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Abstract

We consider the problem of on-line searching for the kernel of a unknown star-shaped polygon.
In this motion planning problem, the robot starts from a point s inside a simple star-shaped
polygon P, and aims to reach the kernel of P. The robot has no knowledge of P (apart from the
fact that is a star-shaped polygon) but it is equipped with an on-board vision system that allows
it to see its surrounding space. We prove that any strategy for this purpose in the worst case
must, traverse at least 1.55 times the shortest distance from s to the kernel of P. This improves
over the best previously known lower bound of 1.44 by Loépez-Ortiz and Schuierer.

1 Introduction

In recent years on-line searching has been an active area of research in Computer Science (e.g.
[1, 2, 3]). In its full generality, an on-line search problem consists of an agent searching for a
target area in an unknown terrain. In the worst case a search by a robot in a general domain
can be arbitrarily inefficient as compared to the shortest path from the initial position to the
target. However, as it is to be expected, strategies can be improved depending on the type
of terrain and the searching capabilities of the robot.

In this work we assume that the robot is equipped with an on-board vision system that
allows it to see its local environment. Since the robot has to make decisions about the search
based only on the part of its environment that it has seen before, the search of the robot can
be viewed as an on-line problem. As such, the performance of an on-line search strategy can
be measured by comparing the distance traveled by the robot with the length of the shortest
path from the starting point s to the target area A. The worst case ratio of the distance
traveled by the robot to the optimal distance from s to A is called the competitive ratio of
the search strategy.

Icking and Klein studied the problem of on-line searching for the kernel of a star-shaped
polygon. In this case, the competitive ratio is given by the ratio of the length traversed by the
robot from the starting point s to the closest kernel point p to the distance from s to p. They
present a strategy with a competitive ratio of ~ 5.331 [6], which was later shown to be exactly
7 + 1 competitive [9]. A strategy with a competitive ratio bounded by 1 + 2v/2 ~ 3.829 was
later given by J-H. Lee et al. [10] and recently improved to ~ 3.1226 by L. Palios [13].

Icking and Klein also pointed out that the natural v/2 lower bound applies to this problem.
Later Lopez-Ortiz and Schuierer improved this bound to ~ 1.44.

In this work we show a lower bound of ~ 1.55 for any strategy that finds the kernel of a
star-shaped polygon.
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2 Definitions

We say two points p and p’ in a polygon P are visible to each other if the line segment pp’ is
contained in P. If A and B are two sets, then A is weakly visible from B if every point in A is
visible from some point in B. The visibility polygon of p is the subset of points in P that are
visible to p; it is denoted by Vp(p). We assume that the robot has access to its local visiblity
polygon by a range sensing device, e.g. a ladar. Now we can define a star-shaped polygon.

Definition 1 ([14]) A simple polygon P is a star-shaped polygon if there exists a point p in
P such that Vp(p) = P. The set of all points p inside P with Vp(p) = P is the kernel of P.

If the robot does not start in the kernel of P, then there are regions in P that cannot
be seen by it. The connected components of P\ Vp(p) are called pockets. The boundary
of a pocket is made of some polygon edges and one line segment that does not belong to
the boundary of P—which is called a window of Vp(p). Note that a window intersects the
boundary of P only in its end points. More generally, a line segment that intersects the
boundary of P only in its end points is called a chord.

A pocket is said to be a left pocket if it lies locally to the left of the pocket ray that
contains its window. A pocket edge is said to be a left pocket edge if it defines a left pocket.
An extended pocket edge is a left extended pocket edge if its first line segment is collinear with
a left pocket edge. Right pocket, right pocket edge, and right extended pocket edge are defined
analogously.

Since a point in the kernel of P sees all the points in P, in particular p, a pocket of Vp(p)
does not intersect the kernel of P which implies the following observation.

3 Walking into the Kernel-—a Lower Bound

In this section we consider the problem of on-line searching and walking into the kernel of a
star-shaped polygon [6, 10, 9, 11]. We present a lower bound of ~ 1.55 on the competitive
ratio of any strategy to walk into the kernel.

Figure 1 shows a lower bound of v/2. Any on-line strategy with a competitive ratio of
< +/2 has to follow the dashed path [6]. In the following we show that any strategy to search
for the kernel of a star-shaped polygon has a competitive ratio that is significantly larger than

V2.

