
A Linear Lower Bound on Index Size for Text RetrievalErik D. Demaine� Alejandro L�opez-OrtizyAbstractMost information-retrieval systems preprocess the datato produce an auxiliary index structure. Empirically, ithas been observed that there is a tradeo� between queryresponse time and the size of the index. When indexinga large corpus, such as the web, the size of the indexis an important consideration. In this case it would beideal to produce an index that is substantially smallerthan the text.In this work we prove a linear lower bound on thesize of any index that reports the location (if any) of asubstring in the text in time proportional to the lengthof the pattern. In other words, an index supportinglinear-time substring searches requires about as muchspace as the original text. Here \time" is measuredin the number of bit probes to the text; an arbitraryamount of computation may be done on an arbitraryamount of the index. Our lower bound applies toinverted word indices as well.1 IntroductionText retrieval is crucial in such contexts as searchingthe web, news, and medical databases. The most basicproblem, used as a subroutine in most search engines,is to search for a given substring (keyword or phrase)in a corpus of text. Because the text database changesinfrequently relative to the frequency and abundancyof queries, fundamental to any search technique is apreprocessing step to prepare an index for fast searches.It has been observed empirically that the larger anindex the better the query time. To illustrate withan extreme example, in the absence of an index, it isnecessary to examine the entire text to see if the querystring is present. For example, the Knuth-Morris-Prattalgorithm [KMP77] requires no index and runs in timeproportional to the length of the text plus the pattern.In practice such a search is done often with the UNIXutility grep.�Department of Computer Science, University of Wa-terloo, Waterloo, Ontario N2L 3G1, Canada, email:eddemaine@uwaterloo.ca.yFaculty of Computer Science, University of New Brunswick,P. O. Box 4400, Fredericton, N. B. E3B 5A3, Canada, email:alopezo@unb.ca. Supported by NSERC.

On the other end of the spectrum, a query can beanswered in time that is linear in the length of thepattern. This bound is obtained by the popular suÆxtree data structure [Wei73, McC76, Ukk95, GK97]. Theindex consists of O(n) words, where n is the number ofbits in the text. Recently, Grossi and Vitter [GV00]have shown that the space can be improved to O(n)bits (proportional to the size of the text) for a slightsacri�ce in query time, an additive factor of O(lg� n).An important but relatively unstudied �eld of re-search is to determine the asymptotic tradeo� betweenfast queries and a small index. As time is currently themost important issue in most systems, a natural prob-lem in this �eld is to determine the minimum amount ofspace required by an index supporting linear-time sub-string searches. In this paper we prove the �rst nontriv-ial lower bound on this problem. Speci�cally, we showthat any such indexing structure requires space propor-tional to the text itself. This bound applies in a power-ful bit-probe model in which the search algorithm hasfree access to the entire index and can perform unlim-ited computation|only probes to the text are charged.We also show that the same lower bound holds in thepractical case of inverted word indices, where the text isbroken into n=w allowed query \words" each of lengthw.1.1 Model of Computation. More formally, weconsider the problem of determining the location, if any,of a given query string P (the pattern) in the text stringT , in time bounded in terms of the length of the pattern,jP j, using an index I . The index is a static structureprecomputed before query time, and for the purposesof lower bounds we do not consider the preprocessingtime needed to build I . The search algorithm has accessto P , T , and I , and the standard model is that it canperformO(jP j) total internal computations and accesses(probes) to P , T , and I . We impose one restriction tothis model, that each probe to the text T only retrievesa single bit from T .Our lower bound applies to a much stronger model.The search algorithm is allowed an unlimited amountof computation, and can read the entire index I andpattern P ; we only count the number of bit probesmade to the text T . This model is stronger than



