A Linear Lower Bound on Index Size for Text Retrieval

Erik D. Demaine*

Abstract

Most information-retrieval systems preprocess the data
to produce an auxiliary index structure. Empirically, it
has been observed that there is a tradeoff between query
response time and the size of the index. When indexing
a large corpus, such as the web, the size of the index
is an important consideration. In this case it would be
ideal to produce an index that is substantially smaller
than the text.

In this work we prove a linear lower bound on the
size of any index that reports the location (if any) of a
substring in the text in time proportional to the length
of the pattern. In other words, an index supporting
linear-time substring searches requires about as much
space as the original text. Here “time” is measured
in the number of bit probes to the text; an arbitrary
amount of computation may be done on an arbitrary
amount of the index. Our lower bound applies to
inverted word indices as well.

1 Introduction

Text retrieval is crucial in such contexts as searching
the web, news, and medical databases. The most basic
problem, used as a subroutine in most search engines,
is to search for a given substring (keyword or phrase)
in a corpus of text. Because the text database changes
infrequently relative to the frequency and abundancy
of queries, fundamental to any search technique is a
preprocessing step to prepare an index for fast searches.

It has been observed empirically that the larger an
index the better the query time. To illustrate with
an extreme example, in the absence of an index, it is
necessary to examine the entire text to see if the query
string is present. For example, the Knuth-Morris-Pratt
algorithm [KMP77] requires no index and runs in time
proportional to the length of the text plus the pattern.
In practice such a search is done often with the UNIX
utility grep.

University of Wa-
Canada, email:

*Department of Computer
terloo, Waterloo, Ontario
eddemaine@uwaterloo.ca.

Science,
N2L 3Gl1,

fFaculty of Computer Science, University of New Brunswick,
P. O. Box 4400, Fredericton, N. B. E3B 5A3, Canada, email:
alopezo@unb.ca. Supported by NSERC.

Alejandro Lépez-Ortizf

On the other end of the spectrum, a query can be
answered in time that is linear in the length of the
pattern. This bound is obtained by the popular suffiz
tree data structure [Wei73, McC76, Ukk95, GK97]. The
index consists of O(n) words, where n is the number of
bits in the text. Recently, Grossi and Vitter [GV00]
have shown that the space can be improved to O(n)
bits (proportional to the size of the text) for a slight
sacrifice in query time, an additive factor of O(lg® n).

An important but relatively unstudied field of re-
search is to determine the asymptotic tradeoff between
fast queries and a small index. As time is currently the
most important issue in most systems, a natural prob-
lem in this field is to determine the minimum amount of
space required by an index supporting linear-time sub-
string searches. In this paper we prove the first nontriv-
ial lower bound on this problem. Specifically, we show
that any such indexing structure requires space propor-
tional to the text itself. This bound applies in a power-
ful bit-probe model in which the search algorithm has
free access to the entire index and can perform unlim-
ited computation—only probes to the text are charged.
We also show that the same lower bound holds in the
practical case of inverted word indices, where the text is
broken into n/w allowed query “words” each of length
w.

1.1 Model of Computation. More formally, we
consider the problem of determining the location, if any,
of a given query string P (the pattern) in the text string
T, in time bounded in terms of the length of the pattern,
|P|, using an index I. The index is a static structure
precomputed before query time, and for the purposes
of lower bounds we do not consider the preprocessing
time needed to build I. The search algorithm has access
to P, T, and I, and the standard model is that it can
perform O(|P|) total internal computations and accesses
(probes) to P, T, and I. We impose one restriction to
this model, that each probe to the text T only retrieves
a single bit from 7'.

Our lower bound applies to a much stronger model.
The search algorithm is allowed an unlimited amount
of computation, and can read the entire index I and
pattern P; we only count the number of bit probes
made to the text 7. This model is stronger than



the powerful bit-probe model [BMRS00, Mil93, Yao81],
which in particular is stronger than a RAM in which
probes to the text are restricted to bit probes. Our
lower bounds of course apply to these models as well.

