
A New Lower Bound for Kernel Searhing�Peter Anderson Alejandro L�opez-Ortiz yAbstratWe onsider the problem of on-line searhing for the kernel of a unknown star-shaped polygon.In this motion planning problem, the robot starts from a point s inside a simple star-shapedpolygon P , and aims to reah the kernel of P . The robot has no knowledge of P (apart from thefat that is a star-shaped polygon) but it is equipped with an on-board vision system that allowsit to see its surrounding spae. We prove that any strategy for this purpose in the worst asemust traverse at least 1:55 times the shortest distane from s to the kernel of P . This improvesover the best previously known lower bound of 1:44 by L�opez-Ortiz and Shuierer.1 IntrodutionIn reent years on-line searhing has been an ative area of researh in Computer Siene (e.g.[1, 2, 3℄). In its full generality, an on-line searh problem onsists of an agent searhing for atarget area in an unknown terrain. In the worst ase a searh by a robot in a general domainan be arbitrarily ineÆient as ompared to the shortest path from the initial position to thetarget. However, as it is to be expeted, strategies an be improved depending on the typeof terrain and the searhing apabilities of the robot.In this work we assume that the robot is equipped with an on-board vision system thatallows it to see its loal environment. Sine the robot has to make deisions about the searhbased only on the part of its environment that it has seen before, the searh of the robot anbe viewed as an on-line problem. As suh, the performane of an on-line searh strategy anbe measured by omparing the distane traveled by the robot with the length of the shortestpath from the starting point s to the target area A. The worst ase ratio of the distanetraveled by the robot to the optimal distane from s to A is alled the ompetitive ratio ofthe searh strategy.Iking and Klein studied the problem of on-line searhing for the kernel of a star-shapedpolygon. In this ase, the ompetitive ratio is given by the ratio of the length traversed by therobot from the starting point s to the losest kernel point p to the distane from s to p. Theypresent a strategy with a ompetitive ratio of � 5:331 [6℄, whih was later shown to be exatly� + 1 ompetitive [9℄. A strategy with a ompetitive ratio bounded by 1 + 2p2 � 3:829 waslater given by J-H. Lee et al. [10℄ and reently improved to � 3:1226 by L. Palios [13℄.Iking and Klein also pointed out that the natural p2 lower bound applies to this problem.Later L�opez-Ortiz and Shuierer improved this bound to � 1:44.In this work we show a lower bound of � 1:55 for any strategy that �nds the kernel of astar-shaped polygon.�This researh is partially supported by an NSERC Researh Grant.yFaulty of Computer Siene, University of New Brunswik, Frederiton, New Brunswik, Canada, E3B 4A1,email: alopezo�unb.a
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P kernel of P
Figure 1: Lower bound on-�guration for walking into thekernel.