the powerful bit-probe model [BMRS00, Mil93, Yao81],which in particular is stronger than a RAM in whichprobes to the text are restricted to bit probes. Ourlower bounds of course apply to these models as well.2 Main ResultIn this section we prove the following theorem under thepreceding model of computation:Theorem 2.1. If I is an index supporting a search forthe substring P in o(lg2 jP j) bit probes to the text T ,then jI j = 
(jT j). This bound applies even when allquery substrings P have length roughly lg jT j, and donot overlap.See Theorem 2.2 on page 5 for a precise statementof the constant factor.2.1 Construction. Consider a random permutationof the integers 0; : : : ; n� 1, random in the Kolmogorovsense [LV97], i.e., the Kolmogorov complexity of thepermutation is lg n! � O(1). From such a permutationwe construct the text T by writing the numbers in bi-nary, using exactly lgn bits each, in the order givenby the permutation, and terminating each binary rep-resentation with a special character #. For example,for n = 16, the permutation 5; 12; 1; : : : ; 15; 10 wouldgenerate the stringT = 0101#1100#0001# : : :#1111#1010#:De�ne N = jT j = n(lgn+ 1).Note that while we use a ternary alphabet forconvenience, this can easily be avoided by a standardtrick. Our only requirement is that the substrings suchas 0101# appear exactly once in the text. Thus, we canreplace the # symbol with the special string 1k, andmodify all previously existing occurrences of the pre�x1k�1 to 1k�10. The original string T is easily recoveredfrom this new string. Because each binary string occurswith essentially uniform probability throughout T , thelength of the new string is N for the original T , pluskn for the total length of the separators, plus roughlyN=2k�1 for the extra 0's added to occurrences of 1k�1.Choosing k = 1+lg lnn minimizes the length of the newstring, achievingN �1 + lg lnN � 32lnN � = N + o(N) bits.In the remainder of the proof, we assume that thealphabet is ternary for simplicity of presentation.2.2 Proof Outline. Because the permutation andhence the text T has Kolmogorov complexity lgn! �

O(1) = n lgn � O(n) by Stirling's approximation, anyencoding of T requires at least N �O(N= lgN) bits.1The heart of the proof is to show that the text Tcan be reconstructed from the index I plus two smallauxiliary structures A and B. That is, we will constructstructures A and B so that, together, I , A, and B forman encoding of T . We can combine I , A, and B intoone string by �rst encoding the length of I , so that Iand AB can later be partitioned. (Separating A and Bwill be easy.) By the Kolmogorov argument above, thisproves thatlg jI j+ jI j+ jAj+ jBj � N �O(N= lgN):(2.1)Thus, if we can build A and B suÆciently small,say o(N), we obtain a lower bound of N � o(N) on thesize of I . But note that A and B do not even have tobe sublinear in the size N of the text. Kolmogorovcomplexity gives us a tight bound on the encodingsize, specifying that the leading constant on N is 1.Thus, provided jAj + jBj � cN for some constantc < 1, we obtain a linear lower bound on jI j, namelyjI j � (1� c)N �O(N= lgN).2.3 Ideas for Encoding. If the search algorithmmade no probes to the text T , it follows triviallythat the index I encodes all positional informationfor each pattern. Speci�cally, suppose there were asearch algorithm Search that computes the location ofa pattern P using only the index I . Then the originaltext T can be reconstructed by sequentially querying allpatterns, as follows:Algorithm Decoding� For P from 00 � � �0# to 11 � � � 1#:1. Let b denote the beginning of the occurrenceof the pattern P found by Search (P ).2. Write the pattern P into positions b; b +1; : : : ; b+ lgn of the reconstructed text T .Of course, our task is not this easy: the queryalgorithm can perform as many as cjP j probes to T forsome constant c. We can think of the Search algorithmas having the following outline:Generic Algorithm Search (P , I , T )1. Initialize our \knowledge" to the pattern P andindex I .2. For i from 1 up to at most cjP j,1Although formally there is no di�erence between +O(f) and�O(f), we �nd �O(f) more suggestive in these situations.