Definition 2 The wvisibility region of a subset B of a polygon is the set of all points in the
polygon which see all points in B.

Definition 3 Given the current position of the robot p and a pocket B of Vp(p), the beam of
the pocket is the visibility region of B.



Notice that if the pocket is a trapezoid, the visibility region resembles a search light beam
(see Figure 2).

Observation 1 The kernel lies in the intersection of all beams.

We now prove a lower bound by using an interesting numerical analysis technique. First,
we compute a discrete approximation to an optimal search path, and then, by bounding
the numerical error of the approximation through a formal mathematical proof, we obtain a
rigorous lower bound on the optimal path.

Theorem 1 Walking into the kernel of a polygon is at least 1.55-competitive.

Proof. Consider the polygon of Figure 2. Notice that the robot reaches the line segment 7773
before it reaches the kernel. The robot reaches 7773 at a point p. From p it is not yet clear
where the kernel is located. In fact, depending upon the specific angle and location of the
pockets, the beams might specify a small kernel located anywhere in the visibility polygon
region of s which is above 775.

We now use an adversary argument. After the robot reaches p the adversary closes one
side, and leaves two beams on the other. One beam selects a ray along which the kernel
will be located and the second one determines if the kernel is on one end of the ray or on
the other end. This is illustrated by the large dots in Figure 3. This can be achieved by
locating one beam A along the line joining the two candidate regions, and a second beam, B,
nearly parallel and to the right of A. The intersection of both beams defines the kernel of the
polygon.

The angle determined by the beam and the line 7775 can range anywhere between (0 and
/2. The optimal strategy follows a path I'.  We introduce a 1000 x 30 grid in the polar
coordinates interval [0,2] x [0,7/2] and approximate the path I with a path T' on the grid.
Then a program computes first a crude upper bound on the optimal solution and uses this
bound to bootstrap an exhaustive search with pruning over the space of all paths on the
grid. This produces an improved approximation which is iteratively further enhanced by
introducing a refined grid in the vicinity of this path, eventually resulting on a grid of 1000
points on an interval of length 0.01 units. This program, written in C using double precision
arithmetic, obtains a path on the grid of length 1.556.

There are two aspects of the numerical computation that need to be bound. The error of
the approximation even if infinite precision arithmetic was used and the error of computing
the approximation itself. In the field of Numerical Analysis, the first type of error is known
as approximation error while the second type of error is termed round-off error [5].

To bound the approximation error observe that the optimal path crosses each ray between
two points of the grid. Therefore the exhaustive search algorithm considered paths made of
any of the four possible combinations connecting the two points from one ray with the two
points of the next. Let 7; be the length of the optimum path from ray 7 to ray ¢ + 1 and let
4; be the length of the approximation path between the same two rays. Given a point on a
ray let 1+ 0 be the position of the immediate neighbour in the grid for that ray. Using polar
coordinates and elementary trigonometrics one can show that

<1+0.
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Therefore R
IT) =2 % <> (1+0)% = (1+0)[T],

which implies that the approximation error is at most 1 + §.



The roundoff error is the effect of using finite precision arithmetic for computations on the
real numbers. In this case, the length of I' was computed on a Pentium III system using Intel
built-in numeric functions. On a single computation these functions produce results with 53
bits of precision [4, 12] for elementary numeric functions used such as /7, sin() and cos().

In general, this does not suffice to bound the roundoff error, as it may accumulate on each
succesive iteration. However, in the specific case of the computation of the entire path length,
each step length is computed independently and then added over the thirty rays composing
the grid. On each individual step arithmetics show that the error is no larger than (1 + ¢)*
where € is the precision of the built-in functions. Thus the total accumulated error is no larger
than 30(1 + ¢)*. Substituting for the proper value of ¢ and using the approximation found
by the program we obtain that the optimal path is at least 1.55 the optimal shortest path
between the starting position of the robot and the kernel. O

4 Conclusions

We show that no strategy which walks into the kernel of a star-shaped polygon can do better
than 1.55 which improves on the best previously known lower bound of 1.44.
A gap of 1.6 remains between the best upper and lower bound for this problem.
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