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Figure 2: Polygon with twobeams. Beams
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Figure 3: Lower bound on�g-uration.2 De�nitionsWe say two points p and p0 in a polygon P are visible to eah other if the line segment pp0 isontained in P . If A and B are two sets, then A is weakly visible from B if every point in A isvisible from some point in B. The visibility polygon of p is the subset of points in P that arevisible to p; it is denoted by VP (p). We assume that the robot has aess to its loal visiblitypolygon by a range sensing devie, e.g. a ladar. Now we an de�ne a star-shaped polygon.De�nition 1 ([14℄) A simple polygon P is a star-shaped polygon if there exists a point p inP suh that VP (p) = P . The set of all points p inside P with VP (p) = P is the kernel of P .If the robot does not start in the kernel of P , then there are regions in P that annotbe seen by it. The onneted omponents of P n VP (p) are alled pokets. The boundaryof a poket is made of some polygon edges and one line segment that does not belong tothe boundary of P|whih is alled a window of VP (p). Note that a window intersets theboundary of P only in its end points. More generally, a line segment that intersets theboundary of P only in its end points is alled a hord.A poket is said to be a left poket if it lies loally to the left of the poket ray thatontains its window. A poket edge is said to be a left poket edge if it de�nes a left poket.An extended poket edge is a left extended poket edge if its �rst line segment is ollinear witha left poket edge. Right poket, right poket edge, and right extended poket edge are de�nedanalogously.Sine a point in the kernel of P sees all the points in P , in partiular p, a poket of VP (p)does not interset the kernel of P whih implies the following observation.3 Walking into the Kernel|a Lower BoundIn this setion we onsider the problem of on-line searhing and walking into the kernel of astar-shaped polygon [6, 10, 9, 11℄. We present a lower bound of � 1:55 on the ompetitiveratio of any strategy to walk into the kernel.Figure 1 shows a lower bound of p2. Any on-line strategy with a ompetitive ratio of� p2 has to follow the dashed path [6℄. In the following we show that any strategy to searhfor the kernel of a star-shaped polygon has a ompetitive ratio that is signi�antly larger thanp2.De�nition 2 The visibility region of a subset B of a polygon is the set of all points in thepolygon whih see all points in B.De�nition 3 Given the urrent position of the robot p and a poket B of VP (p), the beam ofthe poket is the visibility region of B. 2



Notie that if the poket is a trapezoid, the visibility region resembles a searh light beam(see Figure 2).Observation 1 The kernel lies in the intersetion of all beams.We now prove a lower bound by using an interesting numerial analysis tehnique. First,we ompute a disrete approximation to an optimal searh path, and then, by boundingthe numerial error of the approximation through a formal mathematial proof, we obtain arigorous lower bound on the optimal path.Theorem 1 Walking into the kernel of a polygon is at least 1:55-ompetitive.Proof. Consider the polygon of Figure 2. Notie that the robot reahes the line segment v1v2before it reahes the kernel. The robot reahes v1v2 at a point p. From p it is not yet learwhere the kernel is loated. In fat, depending upon the spei� angle and loation of thepokets, the beams might speify a small kernel loated anywhere in the visibility polygonregion of s whih is above v1v2.We now use an adversary argument. After the robot reahes p the adversary loses oneside, and leaves two beams on the other. One beam selets a ray along whih the kernelwill be loated and the seond one determines if the kernel is on one end of the ray or onthe other end. This is illustrated by the large dots in Figure 3. This an be ahieved byloating one beam A along the line joining the two andidate regions, and a seond beam, B,nearly parallel and to the right of A. The intersetion of both beams de�nes the kernel of thepolygon.The angle determined by the beam and the line v1v2 an range anywhere between 0 and�=2. The optimal strategy follows a path �. We introdue a 1000 � 30 grid in the polaroordinates interval [0; 2℄ � [0; �=2℄ and approximate the path � with a path b� on the grid.Then a program omputes �rst a rude upper bound on the optimal solution and uses thisbound to bootstrap an exhaustive searh with pruning over the spae of all paths on thegrid. This produes an improved approximation