
A New Lower Bound for Kernel Sear
hing�Peter Anderson Alejandro L�opez-Ortiz yAbstra
tWe 
onsider the problem of on-line sear
hing for the kernel of a unknown star-shaped polygon.In this motion planning problem, the robot starts from a point s inside a simple star-shapedpolygon P , and aims to rea
h the kernel of P . The robot has no knowledge of P (apart from thefa
t that is a star-shaped polygon) but it is equipped with an on-board vision system that allowsit to see its surrounding spa
e. We prove that any strategy for this purpose in the worst 
asemust traverse at least 1:55 times the shortest distan
e from s to the kernel of P . This improvesover the best previously known lower bound of 1:44 by L�opez-Ortiz and S
huierer.1 Introdu
tionIn re
ent years on-line sear
hing has been an a
tive area of resear
h in Computer S
ien
e (e.g.[1, 2, 3℄). In its full generality, an on-line sear
h problem 
onsists of an agent sear
hing for atarget area in an unknown terrain. In the worst 
ase a sear
h by a robot in a general domain
an be arbitrarily ineÆ
ient as 
ompared to the shortest path from the initial position to thetarget. However, as it is to be expe
ted, strategies 
an be improved depending on the typeof terrain and the sear
hing 
apabilities of the robot.In this work we assume that the robot is equipped with an on-board vision system thatallows it to see its lo
al environment. Sin
e the robot has to make de
isions about the sear
hbased only on the part of its environment that it has seen before, the sear
h of the robot 
anbe viewed as an on-line problem. As su
h, the performan
e of an on-line sear
h strategy 
anbe measured by 
omparing the distan
e traveled by the robot with the length of the shortestpath from the starting point s to the target area A. The worst 
ase ratio of the distan
etraveled by the robot to the optimal distan
e from s to A is 
alled the 
ompetitive ratio ofthe sear
h strategy.I
king and Klein studied the problem of on-line sear
hing for the kernel of a star-shapedpolygon. In this 
ase, the 
ompetitive ratio is given by the ratio of the length traversed by therobot from the starting point s to the 
losest kernel point p to the distan
e from s to p. Theypresent a strategy with a 
ompetitive ratio of � 5:331 [6℄, whi
h was later shown to be exa
tly� + 1 
ompetitive [9℄. A strategy with a 
ompetitive ratio bounded by 1 + 2p2 � 3:829 waslater given by J-H. Lee et al. [10℄ and re
ently improved to � 3:1226 by L. Palios [13℄.I
king and Klein also pointed out that the natural p2 lower bound applies to this problem.Later L�opez-Ortiz and S
huierer improved this bound to � 1:44.In this work we show a lower bound of � 1:55 for any strategy that �nds the kernel of astar-shaped polygon.�This resear
h is partially supported by an NSERC Resear
h Grant.yFa
ulty of Computer S
ien
e, University of New Brunswi
k, Frederi
ton, New Brunswi
k, Canada, E3B 4A1,email: alopezo�unb.
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P kernel of P
Figure 1: Lower bound 
on-�guration for walking into thekernel.
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Figure 2: Polygon with twobeams. Beams
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Figure 3: Lower bound 
on�g-uration.2 De�nitionsWe say two points p and p0 in a polygon P are visible to ea
h other if the line segment pp0 is
ontained in P . If A and B are two sets, then A is weakly visible from B if every point in A isvisible from some point in B. The visibility polygon of p is the subset of points in P that arevisible to p; it is denoted by VP (p). We assume that the robot has a

ess to its lo
al visiblitypolygon by a range sensing devi
e, e.g. a ladar. Now we 
an de�ne a star-shaped polygon.De�nition 1 ([14℄) A simple polygon P is a star-shaped polygon if there exists a point p inP su
h that VP (p) = P . The set of all points p inside P with VP (p) = P is the kernel of P .If the robot does not start in the kernel of P , then there are regions in P that 
annotbe seen by it. The 
onne
ted 
omponents of P n VP (p) are 
alled po
kets. The boundaryof a po
ket is made of some polygon edges and one line segment that does not belong tothe boundary of P|whi
h is 
alled a window of VP (p). Note that a window interse
ts theboundary of P only in its end points. More generally, a line segment that interse
ts theboundary of P only in its end points is 
alled a 
hord.A po
ket is said to be a left po
ket if it lies lo
ally to the left of the po
ket ray that
ontains its window. A po
ket edge is said to be a left po
ket edge if it de�nes a left po
ket.An extended po
ket edge is a left extended po
ket edge if its �rst line segment is 
ollinear witha left po
ket edge. Right po
ket, right po
ket edge, and right extended po
ket edge are de�nedanalogously.Sin
e a point in the kernel of P sees all the points in P , in parti
ular p, a po
ket of VP (p)does not interse
t the kernel of P whi
h implies the following observation.3 Walking into the Kernel|a Lower BoundIn this se
tion we 
onsider the problem of on-line sear
hing and walking into the kernel of astar-shaped polygon [6, 10, 9, 11℄. We present a lower bound of � 1:55 on the 
ompetitiveratio of any strategy to walk into the kernel.Figure 1 shows a lower bound of p2. Any on-line strategy with a 
ompetitive ratio of� p2 has to follow the dashed path [6℄. In the following we show that any strategy to sear
hfor the kernel of a star-shaped polygon has a 
ompetitive ratio that is signi�
antly larger thanp2.De�nition 2 The visibility region of a subset B of a polygon is the set of all points in thepolygon whi
h see all points in B.De�nition 3 Given the 
urrent position of the robot p and a po
ket B of VP (p), the beam ofthe po
ket is the visibility region of B. 2