(a) Using current knowledge, compute which bitto next probe the text T , call the position pP;i.(b) Probe T [pP;i], and add it to our knowledge.Here we have isolated the probes to the text. Ourgoal is to encode in auxiliary structures the probed bitsT [pP;1]; : : : ; T [pP;cjP j], for if these were somehow knownfor every pattern P , the Search algorithm could runwithout access to T , so we could recover the text byapplying Algorithm Decoding. Note that we do nothave to encode where the Search algorithm probes (thepP;i's). One trivial option would be to simply writedown the bits in the order they would be probed whenexecuting Decoding, i.e., store the stringT [p00���0;1]T [p00���0;2] � � �T [p00���0;cjP j] � � � � �T [p11���1;lgn]as an auxiliary structure. (De�ne pP;i arbitrarily if fewerthan i probes were made during the call to Search (P ,I , T ).) Of course, this auxiliary structure is too large,taking cn lgn = cN bits.Slightly more sophisticated is to encode just the newprobed bits. In other words, the encoding algorithm forT simulates the execution of Decoding, and wheneverits subroutine Search probes position p, the encoder �rstchecks whether it has already encoded the bit T [p]. Ifso, the encoder simply omits the bit, with no explicitcode; otherwise, the bit is simply written in the encodedstring. The decoder, on the other hand, has perfectknowledge of what bits it has probed so far, so wheneverit comes across a new bit to probe, it plays the samegame: if it has never probed that bit before, it readsthe next unread bit in the encoded string, taking thatas the probe result; and otherwise, it uses its knowledgeof the past to determine the result of the probe. Thisscheme is somewhat more eÆcient than the trivial oneabove, although still insuÆcient; however, this idea willbe used heavily in our encoding.2.4 Our Encoding Scheme. We use two auxiliarystructures, A and B, to eÆciently encode the probedbits during the simulated execution of Decoding. Thebasic strategy is that when searching for a pattern P , wedecide whether to record in A the new bits probed in T .After all queries have been made and A has been �lled,any remaining probed bits in T that remain unrecordedwill be recorded in B.More precisely, the auxiliary structure A is a tablewith n rows, one per pattern from 00 � � � 0 to 11 � � � 1.Algorithm Encoding (detailed below) loops over thepatterns, following a simulated execution of Decoding.Each row of table A contains a bit specifying whetherthe row is \present." If it is present, the row e�ectivelyrecords the bits probed by Search (P , I , T ) that were

not already probed (as in the second method above).The idea is that we will record the probed bits if theywill give us a signi�cant bonus in implicitly revealingother bits. The advantage of recording the probe valuesfor a Search is that the decoder can later simulate theexecution of Search and actually determine the locationof the pattern P : this reveals lgn+1 bits of the text tobe the pattern followed by a # symbol. Some of thesebits may already be known to the decoder, but somemay not. If a constant fraction is not known, say atleast r lgn out of the lgn + 1 bits are newly revealed,we make the row of A present. We will optimize theconstant r (0 � r � 1) later.If a row is absent, it consists only of the presence bit,0. If the row is present, it continues with two additional�elds. Again, the goal of these �elds is just to encodethe bits probed by Search (P , I , T ) in order to revealthe bits where the pattern P occurs. However, Searchmight probe a bit (or several) that is discovered, at theend of the search, to occur within the found instance ofP . We need to avoid encoding these bits, for otherwiseour \bonus" will be lost.Thus, if Search probes a bit that occurs within theto-be-found instance of P , the �rst �eld of the rowencodes the �rst probe with this property (encodedin binary using exactly lg(c lgn) bits), followed by thedistance from the beginning of the instance of P to theprobed bit (encoded in binary using exactly lg(lgn+1)bits). Then the second �eld encodes any bits probedby Search that were not probed or revealed before andare not within the occurrence of the pattern P . Onthe other hand, the decoder reads the answers fromprobes made by Search using the second �eld, until itreaches the probed bit speci�ed in the �rst �eld. Then itdetermines the location of the pattern P , and adds thosebits to its knowledge. Finally, the decoder continuesreading the second �eld as usual until reaching the nextpattern P and row of A.The simpler case is when Search does not probeany bit in the to-be-found instance of P . Then the�rst �eld just encodes a zero bit to state this fact, andthe second �eld encodes all probed bits that were notalready encoded in A.After the simulated execution of Algorithm Decod-ing, some of the probed bits have been encoded in A, andother bits have been revealed by knowing the locationsof patterns. Any unknown bits of T are now writteninto B, ordered left-to-right as they occur in T . Thusit is clear that by applying essentially the same process,we can decode A and B to reconstruct the original textT . The remaining question is how eÆcient our encodingis.