whih is iteratively further enhaned byintroduing a re�ned grid in the viinity of this path, eventually resulting on a grid of 1000points on an interval of length 0.01 units. This program, written in C using double preisionarithmeti, obtains a path on the grid of length 1:556.There are two aspets of the numerial omputation that need to be bound. The error ofthe approximation even if in�nite preision arithmeti was used and the error of omputingthe approximation itself. In the �eld of Numerial Analysis, the �rst type of error is knownas approximation error while the seond type of error is termed round-o� error [5℄.To bound the approximation error observe that the optimal path rosses eah ray betweentwo points of the grid. Therefore the exhaustive searh algorithm onsidered paths made ofany of the four possible ombinations onneting the two points from one ray with the twopoints of the next. Let i be the length of the optimum path from ray i to ray i + 1 and let̂i be the length of the approximation path between the same two rays. Given a point on aray let 1 + Æ be the position of the immediate neighbour in the grid for that ray. Using polaroordinates and elementary trigonometris one an show that̂ � 1 + Æ:Therefore j�j =Xi i �Xi (1 + Æ)̂i = (1 + Æ)jb�j;whih implies that the approximation error is at most 1 + Æ.3



The roundo� error is the e�et of using �nite preision arithmeti for omputations on thereal numbers. In this ase, the length of b� was omputed on a Pentium III system using Intelbuilt-in numeri funtions. On a single omputation these funtions produe results with 53bits of preision [4, 12℄ for elementary numeri funtions used suh as p , sin() and os().In general, this does not suÆe to bound the roundo� error, as it may aumulate on eahsuesive iteration. However, in the spei� ase of the omputation of the entire path length,eah step length is omputed independently and then added over the thirty rays omposingthe grid. On eah individual step arithmetis show that the error is no larger than (1 + �)4where � is the preision of the built-in funtions. Thus the total aumulated error is no largerthan 30(1 + �)4. Substituting for the proper value of � and using the approximation foundby the program we obtain that the optimal path is at least 1:55 the optimal shortest pathbetween the starting position of the robot and the kernel. 24 ConlusionsWe show that no strategy whih walks into the kernel of a star-shaped polygon an do betterthan 1:55 whih improves on the best previously known lower bound of 1:44.A gap of 1.6 remains between the best upper and lower bound for this problem.Referenes[1℄ R. Baeza-Yates, J. Culberson and G. Rawlins. \Searhing in the plane", Information andComputation, Vol. 106, (1993), pp. 234-252.[2℄ P. Berman, A. Blum, A. Fiat, H. Karlo�, A. Ros�en and M. Saks. \Randomized robotnavigation algorithms", Pro. of 7th ACM-SIAM Symp. on Dis. Algs., (1996).[3℄ A. Blum, P. Raghavan and B. Shieber. \Navigating in unfamiliar geometri terrain",Pro. of 23rd ACM Symposium on Theory of Computing, (1991), pp. 494-504.[4℄ J. Harrison, T. Kubaska, S. Story, P.T.P. Tang. \The Computation of TransendentalFuntions on the IA-64 Arhiteture." Intel Tehnology Journal, Q4 1999.[5℄ M.T. Heath. Sienti� Computing: An Introdutory Survey, MGraw-Hill, 1997.[6℄ Ch. Iking and R. Klein. \Searhing for the kernel of a polygon. A ompetitive strategy",Pro. 11th ACM Symposium on Computational Geometry, (1995).[7℄ R. Klein. \Walking an unknown street with bounded detour", Computational Geometry:Theory and Appliations, Vol. 1, (1992), pp. 325-351.[8℄ D.T. Lee and F.P. Preparata. \An optimal algorithm for �nding the kernel of a polygon",Journal of the ACM, Vol. 26, (1979), pp. 415-421.[9℄ J-H. Lee, K-Y. Chwa. \Tight Analysis of a Self-Approahing Strategy for the OnlineKernel-Searh Problem", Inf. Pro. Let., Vol. 69, No. 1, 1999, pp.39-45.[10℄ J-H. Lee, C-S. Shin, J.H. Kim and S.Y. Shin. \New Competitive Strategies for Searhingin Unknown Star-Shaped Polygons", Pro. 13th ACM Symp. on Comp. Geom., (1997).[11℄ A. L�opez-Ortiz and S. Shuierer, \Position-independent Near Optimal Searhing andOn-line Reognition in Star Polygons", Pro. 5th WADS , (1997), LNCS pp. 284-296.[12℄ T. Lynh, M. Shulte. \A High Radix On-line Arithmeti for Credible and AurateComputing". Journal of Universal Computer Siene. Vol 1, No 7, 1995.[13℄ L. Palios, \A New Competitive Strategy for Reahing the Kernel of an Unknown Poly-gon", To appear, Pro. 7th SWAT, 2000.[14℄ F. P. Preparata, M. I. Shamos. Computational Geometry, Springer-Verlag, 1985.4