Noti
e that if the po
ket is a trapezoid, the visibility region resembles a sear
h light beam(see Figure 2).Observation 1 The kernel lies in the interse
tion of all beams.We now prove a lower bound by using an interesting numeri
al analysis te
hnique. First,we 
ompute a dis
rete approximation to an optimal sear
h path, and then, by boundingthe numeri
al error of the approximation through a formal mathemati
al proof, we obtain arigorous lower bound on the optimal path.Theorem 1 Walking into the kernel of a polygon is at least 1:55-
ompetitive.Proof. Consider the polygon of Figure 2. Noti
e that the robot rea
hes the line segment v1v2before it rea
hes the kernel. The robot rea
hes v1v2 at a point p. From p it is not yet 
learwhere the kernel is lo
ated. In fa
t, depending upon the spe
i�
 angle and lo
ation of thepo
kets, the beams might spe
ify a small kernel lo
ated anywhere in the visibility polygonregion of s whi
h is above v1v2.We now use an adversary argument. After the robot rea
hes p the adversary 
loses oneside, and leaves two beams on the other. One beam sele
ts a ray along whi
h the kernelwill be lo
ated and the se
ond one determines if the kernel is on one end of the ray or onthe other end. This is illustrated by the large dots in Figure 3. This 
an be a
hieved bylo
ating one beam A along the line joining the two 
andidate regions, and a se
ond beam, B,nearly parallel and to the right of A. The interse
tion of both beams de�nes the kernel of thepolygon.The angle determined by the beam and the line v1v2 
an range anywhere between 0 and�=2. The optimal strategy follows a path �. We introdu
e a 1000 � 30 grid in the polar
oordinates interval [0; 2℄ � [0; �=2℄ and approximate the path � with a path b� on the grid.Then a program 
omputes �rst a 
rude upper bound on the optimal solution and uses thisbound to bootstrap an exhaustive sear
h with pruning over the spa
e of all paths on thegrid. This produ
es an improved approximation whi
h is iteratively further enhan
ed byintrodu
ing a re�ned grid in the vi
inity of this path, eventually resulting on a grid of 1000points on an interval of length 0.01 units. This program, written in C using double pre
isionarithmeti
, obtains a path on the grid of length 1:556.There are two aspe
ts of the numeri
al 
omputation that need to be bound. The error ofthe approximation even if in�nite pre
ision arithmeti
 was used and the error of 
omputingthe approximation itself. In the �eld of Numeri
al Analysis, the �rst type of error is knownas approximation error while the se
ond type of error is termed round-o� error [5℄.To bound the approximation error observe that the optimal path 
rosses ea
h ray betweentwo points of the grid. Therefore the exhaustive sear
h algorithm 
onsidered paths made ofany of the four possible 
ombinations 
onne
ting the two points from one ray with the twopoints of the next. Let 
i be the length of the optimum path from ray i to ray i + 1 and let
̂i be the length of the approximation path between the same two rays. Given a point on aray let 1 + Æ be the position of the immediate neighbour in the grid for that ray. Using polar
oordinates and elementary trigonometri
s one 
an show that
̂
 � 1 + Æ:Therefore j�j =Xi 
i �Xi (1 + Æ)
̂i = (1 + Æ)jb�j;whi
h implies that the approximation error is at most 1 + Æ.3



The roundo� error is the e�e
t of using �nite pre
ision arithmeti
 for 
omputations on thereal numbers. In this 
ase, the length of b� was 
omputed on a Pentium III system using Intelbuilt-in numeri
 fun
tions. On a single 
omputation these fun
tions produ
e results with 53bits of pre
ision [4, 12℄ for elementary numeri
 fun
tions used su
h as p , sin() and 
os().In general, this does not suÆ
e to bound the roundo� error, as it may a

umulate on ea
hsu

esive iteration. However, in the spe
i�
 
ase of the 
omputation of the entire path length,ea
h step length is 
omputed independently and then added over the thirty rays 
omposingthe grid. On ea
h individual step arithmeti
s show that the error is no larger than (1 + �)4where � is the pre
ision of the built-in fun
tions. Thus the total a

umulated error is no largerthan 30(1 + �)4. Substituting for the proper value of � and using the approximation foundby the program we obtain that the optimal path is at least 1:55 the optimal shortest pathbetween the starting position of the robot and the kernel. 24 Con
lusionsWe show that no strategy whi
h walks into the kernel of a star-shaped polygon 
an do betterthan 1:55 whi
h improves on the best previously known lower bound of 1:44.A gap of 1.6 remains between the best upper and lower bound for this problem.Referen
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