Algorithm Encoding (P )� For P from 00 � � � 0# to 11 � � � 1#:1. Apply Search (P , I , T ), let b denote thebeginning of the occurrence of the pattern P ,and let pP;1; : : : ; pP;k denote the probed bitsin order.2. If more than r lgn of the bits T [b], . . . , T [b+lgn] are either marked known or were justprobed by the search,{ Write \0" (row of A is absent).3. Otherwise:(a) Write \1" (row of A is present).(b) If one of the probed bits is in between T [b]and T [b+ lgn] inclusive:i. Write \1" (bit of P was probed).ii. Let pP;i denote the �rst probed bitthat is in between T [b] and T [b+lgn].iii. Write i � 1 in binary using exactlylg(c lg n) bits.iv. Write pP;i � b in binary using exactlylg(lgn+ 1) bits.(c) Otherwise, write \0" (no bit of P wasprobed).(d) For i from 1 to k:{ If T [pP;i] is not in between T [b] andT [b + lg n] inclusive, and T [i] is notmarked as known:i. Write T [i] (as a new probed bit).ii. Mark T [i] as known.(e) Mark the bits T [b], . . . , T [b + lgn] asknown.� For i from 1 to N ,4. If T [i] is not marked as known, write T [i] (asa bit of B).2.5 Size of Encoding. It may be surprising that ourcarefully worded encoding method actually saves spacein the worst case over the simpler encoding algorithms,but we will show that the savings are signi�cant. Thebasic idea is two-fold. First, as mentioned, if mostof the bits in the instance of P are unknown, then itpays to encode the probe bits, because then we learnwhere P is and hence learn most of those lgn bits forfree. Second, we will show that a signi�cant portion ofpattern instances will have this property, i.e. A will havemany rows, inducing much savings.

Equation (2.1) tells us that the encoding of thetriple (I; A;B) has size at least n lgn � O(n). Equiva-lently, we havejI j+ lg jI j � n lgn� jAj � jBj �O(n):(2.2)Now we need to estimate the sizes of A and B. Leta be the number of present rows in A, and let b be thenumber of absent rows in A. Thus we havea+ b = n:(2.3)Each row in table A consists of the present bit,sometimes (a out of n times) followed by the valuesof the newly probed bits optionally pre�xed by someinformation about the location of P . Thus,jAj � n[2 bits] + a[lg(c lgn) + lg(lgn+ 1) bits]+ [number of probed bits in A]:Applying this to Equation (2.2) gives usjI j+ lg jI j � n lgn� (2n+ 2a lg(lgn+ 1) + a lg c)� ([number of probed bits in A] + jBj| {z })� O(n)(2.4)The work so far has simply converted the encodingmethod into algebra. The important part that remainsis marked with a brace in Equation (2.4): bound thetotal number of bits encoded explicitly in A and B, i.e.,the number of probe bits encoded in A plus the entiresize of B.Consider any bit in the text T . The bit is withinexactly one of the query patterns, say P . We distinguishtwo cases:Case 1: The row of A corresponding to P is absent.There are b(lgn+ 1) such bits.In this case, the bit is either encoded as a probebit in another row of A, or it will be encoded in B.Indeed, this accounts for all bits encoded in B, andsome of the probe bits encoded in A.Case 2: The row of A corresponding to P is present.In this case, the bit is implicitly encoded by thediscovered location of P . This means that the bitwill not be explicitly encoded in any future rowsof A or in B. However, it may have already beenencoded in an earlier row of A.Fortunately, by the de�nition ofA, we have a boundon the number of such bits. Namely, this row of Awas chosen to be present because the number ofalready known bits of P was at most r lgn. Thus,the number of bits of this type that are encoded asprobe bits in A (over all present rows of A) is atmost ar lgn.