2 Main Result

In this section we prove the following theorem under the
preceding model of computation:

THEOREM 2.1. If I is an index supporting a search for
the substring P in o(lg” |P|) bit probes to the text T,
then |I| = Q(|T|). This bound applies even when all
query substrings P have length roughly 1g|T|, and do
not overlap.

See Theorem 2.2 on page 5 for a precise statement
of the constant factor.

2.1 Construction. Consider a random permutation
of the integers 0,...,n — 1, random in the Kolmogorov
sense [LV97], i.e., the Kolmogorov complexity of the
permutation is lgn! — O(1). From such a permutation
we construct the text 7' by writing the numbers in bi-
nary, using exactly lgn bits each, in the order given
by the permutation, and terminating each binary rep-
resentation with a special character #. For example,
for n = 16, the permutation 5,12,1,...,15,10 would
generate the string

T = 0101#11004#0001# . .. #1111#10104.

Define N = |T'| = n(lgn + 1).

Note that while we use a ternary alphabet for
convenience, this can easily be avoided by a standard
trick. Our only requirement is that the substrings such
as 0101# appear exactly once in the text. Thus, we can
replace the # symbol with the special string 1*, and
modify all previously existing occurrences of the prefix
15=1 to 1¥=10. The original string 7" is easily recovered
from this new string. Because each binary string occurs
with essentially uniform probability throughout 7', the
length of the new string is N for the original T', plus
kn for the total length of the separators, plus roughly
N/2F=1 for the extra 0’s added to occurrences of 1¥~1,
Choosing k = 1+1gInn minimizes the length of the new
string, achieving

v (14

In the remainder of the proof, we assume that the
alphabet is ternary for simplicity of presentation.

lglnN—%

N ) = N + o(N) bits.

2.2 Proof Outline. Because the permutation and
hence the text T' has Kolmogorov complexity lgn! —

O(1) = nlgn — O(n) by Stirling’s approximation, any
encoding of T requires at least N — O(N/1g N) bits.!

The heart of the proof is to show that the text T'
can be reconstructed from the index I plus two small
auxiliary structures A and B. That is, we will construct
structures A and B so that, together, I, A, and B form
an encoding of 7. We can combine I, A, and B into
one string by first encoding the length of I, so that I
and AB can later be partitioned. (Separating A and B
will be easy.) By the Kolmogorov argument above, this
proves that

(2.1) 1g|I|+|I] +|4] + |B] > N — O(N/IgN).

Thus, if we can build A and B sufficiently small,
say o(IN), we obtain a lower bound of N — o(N) on the
size of I. But note that A and B do not even have to
be sublinear in the size N of the text. Kolmogorov
complexity gives us a tight bound on the encoding
size, specifying that the leading constant on N is 1.
Thus, provided |A| + |B| < ¢N for some constant
¢ < 1, we obtain a linear lower bound on |I|, namely
[I| > (1 —¢)N — O(N/IgN).

2.3 Ideas for Encoding. If the search algorithm
made no probes to the text 7', it follows trivially
that the index I encodes all positional information
for each pattern. Specifically, suppose there were a
search algorithm Search that computes the location of
a pattern P using only the index I. Then the original
text T' can be reconstructed by sequentially querying all
patterns, as follows:

Algorithm Decoding

e For P from 00---0# to 11---14:

1. Let b denote the beginning of the occurrence
of the pattern P found by Search (P).

2. Write the pattern P into positions b,b +
1,...,b+1gn of the reconstructed text T

Of course, our task is not this easy: the query
algorithm can perform as many as c|P| probes to T for
some constant c¢. We can think of the Search algorithm
as having the following outline:

Generic Algorithm Search (P, I, T)

1. Initialize our “knowledge” to the pattern P and
index I.

2. For i from 1 up to at most c|P|,

LAlthough formally there is no difference between +O(f) and
—O(f), we find —O(f) more suggestive in these situations.



