the Calgary Corpus are similar and are
shown in Table 3 in the appendix. From these results we conclude that the
working set bound for BWT of each file is much less than the working set bound
of the original file. This reflects the intuition that BWT increases the amount of
locality of reference in a sequence.

We also computed the performance of list update algorithms on the BWT
of these files. Table 2 shows the corresponding costs normalized by the working
set bound of each file. Comparing the experimental results with the theoretical
bounds we proved in Section 3 shows that the actual performance of the algo-
rithms is much better than the theoretical worst case bounds. In particular, the
worst case lower bound of logﬁ seems pessimistic. Furthermore, MTF and T'S
have close performance and outperform FC and TR. This is consistent with our
theoretical results.



Table 2. Performance of list update algorithm (normalized by the working set bound) on files of
Canterbury and Calgary Corpora after Burrows-Wheeler Transform

File [[MTF[TS [FC [TR [[oiee
bib _ |[2.18 [2.38[9.22 [3.78|[12.74

File MTE|TS [FC TR |lrozpey bookl |[1.98 |1.92]5.28 |2.16|[12.86
T [e]0) . . . . .
alice20.txt ||1.98 [2.04/5.80 [2.67 ||1L.88 e

asyoulik.txt ||2.10 |2.14]6.24 [2.79 [[11.13 soo 1566 15.35]6.07 15.74]l15.26
cp.html 2.96 [3.31]8.20 [6.00 ||13.23 Yo looalsar il o
fields.c 3.66 [3.43]8.96 [9.23 ||13.83 nows e alish : :
obj1_ ||4.86 |5.04|7.45 |8.74|[18.26
grammar.lsp||3.04 [3.91]6.42 |10.57|{12.13 b2 307 13.4019.60 15.88][18.26
kennedy.xIs |[3.90 |3.79|5.55 |5.15 |[22.15 o0 I e IEE A
Tcet10.txt  |[1.93 |1.97|6.41 |2.48 |[13.10 pr:2 ST |
plrabnl2.txt|[1.09 |1.96]5.26 |2.21 |[12.74 pap : il : :

o R e S DR pic ||1.70 [1.71[2.18 [2.04[21.38
sum 3.51 [4.02]10.00[8.37 |[18.26 proge 2.77 |3.22|8.90 |6.35}}14.07
xargs.1 3.04 [3.64]6.38 [0.01 [|11.88 progl 1203 |2.38|7.66 |4.04}}13.47

progp |[2.16 |2.72(9.03 [5.38|(13.71
trans |{2.13 [2.75|13.12|5.76||14.90

5 Conclusions

We introduced a probabilistic model for list update with locality of reference.
This model is based on the diffuse adversary model and considers a dynamic
probability distribution for accessing the items. We proved that MTF outper-
forms other algorithms in this model and its performance improves as the locality
increases. Analyzing other list update algorithms under this model remains open.
Furthermore, we analyzed several online list update algorithms in terms of the
working set bound. We proved that MTF achieves the optimal performance in
terms of the working set bound, while several other algorithms do not. Thus,
both these models confirms the well known belief that MTF is the best list
update algorithm on sequences with high locality of reference. Our experiments
showed that the working set bound of files decreases after applying BWT. This
is consistent with our intuition that BWT increases locality of reference.
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A  Proofs

Theorem 2

In the worst case we have
a) Transpose(X) > —— - WS(X).

= log3
b) FC(X) > &1 . WS(X).
C) TS(X) Z m . WS(X)

Proof. The proof of part (c) is provided in the paper. Here we provide the proofs
of the other two parts.