In total, we have the estimate[number of probed bits in A]+ jBj � b lgn+b+ar lgn:Combining this equation with (2.3) and (2.4), we obtainjI j+ lg jI j � n lgn� 2n� 2a lg(lgn+ 1)� a lg c� b lgn� b� ar lgn�O(n)= (n� b� ar) lg n� 2a lg lgn� a lg c� O(n)= (1� r)a lg n� a(2 lg lgn+ lg c)�O(n)(2.5)Lastly, for this bound to be useful, we must bounda from below. To do this, we recount which of the n lgnbits of T are encoded where. On the one hand, each rowof A encodes at most c lgn probe bits, plus implicitlyencoding at most lgn+ 1 pattern bits. Thus,number of bits encoded by A � a�(1 + c) lgn+ 1�:On the other hand, whenever a portion of a pattern Pis encoded in B, at least r lg n of the bits were alreadyexplicitly or implicitly encoded in A, leaving at most(1� r) lgn + 1 bits of the pattern to be encoded in B.Thus,number of bits encoded by B = jBj � b�(1�r) lgn+1�:Combining these two equations,n lgn = total number of bits encoded� a(1 + c) lgn+ b(1� r) lgn+ n:Dividing both sides by lg n and simplifying, we obtainn � a(1 + c) + b(1� r) + n= lgn= a(1 + c) + (n� a)(1� r) + n= lgn= a(c+ r) + n(1� r) + n= lgnSolving for a, we obtain the desired bound:a � rc+ r n� n= lgn:Substituting this into Equation (2.5), we obtainjI j+ lg jI j � (1� r)� rc+ r n� n= lgn� lgn� � rc+ r n� n= lgn� (2 lg lgn+ lg c)� O(n)= r(1� r)c+ r n lgn� rc+ r n(2 lg lgn+ lg c)� O(n)

Focusing just on the lead n lgn term, this expressionis maximized when r = pc(1 + c) � c, giving us theboundjI j+ lg jI j � �1 + 2c� 2pc(1 + c)�n lgn� �1� pcp1 + c�n(2 lg lgn+ lg c)� O(n)= �1 + 2c� 2pc(1 + c)�n lgn� O(n lg lgn+ n lg c)We have been careful to treat c as a variable, notas a constant. Thus, if the search algorithm is allowedt(n) bit probes, we can de�ne c = t(n)= lgn, and obtainthe following bound:Theorem 2.2. If there is an algorithm for substringsearches making t(n) bit probes to a text of size N =n lgn, then the following bound on the index size musthold:jI j �  1 + 2 t(n)lgn � 2s t(n)lgn �1 + t(n)lgn�!n lgn� O(n lg lgn+ n lg t(n))For example, if t(n) = lgn, we havejI j � (3� 2p2)n lgn:Corollary 2.1. If t(n) = o(lg2 n), then jI j =
(n lgn) = 
(N).3 ConclusionThis work starts an important area in text retrieval ofdetermining the size of the smallest index to support fastsubstring searches. We have proved the �rst nontriviallower bound on this problem. Namely, we have shownthat if the search algorithm makes only o(jP j2) bitprobes into the text for a query substring P , then thesize of the index must be proportional to the text.Our bound of 
(jT j) on the size of the index is tightup to a constant factor in our model because probes tothe index are free: a trivial strategy is to store an exactcopy of the text in the index, and answer queries byscanning the index. However, it is natural to ask for theexact constant factor. It seems diÆcult to improve pastthis trivial strategy, so we conjecture that the constantis 1:Conjecture 3.1. For any search algorithm that makesO(jP j) bit probes to the text T , the index must have sizeat least jT j � o(jT j).