(a) Using current knowledge, compute which bit
to next probe the text T', call the position pp,;.

(b) Probe T'[pp;], and add it to our knowledge.

Here we have isolated the probes to the text. Our
goal is to encode in auxiliary structures the probed bits
Tlppal, .-, Tpp, py), for if these were somehow known
for every pattern P, the Search algorithm could run
without access to T', so we could recover the text by
applying Algorithm Decoding. Note that we do not
have to encode where the Search algorithm probes (the
ppi’s). One trivial option would be to simply write
down the bits in the order they would be probed when
executing Decoding, i.e., store the string

T'[poo--0,1]T[poo--0,2] - - - T[Poo.-0,cp)] - -+ * “L[P11--1,1g 0]

as an auxiliary structure. (Define pp; arbitrarily if fewer
than ¢ probes were made during the call to Search (P,
I, T).) Of course, this auxiliary structure is too large,
taking cnlgn = ¢N bits.

Slightly more sophisticated is to encode just the new
probed bits. In other words, the encoding algorithm for
T simulates the execution of Decoding, and whenever
its subroutine Search probes position p, the encoder first
checks whether it has already encoded the bit T'[p]. If
so, the encoder simply omits the bit, with no explicit
code; otherwise, the bit is simply written in the encoded
string. The decoder, on the other hand, has perfect
knowledge of what bits it has probed so far, so whenever
it comes across a new bit to probe, it plays the same
game: if it has never probed that bit before, it reads
the next unread bit in the encoded string, taking that
as the probe result; and otherwise, it uses its knowledge
of the past to determine the result of the probe. This
scheme is somewhat more efficient than the trivial one
above, although still insufficient; however, this idea will
be used heavily in our encoding.

2.4 Our Encoding Scheme. We use two auxiliary
structures, A and B, to efficiently encode the probed
bits during the simulated execution of Decoding. The
basic strategy is that when searching for a pattern P, we
decide whether to record in A the new bits probed in T'.
After all queries have been made and A has been filled,
any remaining probed bits in 7" that remain unrecorded
will be recorded in B.

More precisely, the auxiliary structure A is a table
with n rows, one per pattern from 00---0 to 11---1.
Algorithm Encoding (detailed below) loops over the
patterns, following a simulated execution of Decoding.
Each row of table A contains a bit specifying whether
the row is “present.” If it is present, the row effectively
records the bits probed by Search (P, I, T') that were

not already probed (as in the second method above).
The idea is that we will record the probed bits if they
will give us a significant bonus in implicitly revealing
other bits. The advantage of recording the probe values
for a Search is that the decoder can later simulate the
execution of Search and actually determine the location
of the pattern P: this reveals lgn 4 1 bits of the text to
be the pattern followed by a # symbol. Some of these
bits may already be known to the decoder, but some
may not. If a constant fraction is not known, say at
least rlgn out of the lgn + 1 bits are newly revealed,
we make the row of A present. We will optimize the
constant r (0 < r < 1) later.

If a row is absent, it consists only of the presence bit,
0. If the row is present, it continues with two additional
fields. Again, the goal of these fields is just to encode
the bits probed by Search (P, I, T') in order to reveal
the bits where the pattern P occurs. However, Search
might probe a bit (or several) that is discovered, at the
end of the search, to occur within the found instance of
P. We need to avoid encoding these bits, for otherwise
our “bonus” will be lost.

Thus, if Search probes a bit that occurs within the
to-be-found instance of P, the first field of the row
encodes the first probe with this property (encoded
in binary using exactly lg(clgn) bits), followed by the
distance from the beginning of the instance of P to the
probed bit (encoded in binary using exactly lg(lgn + 1)
bits). Then the second field encodes any bits probed
by Search that were not probed or revealed before and
are not within the occurrence of the pattern P. On
the other hand, the decoder reads the answers from
probes made by Search using the second field, until it
reaches the probed bit specified in the first field. Then it
determines the location of the pattern P, and adds those
bits to its knowledge. Finally, the decoder continues
reading the second field as usual until reaching the next
pattern P and row of A.