Proof of part (a) Let £y, = (a1,a9,...,as) be the initial list. Consider a
sequence X of length m obtained by several repetitions of the pattern agap—_1.
Then Transpose(X) = m-{. Observe that ¢1(x1) = 1 and ¢;(z;) =2 for 2 < ¢ <
m. Therefore WS(X)=1+>",log(2+1) =1+ (m—1)-log3, and

Transpose(X) m- L m- L ¢

WS(X) _1+(m—1)-log3_m-log3:log3'

Proof of part (b) Let £y = (a1, az,...,ar) be the initial list and k be an arbi-
trary integer. Consider the following access sequence: X = a’fag _1a§_2 e a? an

On serving X, FC does not change the order of items in its list and incurs cost

£

S (k—i+1)xi=

=1

kll+1) (1= P)
2 3

We have WS(X) = (k—1)-log2+(k—2)-log2+- - ~+(k:f€)~log2+25221 logi =
k€ — (£ +1)/2 4+ "2 logi. Therefore

FC(X)  k(L+1)/2+1(1—2)/3
WS(X) kb —0(t+1)/2+ 3" ogi’

Since k can be selected to be arbitrary larger than ¢, we get

FC(X) _ k(L+1)/2  L+1
WS(X)~ ke 2

B Empirical Probability of Access

In this section we provide the graphs for empirical probability of accessing items
in terms of their ages in the files of Calgary and Canterbury Corpora. Figures 2—
10 show the corresponding graphs for bookl, book2, news, paperl, paper2,
progc, progl, progp, and trans, respectively.
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Fig. 2. Prob. of accessing items in terms of their age in file book1 before and after
BWT. For bwt-bookl, f(1) =0.49 and f(2) = 0.15 are off-scale and thus not shown.

C Experimental Results on Files of Calgary Corpus

Table 3 shows the working set bound of files in Calgary Corpus before and after
BWT. These results are similar to the experimental results presented in Section
4 for files of Canterbury Corpus.
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Fig. 3. Prob. of accessing items in terms of their age in file book2 before and after
BWT. For bwt-book2, f(1) = 0.60 and f(2) = 0.12 are off-scale and thus not shown.
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Fig. 4. Prob. of accessing items in terms of their age in file news before and after
BWT. For bwt-news, f(1) = 0.57 and f(2) = 0.11 are off-scale and thus not shown.
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Fig. 5. Prob. of accessing items in terms of their age in file paperl before and after
BWT. For bwt-paperl, f(1) = 0.58 and f(2) = 0.11 are off-scale and thus not shown.
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Fig. 6. Prob. of accessing items in terms of their age in file paper2 before and after
BWT. For bwt-paper2, f(1) = 0.55 and f(2) = 0.12 are off-scale and thus not shown.
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Fig. 7. Prob. of accessing items in terms of their age in file progc before and after
BWT. For bwt-progc, f(1) = 0.60 and f(2) = 0.11 are off-scale and thus not shown.
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Fig. 8. Prob. of accessing items in terms of their age in file progl before and after
BWT. For bwt-progl, f(1) = 0.72 is off-scale and thus not shown.



Probability of accesses in terms of age

Fig. 9. Prob. of accessing items in terms of their age
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Table 3. Working set bounds of files in Calgary Corpus (normalized by their sizes) before and
after Burrows-Wheeler Transform

File Category Size (bytes)|l [WS/n|WS/n (BWT)
bib  |Bibliography 111261 31 |39 |[1.6
bookl [Fiction book 768771 82 (3.4 1.7
book2 [Non-fiction book 610856 96 (3.5 1.6
geo Geophysical data 102400 256(4.2 2.3
news |USENET batch file 377109 98 [3.6 1.8
objl [Object code for VAX 21504 256(3.8 2.1
obj2 [Object code for Mac 246814 256(4.1 1.5
paperl|Technical paper 53161 95 [3.56 [1.73
paper2|Technical paper 82199 91 |3.47 |1.72
pic fax picture 513216 159|1.37 |1.25
progc |Source code in “C” 39611 92 [3.65 |[1.74
progl [Source code in LISP 71646 87 [3.22 |1.45
progp [Source code in PASCAL 49379 89 [3.38 [1.44
trans |Transcript of terminal session|93695 99 [3.61 1.38