Another open problem is how small the index canbe if the algorithm is allowed O(jP j) probes into thetext, when a probe retrieves a word instead of a bit.Here we follow the standard model of a word being lgnbits or so. Our result comes close to answering thisquestion, by showing that the index must have linearsize even for o(jP j lg n) bit probes, none of which haveto be consecutive. It seems that with lgn clusters of lgnconsecutive bit probes, no improvement can be made,and again the size of the index must be linear in the sizeof the text.Finally, there is work to be done on the upper-bound side. For a more reasonable model in whichprobes to the index are not free, is there a strategy thatmatches the trivial space bound of jT j above, or evenachieving O(jT j) bits? For the text and queries used inthe lower-bound proof in this paper, the optimal boundscan be achieved: an inverted word list (for words such as0101#) can be stored in jT j bits, and suÆces to answerqueries in O(jP j) time (with no probes to the text). Canthis bound be obtained in the more general setting ofsearching for arbitrary substrings instead of just words?Currently the best-known structures either take O(jT j)words of space [Wei73, McC76, Ukk95, GK97], or takeO(jT j) bits of space but require an additional O(lg� n)time for queries [GV00].AcknowledgmentsThis work was initiated at a Schloss Dagstuhl seminaron Data Structures, organized by Susanne Albers, IanMunro, and Peter Widmeyer. During the open problemsession, Roberto Grossi posed the problem at hand.We thank Prosenjit Bose, Andrej Brodnik, RobertoGrossi, and Ian Munro for helpful discussions duringthe meeting.References[BMRS00] Harry Buhrman, Peter Bro Miltersen, JaikumarRadhakrishnan, and Venkatesh Srinivasan. Are bitvec-tors optimal? In Proceedings of the 32nd Annual ACMSymposium on Theory of Computing, Portland, Ore-gon, May 2000.[GK97] R. Giegerich and S. Kurtz. From Ukkonen toMcCreight and Weiner: A unifying view of linear-timesuÆx tree construction. Algorithmica, 19(3):331{353,1997.[GV00] Roberto Grossi and Je�rey Scott Vitter. Com-pressed suÆx arrays and suÆx trees with applicationsto text indexing and string matching. In Proceedings ofthe 32nd Annual ACM Symposium on Theory of Com-puting, Portland, Oregon, May 2000.[KMP77] Donald E. Knuth, James H. Morris, Jr., and

Vaughan R. Pratt. Fast pattern matching in strings.SIAM Journal on Computing, 6(2):323{350, 1977.[LV97] Ming Li and Paul Vit�anyi. An Introduction toKolmogorov Complexity and its Applications. Springer-Verlag, New York, second edition, 1997.[McC76] Edward M. McCreight. A space-economical suÆxtree construction algorithm. Journal of the Associationfor Computing Machinery, 23(2):262{272, 1976.[Mil93] Peter Bro Miltersen. The bit probe complexity mea-sure revisited. In P. Enjalbert, A. Finkel, and K. W.Wagner, editors, Proceedings of the 10th Annual Sym-posium on Theoretical Aspects of Computer Science,pages 662{671, W�urzburg, February 1993.[Ukk95] E. Ukkonen. On-line construction of suÆx trees.Algorithmica, 14(3):249{260, 1995.[Wei73] Peter Weiner. Linear pattern matching algorithm.In Proceedings of the 14th Annual IEEE Symposiumon Switching and Automata Theory, pages 1{11, IowaCity, Iowa, 1973.[Yao81] Andrew Chi Chih Yao. Should tables be sorted?Journal of the Association for Computing Machinery,28(3):615{628, 1981.