The simpler case is when Search does not probe
any bit in the to-be-found instance of P. Then the
first field just encodes a zero bit to state this fact, and
the second field encodes all probed bits that were not
already encoded in A.

After the simulated execution of Algorithm Decod-
ing, some of the probed bits have been encoded in A, and
other bits have been revealed by knowing the locations
of patterns. Any unknown bits of 1" are now written
into B, ordered left-to-right as they occur in T'. Thus
it is clear that by applying essentially the same process,
we can decode A and B to reconstruct the original text
T'. The remaining question is how efficient our encoding
is.



Algorithm Encoding (P)
e For P from 00---0# to 11--- 14

1. Apply Search (P, I, T), let b denote the
beginning of the occurrence of the pattern P,
and let pp1,...,ppr denote the probed bits
in order.

2. If more than rlgn of the bits T'[0], ..., T[b+
lgn] are either marked known or were just
probed by the search,

— Write “0” (row of A is absent).

3. Otherwise:
(a)
(b)

Write “1” (row of A is present).
If one of the probed bits is in between T'[b]
and T'[b + lg n] inclusive:

i. Write “1” (bit of P was probed).

ii. Let pp; denote the first probed bit
that is in between T'[b] and T'[b+1gn].
iii. Write ¢« — 1 in binary using exactly
lg(clgn) bits.
iv. Write pp; — b in binary using exactly
lg(lgn + 1) bits.
Otherwise, write “0” (no bit of P was
probed).
For i from 1 to &:

— If T[pp;] is not in between T'[b] and
T[b + lgn] inclusive, and T7i] is not
marked as known:

i. Write T'¢] (as a new probed bit).

ii. Mark T'[i] as known.

Mark the bits T'[0], ..., T[b + lgn] as
known.

(e)

e For ¢ from 1 to IV,

4. If T[¢] is not marked as known, write T[i] (as
a bit of B).

2.5 Size of Encoding. It may be surprising that our
carefully worded encoding method actually saves space
in the worst case over the simpler encoding algorithms,
but we will show that the savings are significant. The
basic idea is two-fold. First, as mentioned, if most
of the bits in the instance of P are unknown, then it
pays to encode the probe bits, because then we learn
where P is and hence learn most of those lgn bits for
free. Second, we will show that a significant portion of
pattern instances will have this property, i.e. A will have
many rows, inducing much savings.

Equation (2.1) tells us that the encoding of the
triple (I, A, B) has size at least nlgn — O(n). Equiva-
lently, we have

(22) |1 +1g]I] > nlgn—|A| - [B| - O(n).

Now we need to estimate the sizes of A and B. Let
a be the number of present rows in A, and let b be the
number of absent rows in A. Thus we have

(2.3) a+b=n.

Each row in table A consists of the present bit,
sometimes (a out of n times) followed by the values
of the newly probed bits optionally prefixed by some
information about the location of P. Thus,

|[A] < n[2 bits] + allg(clgn) + lg(lgn + 1) bits]
+ [number of probed bits in A].

Applying this to Equation (2.2) gives us

[I|+1g|I] > nlgn—(2n+2alg(lgn +1)+algc)
—  ([number of probed bits in A] + |B|)
(2.4) - O(n)

The work so far has simply converted the encoding
method into algebra. The important part that remains
is marked with a brace in Equation (2.4): bound the
total number of bits encoded explicitly in A and B, i.e.,
the number of probe bits encoded in A plus the entire
size of B.

Consider any bit in the text 7. The bit is within
exactly one of the query patterns, say P. We distinguish
two cases:

Case 1: The row of A corresponding to P is absent.
There are b(lgn + 1) such bits.

In this case, the bit is either encoded as a probe
bit in another row of A, or it will be encoded in B.
Indeed, this accounts for all bits encoded in B, and
some of the probe bits encoded in A.

Case 2: The row of A corresponding to P is present.

In this case, the bit is implicitly encoded by the
discovered location of P. This means that the bit
will not be explicitly encoded in any future rows
of A or in B. However, it may have already been
encoded in an earlier row of A.

Fortunately, by the definition of A, we have a bound
on the number of such bits. Namely, this row of A
was chosen to be present because the number of
already known bits of P was at most rlgn. Thus,
the number of bits of this type that are encoded as
probe bits in A (over all present rows of A) is at
most arlgn.



In total, we have the estimate
[number of probed bits in A]+|B| < blgn+b+arlgn.
Combining this equation with (2.3) and (2.4), we obtain

Il +1g|I] > nlgn—2n—2alg(lgn+1) —algc
—blgn—b—arlgn —O(n)
(n—b—ar)lgn —2alglgn —algc
—0O(n)

(I —r)algn —a(2lglgn +1gc) — O(n)

(2.5)

Lastly, for this bound to be useful, we must bound
a from below. To do this, we recount which of the nlgn
bits of T" are encoded where. On the one hand, each row
of A encodes at most clgn probe bits, plus implicitly
encoding at most lgn + 1 pattern bits. Thus,

number of bits encoded by A < a((l +co)lgn+ 1).

On the other hand, whenever a portion of a pattern P
is encoded in B, at least r1lgn of the bits were already
explicitly or implicitly encoded in A, leaving at most
(1 —r)lgn + 1 bits of the pattern to be encoded in B.
Thus,

number of bits encoded by B = |B| < b((l—r) lg n—l—l).

Combining these two equations,

total number of bits encoded
< a(l4+¢)lgn+b(1l—r)lgn+n.

nlgn

Dividing both sides by lgn and simplifying, we obtain
n < all4+e)+b(1l—-71)+n/lgn
a(l+c)+(n—a)(l—r)+n/lgn
alc+r)+n(l—=r)+n/lgn

Solving for a, we obtain the desired bound:
T
> ——n—n/lgn.
@2 —n n/lgn
Substituting this into Equation (2.5), we obtain

r
Il+1gl|l| > (1-— —n-—n/lgn|l
Mgl 2 (=) (- n/lgn) tgn

a <c+r
- O(n)
r(l—r)

c+r
- O(n)

n —n/lgn) (2lglgn +1gc)

-
len — ——n(2lgl 1
nlgn C+Tn( glgn +1gc)

Focusing just on the lead n1gn term, this expression
is maximized when r = 4/c¢(1+¢) — ¢, giving us the
bound

I +1g|| > (1+2c—2 c(1+c))n1gn
=)
~ (1 X ) n2lglgn +1
( e n(2lglgn +lgc)

— 0O(n)
(1 +2c—2 c(1+c)) nlgn

— O(nlglgn+nlgc)

We have been careful to treat ¢ as a variable, not
as a constant. Thus, if the search algorithm is allowed
t(n) bit probes, we can define ¢ = t(n)/lgn, and obtain
the following bound:

THEOREM 2.2. If there is an algorithm for substring
searches making t(n) bit probes to a text of size N =
nlgn, then the following bound on the index size must

hold:
1l > <1+2@_2 @(H@))mgn
lgn lgn lgn
— O(nlglgn +nlgt(n))

For example, if t(n) = lgn, we have

11| > (3 —2V2)nlgn.

COROLLARY 2.1. If t(n) o(lg?n), then |I|

Q(nlgn) = Q(N).

3 Conclusion

This work starts an important area in text retrieval of
determining the size of the smallest index to support fast
substring searches. We have proved the first nontrivial
lower bound on this problem. Namely, we have shown
that if the search algorithm makes only o(|P|?) bit
probes into the text for a query substring P, then the
size of the index must be proportional to the text.

Our bound of ©(|T|) on the size of the index is tight
up to a constant factor in our model because probes to
the index are free: a trivial strategy is to store an exact
copy of the text in the index, and answer queries by
scanning the index. However, it is natural to ask for the
exact constant factor. It seems difficult to improve past
this trivial strategy, so we conjecture that the constant
is 1:

CONJECTURE 3.1. For any search algorithm that makes
O(|P|) bit probes to the text T, the index must have size
at least |T'| — o(|T|).



Another open problem is how small the index can
be if the algorithm is allowed O(|P]) probes into the
text, when a probe retrieves a word instead of a bit.
Here we follow the standard model of a word being lgn
bits or so. Our result comes close to answering this
question, by showing that the index must have linear
size even for o(|P|lgn) bit probes, none of which have
to be consecutive. It seems that with lgn clusters of lgn
consecutive bit probes, no improvement can be made,
and again the size of the index must be linear in the size
of the text.

Finally, there is work to be done on the upper-
bound side. For a more reasonable model in which
probes to the index are not free, is there a strategy that
matches the trivial space bound of |T'| above, or even
achieving O(|T'|) bits? For the text and queries used in
the lower-bound proof in this paper, the optimal bounds
can be achieved: an inverted word list (for words such as
01014#) can be stored in |T'| bits, and suffices to answer
queries in O(|P]) time (with no probes to the text). Can
this bound be obtained in the more general setting of
searching for arbitrary substrings instead of just words?
Currently the best-known structures either take O(|T'|)
words of space [Wei73, McC76, Ukk95, GK97], or take
O(|T]) bits of space but require an additional O(lgn)
time for queries [GV00].

Acknowledgments

This work was initiated at a Schloss Dagstuhl seminar
on Data Structures, organized by Susanne Albers, Ian
Munro, and Peter Widmeyer. During the open problem
session, Roberto Grossi posed the problem at hand.
We thank Prosenjit Bose, Andrej Brodnik, Roberto
Grossi, and Ian Munro for helpful discussions during
the meeting.

References

[BMRS00] Harry Buhrman, Peter Bro Miltersen, Jaikumar
Radhakrishnan, and Venkatesh Srinivasan. Are bitvec-
tors optimal? In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, Portland, Ore-
gon, May 2000.

[GK97] R. Giegerich and S. Kurtz. From Ukkonen to
McCreight and Weiner: A unifying view of linear-time
suffix tree construction. Algorithmica, 19(3):331-353,
1997.

[GV00] Roberto Grossi and Jeffrey Scott Vitter. Com-
pressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proceedings of
the 32nd Annual ACM Symposium on Theory of Com-
puting, Portland, Oregon, May 2000.

[KMP77] Donald E. Knuth, James H. Morris, Jr., and

Vaughan R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323-350, 1977.
[LV97] Ming Li and Paul Vitdnyi. An Introduction to
Kolmogorov Complezity and its Applications. Springer-

Verlag, New York, second edition, 1997.

[McC76] Edward M. McCreight. A space-economical suffix
tree construction algorithm. Journal of the Association
for Computing Machinery, 23(2):262-272, 1976.

[Mil93] Peter Bro Miltersen. The bit probe complexity mea-
sure revisited. In P. Enjalbert, A. Finkel, and K. W.
Wagner, editors, Proceedings of the 10th Annual Sym-
posium on Theoretical Aspects of Computer Science,
pages 662-671, Wiirzburg, February 1993.

[Ukk95] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249-260, 1995.

[Wei73] Peter Weiner. Linear pattern matching algorithm.
In Proceedings of the 14th Annual IEEE Symposium
on Switching and Automata Theory, pages 1-11, Towa
City, Iowa, 1973.

[Yao81] Andrew Chi Chih Yao. Should tables be sorted?
Journal of the Association for Computing Machinery,
28(3):615-628, 1981.



